Current Computational Models for Prediction of the Varied Interactions Related to Protein - Part 2

Author(s): Xing Chen, Qi Zhao

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 5 , 2020

Become EABM
Become Reviewer
Call for Editor

Ding, Y.J.; Tang, J.J.; Guo, F. The computational models of drug-target interaction prediction. Protein Pept. Lett., 2020, 27(5), 348-358.
Shi, C.; Chen, J.X.; Kang, X.Y.; Zhao, G.L.; Lao, X.Z.; Zheng, H. Deep learning in the study of protein-related interactions: Review. Protein Pept. Lett., 2020, 27(5), 359-369.
Wan, H.; Li, J-m.; Ding, H.; Lin, S-x.; Tu, S-q.; Tian, X-h.; Hu, J-p.; Chang, S. An overview of computational tools of nucleic acid binding site prediction for site-specific proteins and nucleases. Protein Pept. Lett., 2020, 27(5), 370-384.
Zhong, L.; Ming, Z.; Xie, G.B.; Fan, C.L.; Piao, X. Recent advances on the semi-supervised learning for long non-coding RNA-protein interactions prediction: A review. Protein Pept. Lett., 2020, 27(5), 385-391.
Qu, J.; Zhao, Y.; Zhang, L.; Cai, S.B.; Ming, Z.; Wang, C.C. Computational models for self-interacting proteins prediction. Protein Pept. Lett., 2020, 27(5), 392-399.

free to download

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 April, 2020
Page: [347 - 347]
Pages: 1
DOI: 10.2174/092986652705200401113230

Article Metrics

PDF: 24