A Study on the Mechanism of Lavender in the Treatment of Insomnia Based on Network Pharmacology

Author(s): Yao Wang, Junbo Zou, Yanzhuo Jia, Yulin Liang, Xiaofei Zhang*, Chang-Li Wang, Xiao Wang*, Dongyan Guo, Yajun Shi, Ming Yang

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 5 , 2020

Become EABM
Become Reviewer

Abstract:

Aims and Objective: The common disease of insomnia has complex and diverse clinical manifestations. Lavender represents an effective treatment of insomnia, but the molecular mechanism underlying the effectiveness of this treatment is not clear. The purpose of this study is to investigate the active components, target proteins and molecular pathways of lavender in the treatment of insomnia, thus explaining its possible mechanism.

Materials and Methods: Firstly, 54 active components of lavender were identified by gas chromatography-mass spectrometry (GC-MS). The target protein of lavender was predicted by the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform and the SwissTargetPredicating tool, and the target protein of insomnia was predicted by the DisGeNET and DrugBank databases. Then, the "component-target-disease" network diagram was constructed using the Cytoscape 3.7.1 software. KEGG and GO enrichments were analyzed using the R statistical language. Finally, the key target proteins were verified by collecting and verifying the target protein GEO data using the Discovery Studio 3.5 molecular docking verification software.

Results: 906 target proteins of lavender were predicted by the Traditional Chinese Medicine System Pharmacological Database and Analysis Platform and the SwissTargetPredicating tool, and 182 insomnia target proteins were predicted by the DisGeNET and DrugBank databases. The results of GO enrichment analysis showed that it included the reaction process of ammonium ion, the regulation of the membrane potential and the secretion of catecholamine, while the results of KEGG enrichment included the calcium signaling pathway, serotonin synapse, morphine addiction and many more. Finally, using the Discovery Studio3.5 molecular docking verification software, it was verified that the key target proteins are ADRB1 and HLA-DRB1.

Conclusion: The components in the lavender essential oil include the Ethyl 2-(5-methyl-5-vinyltetrahydrofuran- 2-yl)propan-2-ylcarbonate (0.774); 5-Oxatricyclo[8.2.0.04,6]dodecane, 4,12,12-trimethyl- 9-methylene-, (1R,4R,6R,10S)-(0.147); P-Cymen-7-ol (0.063); .alpha-Humulenem (0.317); Acetic acid, hexyl ester (1.374); etc. The role lavender plays in the treatment of insomnia might be accomplished through the regulation of the key targets ADRB1 and HLA-DRB1.

Keywords: Network pharmacology, lavender, insomnia, target proteins, geodata, molecular docking.

[1]
Yin, Y.; Kai, W.; DaPing, L. Clinical effect of insomnia patients by inhalation lavender essential oil. China Medical Herald, 2016, 13(24), 144-147.
[2]
Ren, G.; Zhong, Y.; Ke, G.; Liu, X.; Li, H.; Li, X.; Zheng, Q.; Yang, M. The Mechanism of Compound Anshen Essential Oil in the Treatment of Insomnia Was Examined by Network Pharmacology. Evid. Based Complement. Alternat. Med., 2019, 2019, 9241403
[3]
Hong, T. TengJiao, Z.; Shuang, W.; AnNa, Q.; WenYu, C, Lei, C. Preparation of traditional Chinese Medicine incense for Prevention and treatment of Insomnia. Sci. Technol. Economic Market, 2014, 2014(02), 90-91.
[4]
WangDi, S.; Jing , S.; Ming, J.; Chong, L.; Wen, C. Study on purification and hypnotic effect of lavender essential oil. Zhongguo Yiyuan Yaoxue Zazhi, 2018, 38(18), 1911-1917.
[5]
Shaw, D.; Norwood, K.; Leslie, J.C. Chlordiazepoxide and lavender oil alter unconditioned anxiety-induced c-fos expression in the rat brain. Behav. Brain Res., 2011, 224(1), 1-7.
[http://dx.doi.org/10.1016/j.bbr.2011.05.014] [PMID: 21641938]
[6]
LaiTi, J.; Bao, Z.; XingMei, H. Acupuncture combined with lavender aromatherapy in the treatment of insomnia: a report of 32 cases. Guangming J. Chinese Med., 2009, 24(05), 897.
[7]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[8]
Zhang, Q.; Peng, W.; Wei, S.; Wei, D.; Li, R.; Liu, J.; Peng, L.; Yang, S.; Gao, Y.; Wu, C.; Pu, X. Guizhi-Shaoyao-Zhimu decoction possesses anti-arthritic effects on type II collagen-induced arthritis in rats via suppression of inflammatory reactions, inhibition of invasion & migration and induction of apoptosis in synovial fibroblasts. Biomed. Pharmacother., 2019, 118, 109367
[http://dx.doi.org/10.1016/j.biopha.2019.109367] [PMID: 31545276]
[9]
Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[10]
Danh, L.T.; Triet, N.D.A.; Le, T.N.H.; Jian, Z.; Mammucari, R.; Foster, N. Antioxidant activity, yield and chemical composition of lavender essential oil extracted by supercritical CO 2. J. Supercrit. Fluids, 2012, 70(70), 27-34.
[http://dx.doi.org/10.1016/j.supflu.2012.06.008]
[11]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[12]
David, G.; Aurélien, G.; Matthias, W.; Antoine, D.; Olivier, M.; Vincent, Z. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42, 32-8.
[13]
Gfeller, D.; Michielin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules. Bioinformatics, 2013, 29(23), 3073-3079.
[http://dx.doi.org/10.1093/bioinformatics/btt540] [PMID: 24048355]
[14]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[15]
Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; Houstis, N.; Daly, M.J.; Patterson, N.; Mesirov, J.P.; Golub, T.R.; Tamayo, P.; Spiegelman, B.; Lander, E.S.; Hirschhorn, J.N.; Altshuler, D.; Groop, L.C.V.K. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet., 2003, 34(3), 267-273.
[http://dx.doi.org/10.1038/ng1180] [PMID: 12808457]
[16]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[17]
Pellegrino, R.; Sunaga, D.Y.; Guindalini, C.; Martins, R.C.; Mazzotti, D.R.; Wei, Z.; Daye, Z.J.; Andersen, M.L.; Tufik, S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol. Genomics, 2012, 44(21), 1003-1012.
[http://dx.doi.org/10.1152/physiolgenomics.00058.2012] [PMID: 22947657]
[18]
ES, A.; EV, N.; KR, S.; AA, P.; RC, A.; KQ, T.; G, M.; DJ, S.; JJ, R.; CJ, W.; AI, P. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation. Sleep (Basel), 2014, 37(10), 1589-1600.
[http://dx.doi.org/10.5665/sleep.4064]
[19]
Peng, A.; Shen, H.; Lin, B.; Han, P.; Li, C.H.; Zhang, Q.Y.; Ye, B.Z.; Rahman, K.; Xin, H.L.; Qin, L.P.; Han, T. Docking study and antiosteoporosis effects of a dibenzylbutane lignan isolated from Litsea cubeba targeting Cathepsin K and MEK1. Med. Chem. Res., 2018, 27, 2062-2070.
[http://dx.doi.org/10.1007/s00044-018-2215-8]
[20]
Fang, H.; Bo, Y.; MengSheng, S.; Yin, H.; YiMing, Z.; LiHua, Y.; LiPing, H. Molecular Mechanism for Predicting the Prevention and Treating of Alzheimer’s Disease with Fructus Broussonetiae by Basing on Network Pharmacology and Molecular Docking Method. Chinese Pharma. J., 2019, 54(07), 549-557.
[21]
YanJun, H.; KaiCong, C. Application of discovery studio software in teaching of biochemistry: rigid docking of molecule. Chinese J. Chem. Edu., 2019, 40(02), 73-77.
[22]
Qun, Z.; LingLi, Z. Research and Application of Lavender Research and Application of Lavender, 2008, 19(6), 1312-1314.
[23]
YuQing, W.; YaJun, S.; XianEr, S. Chemical constituents and pharmacological activities of lavender essential oil. Mod. Drugs Clin., 2004, 19(1), 5-8.
[24]
ShuSheng, L.; MingLei, L. Clinical analysis of 50 cases of neurosis treated with lavender flowers smelling incense. Tibetan Med., 2001, 2001(3), 32-34.
[25]
GuangLiang, M.; HuiNan, G.; FangZheng, S. Effect of Yiqi Huoxue recipe on Mucosal Healing quality in Rat Model of Acute gastric ulcer. Chinese Trad. Med. Emerg., 2015, 24(11), 1939-1941.
[26]
Su, S.-Y.; Hsieh, C.-L.; Wu, S.-L.; Cheng, W.-Y.; Li, C.-C.; Lo, H-Y.; Ho, T.-Y.; Hsiang, C.-Y. Transcriptomic analysis of EGb 761-regulated neuroactive receptor pathway in vivo. J. Ethnopharmacol., 2009, 123(1), 68-73.
[http://dx.doi.org/10.1016/j.jep.2009.02.027] [PMID: 19429342]
[27]
Jouvet, M. Sleep and serotonin: an unfinished story. Neuropsychopharmacology, 1999, 21, 24S-27S.
[http://dx.doi.org/10.1016/S0893-133X(99)00009-3] [PMID: 10432485]
[28]
ShengXu, W.; QiuShi, L. Effects of sleep deprivation on the content of amino acid neurotransmitters in rat brain. J. Southern Med. Univ., 2002, 22(10), 888-890.
[29]
Zhen, L. Experimental study on the effect of GABA drugs on Cognitive function in Rats with REM Sleep deprivation; Second Military Medical University, 2008.
[30]
Modirrousta, M.; Mainville, L.; Jones, B.E. Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery. BMC Neurosci., 2007, 8(1), 15.
[http://dx.doi.org/10.1186/1471-2202-8-15] [PMID: 17316437]
[31]
Tsai, L.L.; Bergmann, B.M.; Perry, B.D.; Rechtschaffen, A. Effects of chronic total sleep deprivation on central noradrenergic receptors in rat brain. Brain Res., 1993, 602(2), 221-227.
[http://dx.doi.org/10.1016/0006-8993(93)90686-H] [PMID: 8448668]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 5
Year: 2020
Page: [419 - 432]
Pages: 14
DOI: 10.2174/1386207323666200401095008
Price: $65

Article Metrics

PDF: 25
HTML: 1