Application and Development of Artificial Intelligence and Intelligent Disease Diagnosis

Author(s): Chunyan Ao, Shunshan Jin, Hui Ding, Quan Zou*, Liang Yu*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 26 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

With the continuous development of artificial intelligence (AI) technology, big data-supported AI technology with considerable computer and learning capacity has been applied in diagnosing different types of diseases. This study reviews the application of expert systems, neural networks, and deep learning used by AI technology in disease diagnosis. This paper also gives a glimpse of the intelligent diagnosis and treatment of digestive system diseases, respiratory system diseases, and osteoporosis by AI technology.

Keywords: Artificial intelligence, disease diagnosis, expert system, neural network, deep learning, AI technology.

[1]
Małysiak-Mrozek B, Baron T, Mrozek D. Spark-IDPP: high-throughput and scalable prediction of intrinsically disordered protein regions with Spark clusters on the Cloud. Cluster Comput 2018; (17): 487.
[2]
Malysiak-Mrozek B, Stabla M, Mrozek D. Soft and declarative fishing of information in big data lake. IEEE Trans Fuzzy Syst 2018; 26(5): 2732-47.
[http://dx.doi.org/10.1109/TFUZZ.2018.2812157]
[3]
Peng L, Peng MM, Liao B, Huang GH, Li WB, Xie DF. The Advances and challenges of deep learning application in biological big data processing. Curr Bioinform 2018; 13(4): 352-9.
[http://dx.doi.org/10.2174/1574893612666170707095707]
[4]
Liao ZJ, Li DP, Wang XR, Li LS, Zou Q. Cancer diagnosis through isomir expression with machine learning method. Curr Bioinform 2018; 13(1): 57-63.
[http://dx.doi.org/10.2174/1574893611666160609081155]
[5]
Cabarle FGC, Adorna HN, Jiang M, Zeng X. Spiking neural p systems with scheduled synapses. IEEE Trans Nanobioscience 2017; 16(8): 792-801.
[http://dx.doi.org/10.1109/TNB.2017.2762580] [PMID: 29035221]
[6]
Xu H, Zeng W, Zhang D, Zeng X. MOEA/HD: A multiobjective evolutionary algorithm based on hierarchical decomposition. IEEE Trans Cybern 2019; 49(2): 517-26.
[http://dx.doi.org/10.1109/TCYB.2017.2779450] [PMID: 29990272]
[7]
Zhu XJ, Feng CQ, Lai HY, Chen W, Lin H. Predicting protein structural classes for low-similarity sequences by evaluating different features. Knowl Base Syst 2019; 163: 787-93.
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[8]
Lv H, Zhang ZM, Li SH, Tan JX, Chen W, Lin H. Evaluation of different computational methods on 5-methylcytosine sites identification. Brief Bioinform 2019.bbz048
[PMID: 31157855]
[9]
Yu L, Huang J, Ma Z, Zhang J, Zou Y, Gao L. Inferring drug-disease associations based on known protein complexes. BMC Med Genomics 2015; 8(Suppl. 2): S2.
[http://dx.doi.org/10.1186/1755-8794-8-S2-S2] [PMID: 26044949]
[10]
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[11]
Zeng X, Pan L, Pérez-Jiménez MJJSCIS. Small universal simple spiking neural P systems with weights. Sci China Inf Sci 2014; 57(9): 1-11.
[http://dx.doi.org/10.1007/s11432-013-4848-z]
[12]
Cabarle FGC, de la Cruz RTA, Zhang X, Jiang M, Liu X, Zeng X. On string languages generated by spiking neural p systems with structural plasticity. IEEE Trans Nanobioscience 2018; 17(4): 560-6.
[http://dx.doi.org/10.1109/TNB.2018.2879345] [PMID: 30403634]
[13]
Yerushalmy J. Statistical problems in assessing methods of medical diagnosis, with special reference to X-ray techniques. Public Health Reports (1896-1970) 1947; 1432-49..
[14]
Kulikowski CA. Artificial intelligence methods and systems for medical consultation. IEEE Trans Pattern Anal Mach Intell 2013; PAMI-2(5): 464-76.
[http://dx.doi.org/10.1109/TPAMI.1980.6592368]
[15]
Szolovits P, Patil RS, Schwartz WB. Artificial intelligence in medical diagnosis. Ann Intern Med 1988; 108(1): 80-7.
[http://dx.doi.org/10.7326/0003-4819-108-1-80] [PMID: 3276267]
[16]
Süt N, Çelik Y. Prediction of mortality in stroke patients using multilayer perceptron neural networks. Turk J Med Sci 2012; 42(5): 886-93.
[17]
Bentley P, Ganesalingam J, Carlton Jones AL, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin 2014; 4: 635-40.
[http://dx.doi.org/10.1016/j.nicl.2014.02.003] [PMID: 24936414]
[18]
Yan H, Jiang Y, Zheng J, Peng C, Li Q. A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst Appl 2006; 30(2): 272-81.
[http://dx.doi.org/10.1016/j.eswa.2005.07.022]
[19]
Panday P, Godara N. Decision support system for cardiovascular heart disease diagnosis using improved multilayer perceptron. Int J Comput Appl 2012; 45(8)
[20]
Mojarad S, Dlay SS, Woo WL, Sherbet GV. Cross validation evaluation for breast cancer prediction using multilayer perceptron neural networks. Am J Eng Appl Sci 2011; 4(4): 576-85.
[21]
LeCun Y, Bengio Y. Deep learning 2015; 521(7553): 436-4..
[22]
Chen S, Liu W, Qin J, et al. [Research progress of computer-aided diagnosis in cancer based on deep learning and medical imaging]. Sheng wu yi xue gong cheng xue za zhi = J Biomed Eng 2017; 34(2): 314-9.
[23]
Li-ping S, Kai X, Wei-wu Y. Automatic segmentation and classification evaluation based on semi-quantitative score of magnetic resonance imaging of knee articular cartilage. Sheng wu yi xue gong cheng xue za zhi =. J Biomed Eng 2018.
[24]
Streba CT, Vere CC, Sandulescu LD, et al. Sa1000 Focal Liver lesions classification by artificial neural networks and support vector machines employing dynamic imaging data. Gastroenterology 2014; 146(5): S-933.
[http://dx.doi.org/10.1016/S0016-5085(14)63391-6]
[25]
Zhang Y, Xie YY, Guo L, et al. Robust Pulmonary nodule segmentation in CT image for juxta-pleural and juxta-vascular case. Curr Bioinform 2019; 14(2): 139-47.
[http://dx.doi.org/10.2174/1574893613666181029100249]
[26]
Vorontsov E, Tang A, Roy D, Pal CJ, Kadoury S. Metastatic liver tumour segmentation with a neural network-guided 3D deformable model. Med Biol Eng Comput 2017; 55(1): 127-39.
[http://dx.doi.org/10.1007/s11517-016-1495-8] [PMID: 27106756]
[27]
Li S, Jiang H, Pang W. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading. Comput Biol Med 2017; 84: 156-67.
[http://dx.doi.org/10.1016/j.compbiomed.2017.03.017] [PMID: 28365546]
[28]
James SL, Henderson EE, Shatzel JJ, Dickson R. Mo1903 machine learning classifiers: A novel approach to predicting bleeding risk in hospitalized cirrhotic patients. Gastroenterology 2015; 148(4)S-1079
[http://dx.doi.org/10.1016/S0016-5085(15)33685-4]
[29]
Reddy R, Imler TD. Artificial neural networks are highly predictive for hepatocellular carcinoma in patients with cirrhosis. Gastroenterology 2017; 152(5): S1193.
[http://dx.doi.org/10.1016/S0016-5085(17)33977-X]
[30]
Zeng W, Wang F, Ma Y, Liang XC, Chen P. Dysfunctional mechanism of liver cancer mediated by transcription factor and non-coding RNA. Curr Bioinform 2019; 14(2): 100-7.
[http://dx.doi.org/10.2174/1574893614666181119121916]
[31]
Gao S, Peng Y, Guo H, et al. Texture analysis and classification of ultrasound liver images. Biomed Mater Eng 2014; 24(1): 1209-16.
[http://dx.doi.org/10.3233/BME-130922] [PMID: 24212015]
[32]
Chen Y, Luo Y, Huang W, et al. Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B. Comput Biol Med 2017; 89: 18-23.
[http://dx.doi.org/10.1016/j.compbiomed.2017.07.012] [PMID: 28779596]
[33]
Wei L, Xing P, Zeng J, Chen J, Su R, Guo F. Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier. Artif Intell Med 2017; 83: 67-74.
[http://dx.doi.org/10.1016/j.artmed.2017.03.001] [PMID: 28320624]
[34]
Wei L, Wan S, Guo J, Wong KK. A novel hierarchical selective ensemble classifier with bioinformatics application. Artif Intell Med 2017; 83: 82-90.
[http://dx.doi.org/10.1016/j.artmed.2017.02.005] [PMID: 28245947]
[35]
Feng P-M, Ding H, Chen W, Lin HJC. medicine mmi: Naive Bayes classifier with feature selection to identify phage virion proteins 2013;; 2013
[36]
Feng P-M, Lin H, Chen WJC. medicine mmi: Identification of antioxidants from sequence information using naive Bayes 2013;; 2013
[37]
Ding Y, Tang J, Guo F. Identification of protein-protein interactions via a novel matrix-based sequence representation model with amino acid contact information. Int J Mol Sci 2016; 17(10): 1623.
[http://dx.doi.org/10.3390/ijms17101623] [PMID: 27669239]
[38]
Ding Y, Tang J, Guo F. Predicting protein-protein interactions via multivariate mutual information of protein sequences. BMC Bioinformatics 2016; 17(1): 398.
[http://dx.doi.org/10.1186/s12859-016-1253-9] [PMID: 27677692]
[39]
Yu L, Su R, Wang B, et al. Prediction of novel drugs for hepatocellular carcinoma based on multi-source random walk. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(4): 966-77.
[http://dx.doi.org/10.1109/TCBB.2016.2550453] [PMID: 27076463]
[40]
Yang H, Lv H, Ding H, Chen W, Lin H. iRNA-2OM: A sequencebased predictor for identifying 2'-o-methylation sites in homo sapiens. J Comp Biol : a journal of computational molecular cell biology 2018; 25(11): 1266-77..
[41]
Chen XX, Tang H, Li WC, et al. Identification of bacterial cell wall lyases via pseudo amino acid composition. BioMed Res Int 2016; 20161654623
[http://dx.doi.org/10.1155/2016/1654623] [PMID: 27437396]
[42]
Feng CQ, Zhang ZY, Zhu XJ, et al. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2018.
[PMID: 30247625]
[43]
Dao FY, Lv H, Wang F, et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2018; 35(12)
[PMID: 30428009]
[44]
Chen W, Lv H, Nie F, Lin H. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics 2019; 35(16): 2796-800.
[http://dx.doi.org/10.1093/bioinformatics/btz015] [PMID: 30624619]
[45]
Ding Y, Tang J, Guo F. Identification of drug-target interactions via multiple information integration. Inf Sci 2017; 418-419: 546-60.
[http://dx.doi.org/10.1016/j.ins.2017.08.045]
[46]
Lemoine M, Thursz M, Mallet V, Shimakawa Y. Diagnostic accuracy of the gamma-glutamyl transpeptidase to platelet ratio (GPR) using transient elastography as a reference. Gut 2017; 66(1): 195-6.
[http://dx.doi.org/10.1136/gutjnl-2016-311554] [PMID: 26921348]
[47]
Lu X-J, Li X-H, Yuan Z-X, et al. Assessment of liver fibrosis with the gamma-glutamyl transpeptidase to platelet ratio: a multicentre validation in patients with HBV infection. Gut 2018; 67(10): 1903-4.
[http://dx.doi.org/10.1136/gutjnl-2017-315299] [PMID: 29101263]
[48]
Johanson JF, Frakes J, Eisen D. Computer-assisted analysis of abrasive transepithelial brush biopsies increases the effectiveness of esophageal screening: a multicenter prospective clinical trial by the EndoCDx Collaborative Group. Dig Dis Sci 2011; 56(3): 767-72.
[http://dx.doi.org/10.1007/s10620-010-1497-6] [PMID: 21132367]
[49]
Chan DK, Zakko L, Visrodia KH, et al. Breath testing for Barrett’s esophagus using exhaled volatile organic compound profiling with an electronic nose device. Gastroenterology 2017; 152(1): 24-6.
[http://dx.doi.org/10.1053/j.gastro.2016.11.001] [PMID: 27825962]
[50]
Chan DK, Lutzke LS, Clemens MA, Leggett CL, Wang KK. 299 Detection of Barrett’s esophagus by non-invasive breath screening of exhaled volatile organic compounds using an electronic-nose device. Gastroenterology 2016; 150(4): S67.
[http://dx.doi.org/10.1016/S0016-5085(16)30345-6]
[51]
Săftoiu A, Vilmann P, Gorunescu F, et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clinical Gastroenterology and Hepatology 2012; 10(1): 84-90. e81..
[http://dx.doi.org/10.1016/j.cgh.2011.09.014]
[52]
Yang Y, Chen H, Wang D, Luo W, Zhu B, Zhang Z. Diagnosis of pancreatic carcinoma based on combined measurement of multiple serum tumor markers using artificial neural network analysis. Chin Med J (Engl) 2014; 127(10): 1891-6.
[PMID: 24824251]
[53]
Sanoob M, Madhu A, Ajesh K, Varghese SM. Artificial neural network for diagnosis of pancreatic cancer. Int J Cybern Inform 2016; 5(2): 41-9.
[54]
Walczak S, Velanovich V. An evaluation of artificial neural networks in predicting pancreatic cancer survival. J Gastrointest Surg 2017; 21(10): 1606-12.
[http://dx.doi.org/10.1007/s11605-017-3518-7] [PMID: 28776157]
[55]
Li T, Cohen J, Craig M, Tsourides K, Mahmud N, Berzin TMJGE. Mo1979 the next endoscopic frontier: a novel computer vision program accurately identifies colonoscopic colorectal adenomas. Gastrointestinal Endoscopy 2016; 83(5): AB482.
[56]
Misawa M, Kudo S-e, Mori Y, et al. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience 2018; 154(8): 2027-2029. e2023..
[http://dx.doi.org/10.1053/j.gastro.2018.04.003]
[57]
Zou Q, Qu K, Luo Y, Yin D, Ju Y, Tang H. Predicting diabetes mellitus with machine learning techniques. Front Genet 2018; 9: 515.
[http://dx.doi.org/10.3389/fgene.2018.00515] [PMID: 30459809]
[58]
Burge PS, Pantin CF, Newton DT, et al. Development of an expert system for the interpretation of serial peak expiratory flow measurements in the diagnosis of occupational asthma. Occup Environ Med 1999; 56(11): 758-64.
[http://dx.doi.org/10.1136/oem.56.11.758] [PMID: 10658562]
[59]
Gautier V, Rédier H, Pujol JL, et al. Comparison of an expert system with other clinical scores for the evaluation of severity of asthma. Eur Respir J 1996; 9(1): 58-64.
[http://dx.doi.org/10.1183/09031936.96.09010058] [PMID: 8834335]
[60]
Matsuki Y, Nakamura K, Watanabe H, et al. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. AJR Am J Roentgenol 2002; 178(3): 657-63.
[http://dx.doi.org/10.2214/ajr.178.3.1780657] [PMID: 11856693]
[61]
McCulloch CC, Kaucic RA, Mendonça PR, Walter DJ, Avila RS. Model-based detection of lung nodules in computed tomography exams. Thoracic computer-aided diagnosis. Acad Radiol 2004; 11(3): 258-66.
[http://dx.doi.org/10.1016/S1076-6332(03)00729-3] [PMID: 15035515]
[62]
Sun W, Zheng B, Qian W. Computer aided lung cancer diagnosis with deep learning algorithms.Medical imaging 2016: computeraided diagnosis: 2016. 2016. International Society for Optics and Photonics: 97850Z
[63]
Anthimopoulos M, Christodoulidis S, Ebner L, Christe A. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network 2016; 35(5): 1207-6..
[64]
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning 2018; 24(10): 1559-67..
[65]
Pavlou AK, Turner AP. Sniffing out the truth: clinical diagnosis using the electronic nose. Clin Chem Lab Med 2000; 38(2): 99-112.
[http://dx.doi.org/10.1515/CCLM.2000.016] [PMID: 10834396]
[66]
Yang H, Tang H, Chen XX, et al. Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition. BioMed Res Int 2016; 20165413903
[http://dx.doi.org/10.1155/2016/5413903] [PMID: 27597968]
[67]
Zhu PP, Li WC, Zhong ZJ, et al. Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition. Mol Biosyst 2015; 11(2): 558-63.
[http://dx.doi.org/10.1039/C4MB00645C] [PMID: 25437899]
[68]
Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002; 359(9321): 1929-36.
[http://dx.doi.org/10.1016/S0140-6736(02)08761-5] [PMID: 12057569]
[69]
Henderson JE, Goltzman D. The osteoporosis primer: The osteoporosis primer. Horumon To Rinsho 2010; 54(1): 133-4.
[70]
Ongphiphadhanakul B, Rajatanavin R, Chailurkit L, et al. Prediction of low bone mineral density in postmenopausal women by artificial neural network model compared to logistic regression model. J Med Ass Thiland: Chotmaihet thangphaet 1997; 80(8): 508-15.
[71]
Tafraouti A, El Hassouni M, Toumi H, Lespessailles E, Jennane R. Osteoporosis diagnosis using fractal analysis and support vector machine. 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems. 73-.
[http://dx.doi.org/10.1109/SITIS.2014.49]
[72]
Zhu PF, Xu Q, Hu QH, Zhang CQ. Co-regularized unsupervised feature selection. Neurocomputing 2018; 275: 2855-63.
[http://dx.doi.org/10.1016/j.neucom.2017.11.061]
[73]
Zhu PF, Xu Q, Hu QH, Zhang CQ, Zhao H. Multi-label feature selection with missing labels. Pattern Recognit 2018; 74: 488-502.
[http://dx.doi.org/10.1016/j.patcog.2017.09.036]
[74]
Zhu PF, Zhu WC, Hu QH, Zhang CQ, Zuo WM. Subspace clustering guided unsupervised feature selection. Pattern Recognit 2017; 66: 364-74.
[http://dx.doi.org/10.1016/j.patcog.2017.01.016]
[75]
Iliou T, Anagnostopoulos C-N, Stephanakis IM, Anastassopoulos G. A novel data preprocessing method for boosting neural network performance: a case study in osteoporosis prediction. Inf Sci 2017; 380: 92-100.
[http://dx.doi.org/10.1016/j.ins.2015.10.026]
[76]
Liu Q, Cui X, Chou Y-C, Abbod MF, Lin J, Shieh J-S. Ensemble artificial neural networks applied to predict the key risk factors of hip bone fracture for elders. Biomed Signal Process Control 2015; 21: 146-56.
[http://dx.doi.org/10.1016/j.bspc.2015.06.002]
[77]
Yu X, Ye C, Xiang L. Application of artificial neural network in the diagnostic system of osteoporosis. Neurocomputing 2016; 214: 376-81.
[http://dx.doi.org/10.1016/j.neucom.2016.06.023]
[78]
Cheng L, Hu Y. Human disease system biology. Curr Gene Ther 2018; 18(5): 255-6.
[http://dx.doi.org/10.2174/1566523218666181010101114] [PMID: 30306867]
[79]
Cheng L, Zhuang H, Yang S, Jiang H, Wang S, Zhang J. Exposing the causal effect of c-reactive protein on the risk of type 2 diabetes mellitus: a mendelian randomization study. Front Genet 2018; 9: 657.
[http://dx.doi.org/10.3389/fgene.2018.00657] [PMID: 30619477]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 26
Year: 2020
Published on: 11 August, 2020
Page: [3069 - 3075]
Pages: 7
DOI: 10.2174/1381612826666200331091156
Price: $65

Article Metrics

PDF: 33
HTML: 3