Biological Signatures of Disease in Neuro-Psychiatry as Inter-Theoretical Reduction

Author(s): Drozdstoy Stoyanov

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

[1]
Bekris; Lynn M.; Yu Chang-en; Bird; Thomas D.; Tsuang; Debby W. Genetics of alzheimer disease. J. Geriatr. Psychiatry Neurol., 2012, 23(4), 213-227.
[2]
Wilson, R.S.; Krueger, K.R.; Arnold, S.E.; Schneider, J.A.; Kelly, J.F.; Barnes, L.L.; Tang, Y.; David, A.B Loneliness and risk of Alzheimer disease. Arch. Gen. Psychiatry, 2015, 64, 234-240.
[3]
Kukull, W.A.; Higdon, R.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Schellenberg, G.D.; van Belle, G.; Jolley, L.; Larson, E.B. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch. Neurol., 2002, 59(11), 1737-1746.
[http://dx.doi.org/10.1001/archneur.59.11.1737] [PMID: 12433261]
[4]
Cummings, J.L. Alzheimer disease. JAMA, 2015, 287(18), 2335-2338.
[5]
Brookmeyer, R.; Gray, S.; Kawas, C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health, 1998, 88(9), 1337-1342.
[http://dx.doi.org/10.2105/AJPH.88.9.1337] [PMID: 9736873]
[6]
Von Strauss, E.M.; Viitanen, D.; De Ronchi, D. Aging and the occurance of dementia. Arch. Neurol., 1999, 56, 587-592.
[http://dx.doi.org/10.1001/archneur.56.5.587] [PMID: 10328254]
[7]
Hendrie, H.C.; Hall, K.S. Hui. The relationship between age, sex and the incidence of dementia and Alzheimer disease. JAMA Psychiatry, 1998, 55, 809-815.
[8]
Stojanov, D. On the molecular correlations in the pathobiochemistry of Alzheimer disease. Biotechnol. Biotechnol. Equip., 2006, 20(2), 17-23.
[http://dx.doi.org/10.1080/13102818.2006.10817337]
[9]
Ewers, M.; Schmitz, S.; Hansson, O.; Walsh, C.; Fitzpatrick, A.; Bennett, D.; Minthon, L.; Trojanowski, J.Q.; Shaw, L.M.; Faluyi, Y.O.; Vellas, B.; Dubois, B.; Blennow, K.; Buerger, K.; Teipel, S.J.; Weiner, M.; Hampel, H. Alzheimer’s Disease Neuroimaging Initiative. Body mass index is associated with biological CSF markers of core brain pathology of Alzheimer’s disease. Neurobiol. Aging, 2012, 33(8), 1599-1608.
[10]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[11]
Rahimi, J.; Kovacs, G.G. Prevalence of mixed pathologies in the aging brain. Alzheimers Res. Ther., 2014, 6(9), 82.
[http://dx.doi.org/10.1186/s13195-014-0082-1] [PMID: 25419243]
[12]
Gillette-Guyonnet, S.; Nourhashemi, F.; Andrieu, S.; de Glisezinski, I.; Ousset, P.J.; Riviere, D.; Albarede, J.L.; Vellas, B. Gillette-guyonnet E T. Weight Loss in Alzheimer Disease. J. Nutr. Elder., 2000, 71, 637S-642S.
[13]
Liebert, M.A.; Loring, J.F.; Wen, X.; Lee, J.M. A gene expression profile of Alzheimer ’s disease. 2001, 20(11), 683-695.
[14]
Fratiglioni, L.; Wang, H.X.; Ericsson, K.; Maytan, M.; Winblad, B. influence of social network on occurrence of dementia., 2000, 355, 1315-1319.
[15]
Wang, H.X. karp A.; Winbald B.; Fratiglioni H. Late- Life Engagement in Social and Leisure Activities Is Associated with a Decreased Risk of Dementia. Am. J. Epidemiol., 2002, 155, 1081-1087.
[http://dx.doi.org/10.1093/aje/155.12.1081] [PMID: 12048221]
[16]
Bickel, H.; Cooper, B. Incidence and relative risk of dementia in an urban elderly population: findings of a prospective field study. Psychol. Med., 1994, 24(1), 179-192.
[http://dx.doi.org/10.1017/S0033291700026945] [PMID: 8208883]
[17]
Fabrigoule, C.; Letenneur, L.; Dartigues, J.F.; Zarrouk, M.; Commenges, D.; Barberger-Gateau, P. Social and leisure activities and risk of dementia: a prospective longitudinal study. J. Am. Geriatr. Soc., 1995, 43(5), 485-490.
[http://dx.doi.org/10.1111/j.1532-5415.1995.tb06093.x] [PMID: 7730528]
[18]
Christen, Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr., 2000, 71(2), 621S-629S.
[http://dx.doi.org/10.1093/ajcn/71.2.621s] [PMID: 10681270]
[19]
D.M.Tanzi , R.E. Amyloid Beta Protein Gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer Locus. Science, 1987, 235(4791), 880-884.
[20]
Bondaereff, W.; Mountjoy, C.Q.; Roth, M. Alzheimer disease. Acta Neuropathol. Commun., 1982, 32, 164-168.
[21]
Champion, D.; Dumanchin, C.; Hannequin, D. Early onset autosomal dominant alzheimer disease: prevalence, genetic hetrogeneity, and mutation spectrum. Am. J. Hum. Genet., 1999, 3, 664-670.
[http://dx.doi.org/10.1086/302553]
[22]
Brickell, K.L.; Steinbart, E.J.; Rumbaugh, M.; Payami, H.; Schellenberg, G.D.; Van Deerlin, V.; Yuan, W.; Bird, T.D. Early-onset Alzheimer disease in families with late-onset Alzheimer disease: a potential important subtype of familial Alzheimer disease. Arch. Neurol., 2006, 63(9), 1307-1311.
[http://dx.doi.org/10.1001/archneur.63.9.1307] [PMID: 16966510]
[23]
Bird, T.D. Genetics Aspects of Alaheimer Disease. Neurologist, 2008, 10(4), 1737-1746.
[24]
Roses, A.D. On the discovery of the genetic association of Apolipoprotein E genotypes and common late-onset Alzheimer disease. J. Alzheimers Dis., 2006, 9(3)(Suppl.), 361-366.
[http://dx.doi.org/10.3233/JAD-2006-9S340] [PMID: 16914873]
[25]
Danev, S.I.; St Stoyanov, D. Early noninvasive diagnosis of neurodegenerative diseases. Folia Med. (Plovdiv), 2010, 52(2), 5-13.
[http://dx.doi.org/10.2478/v10153-010-0041-y] [PMID: 20836391]
[26]
Bertram, L.; Tanzi, R.E. The current status of Alzheimer’s disease genetics: what do we tell the patients? Pharmacol. Res., 2004, 50(4), 385-396.
[http://dx.doi.org/10.1016/j.phrs.2003.11.018] [PMID: 15304236]
[27]
Serretti, A.; Artioli, P.; Quartesan, R.; De Ronchi, D. Genes involved in Alzheimer’s disease, a survey of possible candidates. J. Alzheimers Dis., 2005, 7(4), 331-353.
[http://dx.doi.org/10.3233/JAD-2005-7410] [PMID: 16131736]
[28]
Jellinger, K.A. Alzheimer disease and cerebrovascular pathology: an update. J. Neural Transm. (Vienna), 2002, 109(5-6), 813-836.
[http://dx.doi.org/10.1007/s007020200068] [PMID: 12111471]
[29]
Schmidley, J.W.; Wissig, S.L. Basement membrane of central nervous system capillaries lacks ruthenium red-staining sites. Microvasc. Res., 1986, 32(3), 300-314.
[http://dx.doi.org/10.1016/0026-2862(86)90067-1] [PMID: 2432382]
[30]
Miyakawa, T.A.; Shimoji, R.; Kuramoto, Y. Higuchi. The relationship between senile plaques and cerebral blood vessels in alzheimer’s disease and senile dementia. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol., 1982, 40, 121-129.
[http://dx.doi.org/10.1007/BF02932857] [PMID: 6127830]
[31]
Mancardi, G.L.; Perdelli, F.; Rivano, C.; Leonardi, A.; Bugiani, O. Thickening of the basement membrane of cortical capillaries in Alzheimer’s disease. Acta Neuropathol., 1980, 49(1), 79-83.
[http://dx.doi.org/10.1007/BF00692225] [PMID: 7355675]
[32]
Braak, H.; Braak, E. Aspects of Cortical Destruction in Alzheimer’s Disease. In:Connections, Cognition and Alzheimer’s Disease; Springer: Berlin, 1997, pp. 1-16.
[33]
Mountjoy, C.Q Alzheimer’s disease. Milbank Q 1989, 10, 115-140.
[34]
Hyman, B.T.; Damasio, H.; Damasio, A.R.; Van Hoesen, G.W. Alzheimer’s disease. Annu. Rev. Public Health, 1989, 10, 115-140.
[35]
Howard, H.; Fillit, M.D.; Foley, H.F.; Bradford, G.; Bucht, B.; Winblad, B.; McEwen, V.; Luine, J. Autoimmunity to cholinergic-specific antigens of the brain in senile dementia of the alzheimer’s type. Drug Dev. Res., 1988, 15, 143-151.
[http://dx.doi.org/10.1002/ddr.430150207]
[36]
Fillit, H. Immune mechanisms of microvascular and neuronal injury in dementia. Neuron, 1990, 76-79.
[37]
Ishii, T.; Haga, S. Immuno-electron-microscopic localization of complements in amyloid fibrils of senile plaques. Acta Neuropathol., 1984, 63(4), 296-300.
[http://dx.doi.org/10.1007/BF00687336] [PMID: 6382906]
[38]
Buda, O.; Arsene, D.; Ceausu, M.; Dermengiu, D.; Curca, G.C. Georges Marinesco and the early research in neuropathology. Neurology, 2009, 72(1), 88-91.
[http://dx.doi.org/10.1212/01.wnl.0000338626.93425.74] [PMID: 19122036]
[39]
Georges; Blocq Paul; Marinesco. Sur Les Lesions et La Pathogenie de l’epilepsie Dite Essentielle. Front. Neuroanat., 1892, 445-446.
[40]
Kawai, M.; Kalaria, R.N.; Harik, S.I.; Perry, G. The relationship of amyloid plaques to cerebral capillaries in Alzheimer’s disease. Am. J. Pathol., 1990, 137(6), 1435-1446.
[PMID: 2260630]
[41]
Wisniewski, H.M.; Wegiel, J.; Wang, K.C.; Kujawa, M. The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol., 1989, 16, 535-542.
[42]
Itagaki, S.; McGeer, P.L.; Akiyama, H.; Zhu, S.; Selkoe, D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol., 1989, 24(3), 173-182.
[http://dx.doi.org/10.1016/0165-5728(89)90115-X] [PMID: 2808689]
[43]
Mann, D.M.; Jones, D.; South, P.W.; Snowden, J.S.; Neary, D. Deposition of amyloid β protein in non-alzheimer dementias: evidence for a neuronal origin of parenchymal deposits of β protein in neurodegenerative disease. Acta Neuropathol., 1989, 15, 531-542.
[PMID: 1575018]
[44]
Mann, D.M.; Marecyniuk, B.; Yates, P.O.; Neary, D.S J.P progression of the pathological changes of Alzheimer’s disease in frontal and temporal neocortex examination both at biopsy and at autopsy. Neuropathol. Appl. Neurobiol., 14(3), 177-195.
[45]
Castellani, R.J.; Lee, H.G.; Zhu, X.; Perry, G.; Smith, M.A. Alzheimer disease pathology as a host response. J. Neuropathol. Exp. Neurol., 2008, 67(6), 523-531.
[http://dx.doi.org/10.1097/NEN.0b013e318177eaf4] [PMID: 18520771]
[46]
Catharine, L; Joachim, T; James, H; Morris, T.; Dennis, J. Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am. J. Path., 1989, 135(2), 309-319.
[47]
Henry, G. Gray’s Anatomy. The Anatomical Basis of Clinical Practice, 40th ed; Elsevier: Amsterdam, 2008.
[48]
Arendt, T.; Morawski, M.; Gärtner, U.; Fröhlich, N.; Schulze, F.; Wohmann, N.; Jäger, C.; Eisenlöffel, C.; Gertz, H.J.; Mueller, W.; Brauer, K. Inhomogeneous distribution of Alzheimer pathology along the isocortical relief. Are cortical convolutions an Achilles heel of evolution? Brain Pathol., 2017, 27(5), 603-611.
[http://dx.doi.org/10.1111/bpa.12442] [PMID: 27564538]
[49]
Simchowicz, T. Histological studies on senile dementia In: Histological and histopathological work on the cerebral cortex: with special attention to the pathological anatomy of mental illnesses; Nuba Press: Charleston, 2012, 4, 267–444.
[50]
Catharine, L.; Joachim, T.; James, H.; Morris, T.; Dennis, J. Selkoe; Neurologic Diseases, 1987.
[51]
Hemonnot, A.L.; Hua, J.; Ulmann, L.; Hirbec, H. Microglia in alzheimer disease: well-known targets and new opportunities. Front. Aging Neurosci., 2019, 11, 233.
[http://dx.doi.org/10.3389/fnagi.2019.00233] [PMID: 31543810]
[52]
Colton, C.A.; Gilbert, D.L. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett., 1987, 223(2), 284-288.
[http://dx.doi.org/10.1016/0014-5793(87)80305-8] [PMID: 2822487]
[53]
Corradin, S.B.; Mauël, J.; Donini, S.D.; Quattrocchi, E.; Ricciardi-Castagnoli, P. Inducible nitric oxide synthase activity of cloned murine microglial cells. Glia, 1993, 7(3), 255-262.
[http://dx.doi.org/10.1002/glia.440070309] [PMID: 7681038]
[54]
Galloway, P.G.; Perry, G.; Gambetti, P. Targets of caspase-6 activity in human neurons and alzheimer disease. Exp. Neurol., 1987, 46, 185-199.
[55]
Kirschner, D.A.; Abraham, C.; Selkoe, D.J. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc. Natl. Acad. Sci. USA, 1986, 83(2), 503-507.
[http://dx.doi.org/10.1073/pnas.83.2.503] [PMID: 3455785]
[56]
Petmzella, V.; Chen, X.; Schon, E.A. Is a point mutation in mitochondrial nd2 gene associated with alzheimer disease. Biochem. Biophys. Res. Commun., 1992, 186(1), 491-497.
[57]
Wisniewski, K.; Jervis, G.A.; Moretz, R.C.; Wisniewski, H.M. Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann. Neurol., 1979, 5(3), 288-294.
[http://dx.doi.org/10.1002/ana.410050311] [PMID: 156000]
[58]
Kohn, R.R.; Schinder, S.L. Effects of age and diabetes mellitus on the solubility of collagen from human skin, tracheal cartilage and dura matter. Gerontol, 1982, 17(3), 185-194.
[59]
Nigar, S.; Pottoo, F.H.; Tabassum, N.; Verma, S.K.; Javed, M.N. Molecular insights into the role of inflammation and oxidative stress in epilepsy. JAMPS, 2016, 10, 1-9.
[http://dx.doi.org/10.9734/JAMPS/2016/24441]
[60]
Bambrick, L.; Kristian, T.; Fiskum, G. Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem. Res., 2004, 29(3), 601-608.
[http://dx.doi.org/10.1023/B:NERE.0000014830.06376.e6] [PMID: 15038607]
[61]
Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem., 1992, 59(5), 1609-1623.
[62]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[63]
Pottoo, F.H.; Tabassum, N.; Javed, M.N.; Nigar, S.; Rasheed, R.; Khan, A.; Barkat, M.A.; Alam, M.S.; Maqbool, A.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy. Mol. Neurobiol., 2019, 56(2), 1233-1247.
[http://dx.doi.org/10.1007/s12035-018-1121-x] [PMID: 29881945]
[64]
Leeuwenburgh, C.; Heinecke, J.W. Oxidative stress and antioxidants in exercise. Curr. Med. Chem., 2001, 8(7), 829-838.
[http://dx.doi.org/10.2174/0929867013372896] [PMID: 11375753]
[65]
Panel, A.J.; Cross, T.J.; Crow, T.J. Peter. Cortical neurochemistry in alzheimer-type dementia. Prog. Brain Res., 1984, 42, 1402-1410.
[66]
Procter, A.W.; Palmer, A.M.; Francis, P.T.; Lowe, S.L.; Neary, D.; Murphy, E.; Doshi, R.; Bowen, D.M. Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer’s disease. J. Neurochem., 1988, 50(3), 790-802.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb02983.x] [PMID: 3339353]
[67]
Procter, A.W.; Francis, P.T.; Stratmann, G.C.; Bowen, D.M. Serotonergic pathology is not widespread in Alzheimer patients without prominent aggressive symptoms. Neurochem. Res., 1992, 17(9), 917-922.
[http://dx.doi.org/10.1007/BF00993268] [PMID: 1357564]
[68]
Gibson, P.H.; Tomlinson, B.E. Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J. Neurol. Sci., 1977, 33(1-2), 199-206.
[http://dx.doi.org/10.1016/0022-510X(77)90193-9] [PMID: 903782]
[69]
Hirano, A. Hirano bodies and related neuronal inclusions. Neuropathol. Appl. Neurobiol., 1994, 20(1), 3-11.
[http://dx.doi.org/10.1111/j.1365-2990.1994.tb00951.x] [PMID: 8208338]
[70]
Esiri Margaret, M. Review of neurodegeneration: the molecular pathology of dementia and movement disorders. Neuropathol. Appl. Neurobiol., 2004, 30(4), 423-423.
[http://dx.doi.org/10.1111/j.1365-2990.2004.00589.x]
[71]
Bodies, H. Citing hirano, “pathology of amyotrophic lateral sclerosis,” in slow latent and temperate virus infections; Natl. Inst. Neurol. Dis. Blind, 1965, pp. 23-27.
[72]
Bamburg, J.R.; Bloom, G.S. Cytoskeletal pathologies of Alzheimer disease. Cell Motil. Cytoskeleton, 2009, 66(8), 635-649.
[http://dx.doi.org/10.1002/cm.20388] [PMID: 19479823]
[73]
Goldman, J.E. The association of actin with Hirano bodies. J. Neuropathol. Exp. Neurol., 1983, 42(2), 146-152.
[http://dx.doi.org/10.1097/00005072-198303000-00004] [PMID: 6186777]
[74]
Klunk, W.E.; McClure, R.J.; Pettegrew, J.W. Possible roles of L-phosphoserine in the pathogenesis of Alzheimer’s disease. Mol. Chem. Neuropathol., 1991, 15(1), 51-73.
[http://dx.doi.org/10.1007/BF03161056] [PMID: 1837714]
[75]
Madeira, C. Charles Vargas-Lopes; Carlos Otávio Brandão; Taylor Reis; Jerson Laks; Rogerio Panizzutti; Sergio T. Ferreira. Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable alzheimer’s disease and depression. Front. Psychiatry, 2018, 9, 1-8.
[http://dx.doi.org/10.3389/fpsyt.2018.00561]
[76]
Stampfer, M.J. Cardiovascular disease and Alzheimer’s disease: common links. J. Intern. Med., 2006, 260(3), 211-223.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01687.x] [PMID: 16918818]
[77]
Okereke, O.; Hankinson, S.E.; Hu, F.B.; Grodstein, F.; Plasma, C. Plasma C peptide level and cognitive function among older women without diabetes mellitus. Arch. Intern. Med., 2005, 165(14), 1651-1656.
[http://dx.doi.org/10.1001/archinte.165.14.1651] [PMID: 16043685]
[78]
Coker, L.H.; Shumaker, S.A. Type 2 diabetes mellitus and cognition: an understudied issue in women’s health. J. Psychosom. Res., 2003, 54(2), 129-139.
[http://dx.doi.org/10.1016/S0022-3999(02)00523-8] [PMID: 12573734]
[79]
McGeer, P.L.; McGeer, E.G. Inflammation, autotoxicity and Alzheimer disease. Neurobiol. Aging, 2001, 22(6), 799-809.
[http://dx.doi.org/10.1016/S0197-4580(01)00289-5] [PMID: 11754986]
[80]
Metter; Stewart W.F.; Kawas C.; Corranda M.; Risk of alzheimer’s disease and duration of NSAID use. Neurology, 1997, 48, 626-631.
[http://dx.doi.org/10.1212/WNL.48.3.626]
[81]
Gsell, W.; Strein, I.; Krause, U.; Riederer, P. Neurochemical abnormalities in Alzheimer’s disease and Parkinson’s disease--a comparative review. J. Neural Transm. Suppl., 1997, 51(51), 145-159.
[http://dx.doi.org/10.1007/978-3-7091-6846-2_12] [PMID: 9470135]
[82]
Giovanna, C.; Wolfgang, V Mitochondria as potential targets in alzheimer disease therapy: an update. Front. Pharmacol., 2019, 10(JULY), 902.
[http://dx.doi.org/10.3389/fphar.2019.00902]
[83]
Joachim, C.L.; Morris, J.H.; Kosik, K.S.; Selkoe, D.J. Tau antisera recognize neurofibrillary tangles in a range of neurodegenerative disorders. Ann. Neurol., 1987, 22(4), 514-520.
[http://dx.doi.org/10.1002/ana.410220411] [PMID: 2963585]
[84]
Selkoe, D.J.; Schenk, D. Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol., 2003, 43(1), 545-584.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140248] [PMID: 12415125]
[85]
Rogers, J.; Webster, S.; Lue, L.F.; Brachova, L.; Civin, W.H.; Emmerling, M.; Shivers, B.; Walker, D.; McGeer, P. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol. Aging, 1996, 17(5), 681-686.
[http://dx.doi.org/10.1016/0197-4580(96)00115-7] [PMID: 8892340]
[86]
McGeer, P.L.; Akiyama, H.; Itagaki, S.; McGeer, E.G. Immune system response in Alzheimer’s disease. Can. J. Neurol. Sci., 1989, 16(4)(Suppl.), 516-527.
[http://dx.doi.org/10.1017/S0317167100029863] [PMID: 2804814]
[87]
McGeer, P.L.; Akiyama, H.; Itagaki, S.; McGeer, E.G. Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci. Lett., 1989, 107(1-3), 341-346.
[http://dx.doi.org/10.1016/0304-3940(89)90843-4] [PMID: 2559373]
[88]
Ishii, T.; Haga, S.; Kametani, F. Presence of immunoglobulins and complements in the amyloid plaques in the brain of patients with alzheimer’s Disease; Springer Verlag: Berlin, 1988, pp. 17-29.
[89]
Eikelenboom, P.; Stam, F.C. An immunohistochemical study on cerebral vascular and senile plaque amyloid in Alzheimer’s dementia. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol., 1984, 47(1), 17-25.
[http://dx.doi.org/10.1007/BF02890185] [PMID: 6151285]
[90]
Eikelenboom P Zhan, S.S. Van Gool. W. A.; Allsop D. Inflammatory mechanisms in Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci., 1996, 246, 124-128.
[91]
Eikelenboom, P.; Rozemuller, J.M.; Kraal, G.; Stam, F.C.; McBride, P.A.; Bruce, M.E.; Fraser, H. Cerebral amyloid plaques in Alzheimer’s disease but not in scrapie-affected mice are closely associated with a local inflammatory process. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol., 1991, 60(5), 329-336.
[http://dx.doi.org/10.1007/BF02899564] [PMID: 1685040]
[92]
Eikelenboom, P.; Hack, C.E.; Rozemuller, J.M.; Stam, F.C. Complement activation in amyloid plaques in Alzheimer’s dementia. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol., 1989, 56(4), 259-262.
[PMID: 2565620]
[93]
Jenkinson, M.L.; Bliss, M.R.; Brain, A.T.; Scott, D.L. Rheumatoid arthritis and senile dementia of the Alzheimer’s type. Br. J. Rheumatol., 1989, 28(1), 86-88.
[http://dx.doi.org/10.1093/rheumatology/28.1.86-b] [PMID: 2917245]
[94]
Luber-Narod, J.; Rogers, J. Immune system associated antigens expressed by cells of the human central nervous system. Neurosci. Lett., 1988, 94(1-2), 17-22.
[http://dx.doi.org/10.1016/0304-3940(88)90263-7] [PMID: 3266526]
[95]
Mattiace, L.A.; Davies, P.; Dickson, D.W. Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am. J. Pathol., 1990, 136(5), 1101-1114.
[PMID: 1693471]
[96]
Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry, 2006, 63(2), 168-174.
[http://dx.doi.org/10.1001/archpsyc.63.2.168] [PMID: 16461860]
[97]
Über eine eigenartige Erkrankung der Hirnrinde. Alzheimer. Alzheimer A., 1907, 64, 146-148.
[98]
Lanctôt, K.L.; Herrmann, N.; Mazzotta, P. Role of serotonin in the behavioral and psychological symptoms of dementia. J. Neuropsychiatry Clin. Neurosci., 2001, 13(1), 5-21.
[http://dx.doi.org/10.1176/jnp.13.1.5] [PMID: 11207325]
[99]
Bertram, L.; Lill, C.M.; Tanzi, R.E. The genetics of Alzheimer disease: back to the future. Neuron, 2010, 68(2), 270-281.
[http://dx.doi.org/10.1016/j.neuron.2010.10.013] [PMID: 20955934]
[100]
Stahnisch, F.W. Max Bielschowsky (1869-1940). J. Neurol., 2015, 262(3), 792-794.
[http://dx.doi.org/10.1007/s00415-014-7544-z] [PMID: 25346063]
[101]
Erickson-Davis, C.R.; Faust, P.L.; Vonsattel, J.P.; Gupta, S.; Honig, L.S.; Louis, E.D. “Hairy baskets” associated with degenerative Purkinje cell changes in essential tremor. J. Neuropathol. Exp. Neurol., 2010, 69(3), 262-271.
[http://dx.doi.org/10.1097/NEN.0b013e3181d1ad04] [PMID: 20142764]
[102]
Ferreira, D.; Perestelo-Pérez, L.; Westman, E.; Wahlund, L.O.; Sarrisía, A.; Serrano-Aguilar, P. Meta-review of csf core biomarkers in alzheimer’s disease: the state-of-the-art after the new revised diagnostic criteria. Front. Aging Neurosci., 2014, 6, 47.
[103]
Hunt, J.V.; Wolff, S.P. Oxidative glycation and free radical production: a causal mechanism of diabetic complications. Free Radic. Res. Commun., 1991, 12-13(Pt 1), 115-123.
[http://dx.doi.org/10.3109/10715769109145775] [PMID: 1649079]
[104]
Li, K.; Ito, H.; Tanaka, K.; Hirano, A. Immunocytochemical co- localization of the proteasome in ubiquitinated structures in neurodegenerative disease and the elderly. Neuropathol Exp Neurol, 1997, 56, 125-131.
[http://dx.doi.org/10.1097/00005072-199702000-00002]
[105]
Coyle, J.T.; Price, D.L.; DeLong, M.R. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science, 1983, 219(4589), 1184-1190.
[106]
Araujo, D.M.; Lapchak, P.A.; Robitaille, Y.; Gauthier, S.; Quirion, R. Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J. Neurochem., 1988, 50(6), 1914-1923.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb02497.x] [PMID: 3373218]
[107]
Sahakia, B.J.; Jones, G.M.M. The effects of nicotine on attention, information processing, and working memory in patients with dementia of the alzheimer type; Eff. Nicotine Biol. Syst, 1991, pp. 623-630.
[108]
Geula, C.; Mesulam, M.M. Systematic regional variations in the loss of cortical cholinergic fibers in alzheimer’s disease. Cereb. Cortex, 1984, 42, 1402-1410.
[PMID: 8670647]
[109]
Hardy, J.; Adolfsson, R.; Alafuzoff, I.; Bucht, G.; Marcusson, J.; Nyberg, P.; Perdahl, E.; Wester, P.; Wind, B. Transmitter deficits in alzheimer’s disease. Neurochem. Int., 1985, 7(4), 545-563.
[110]
Saba, K.; Rajnala, N.; Veeraiah, P.; Tiwari, V.; Rana, R.K.; Lakhotia, S.C.; Patel, A.B. Energetics of excitatory and inhibitory neurotransmission in aluminum chloride model of alzheimer’s disease: reversal of behavioral and metabolic deficits by rasa sindoor. Front. Mol. Neurosci., 2017, 10, 323.
[http://dx.doi.org/10.3389/fnmol.2017.00323] [PMID: 29089867]
[111]
Rossur, M.N. lversen L.L. Non-cholinergic neurotransmitter abnormaiitles. Eur. Rev. Med. Pharmacol. Sci., 1986, 53-62.
[112]
Yates, C.M.; Blackburn, I.A.; Christie, J.E.; Glen, A.M.; Shering, A.; Simpson, J.; Whalley, L.J.; Zeisel, S. Clinical and biochemical studies in Alzheimer’s disease In: Biochemistry of Dementia, Roberts, P.J.; John Wiley & Sons Ltd: Hoboken, 1980, 9, pp. 185- 212.
[113]
Duron, E.; Vidal, J.S.; Grousselle, D.; Gabelle, A.; Lehmann, S.; Pasquier, F.; Bombois, S.; Allinquant, L.B.; Maschke, S.S.; Baret, C.; Rigaud, A.S.; Hanon, O. Somatostatin and neuropeptide Y in cerebrospinal fluid: correlations with amyloid peptides aβ1-42 and tau proteins in elderly patients with mild cognitive impairment. Front. Aging Neurosci., 2018, 10, 297.
[114]
Minthon, L.; Edvinsson, L.; Ekman, R.; Gustafson, L. Neuropeptide levels in Alzheimer’s disease and dementia with frontotemporal degeneration. J. Neural Transm. Suppl., 1990, 30, 57-67.
[http://dx.doi.org/10.1007/978-3-7091-3345-3_6] [PMID: 1975266]
[115]
Hartikainen, P.; Soininen, H.; Reinikainen, K.J.; Sirviö, J.; Soikkeli, R.; Riekkinen, P.J. Neurotransmitter markers in the cerebrospinal fluid of normal subjects. Effects of aging and other confounding factors. J. Neural Transm. (Vienna), 1991, 84(1-2), 103-117.
[http://dx.doi.org/10.1007/BF01249114] [PMID: 1675857]
[116]
Davies, P.; Katzman, R.; Terry, R.D. Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa. Nature, 1980, 288(5788), 279-280.
[117]
Hilaire-Kafi, St. Constantinidis Bouras C.J. Neurotransmitter systems in alzheimer’s disease. In New Concepts in Alzheimer’s Disease; Macmillan Education: London, 1986, pp. 73-88.
[118]
Reubi, J.C.; Palacios, J. Somatostatin and Alzheimer’s disease: a hypothesis. J. Neurol., 1986, 233(6), 370-372.
[http://dx.doi.org/10.1007/BF00313925] [PMID: 2879894]
[119]
Olney, J.W. Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J. Neuropathol. Exp. Neurol., 1971, 30(1), 75-90.
[http://dx.doi.org/10.1097/00005072-197101000-00008] [PMID: 5542543]
[120]
Sasaki, H.; Muramoto, O.; Kanazawa, I.; Arai, H.; Kosaka, K.; Iizuka, R. Regional distribution of amino acid transmitters in postmortem brains of presenile and senile dementia of Alzheimer type. Ann. Neurol., 1986, 19(3), 263-269.
[http://dx.doi.org/10.1002/ana.410190307] [PMID: 2870679]
[121]
Bowen, D.M.; Lowe, S.L. Excitatory dicarboxylic amino acid and pyramidal neurone neurotransmission of the cerebral cortex in Alzheimer’s disease. InAlzheimer’s Disease. Epidemiology, Neuropathology, Neurochemistry, and Clinics. 1990; Springer: Vienna, pp.; 269-276.
[http://dx.doi.org/10.1007/978-3-7091-3396-5_28]
[122]
Ellison, D.W.; Beal, M.F.; Mazurek, M.F.; Bird, E.D.; Martin, J.B.A. Postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann. Neurol., 1986, 20(5), 616-621.
[123]
Arai, H.; Kobayashi, K.; Ichimiya, Y.; Kosaka, K. Iizu. Free amino acids in post-mortem cerebral cortices from patients with atzheimer-type dementia. Neurosci. Res., 1991, 15(1), 51-73.
[124]
Tóth, L.; Karcsu, S.; Feledi, J.; Kreutzberg, G.W. Neurotoxicity of monosodium-L-glutamate in pregnant and fetal rats. Acta Neuropathol., 1987, 75(1), 16-22.
[http://dx.doi.org/10.1007/BF00686787] [PMID: 3434210]
[125]
R, W Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci., 1985, 82(13), 4531-4534.
[126]
Woodruff; Michael Baisden; Ronald H. Trimethyltin neurotoxicity in the rat as an analogous model of alzheimer’s disease. in toxininduced models of neurological disorders; Springer US: New York, 1994, 319–335.
[127]
Debby, W.; Bekris Lynn, M.; Yu, C. Bird; Thomas D.; Tsuang, D.W. Alzheimer’s disease. Annu. Rev. Public Health, 1989, 10(1), 115-140.
[http://dx.doi.org/10.1146/annurev.pu.10.050189.000555]
[128]
Hyman, B.T.; Van Hoesen, G.W.; Damasio, A.R. Alzheimer’s disease: glutamate depletion in the hippocampal perforant pathway zone. Ann. Neurol., 1987, 22(1), 37-40.
[http://dx.doi.org/10.1002/ana.410220110] [PMID: 2443073]


free to download

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Published on: 17 May, 2020
Page: [746 - 746]
Pages: 1
DOI: 10.2174/156802662009200331084634

Article Metrics

PDF: 25
HTML: 2