Polymer - Metal Nanocomplexes Based Delivery System: A Boon for Agriculture Revolution

Author(s): Pawan Kaur*, Rita Choudhary, Anamika Pal, Chanchal Mony, Alok Adholeya

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 11 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Metal nanoparticles are well known for their antimicrobial properties. The use of metalbased nanoparticles in the agricultural field has considerably increased globally by both direct and indirect means for the management of plant diseases. In this context, the development of controlled delivery systems for slow and sustained release of metal nanoparticles is crucial for prolonged antimicrobial activity. Polymers have emerged as a valuable carrier for controlled delivery of metal nanoparticles as agrochemicals because of their distinctive properties. The most significant benefits of encapsulating metal nanoparticles in a polymer matrix include the ability to function as a protector of metal nanoparticles and their controlled release with prolonged efficacy. This review focuses on loading strategies and releasing behavior of metal nanoparticles in the polymer matrix as antimicrobial agents for plant diseases. The Polymer-metal nanocomplexes (PMNs) comprise a biocompatible polymeric matrix and metal nanoparticles as active components of an antimicrobial agent, pesticides and plant growth regulators used to enhance the crop productivity.

Keywords: Metal nanoparticles, Polymers, Polymer-metal nanocomplexes, Agri-inputs, Antimicrobial agent, Biocompatible polymeric matrix.

Fraceto, L.F.; Grillo, R.; de Medeiros, G.A.; Scognamiglio, V.; Rea, G.; Bartolucci, C. Nanotechnology in agriculture: Which innovation potential does it have? Front. Environ. Sci., 2016, 4(20)
Wang, P.; Lombi, E.; Zhao, F.J.; Kopittke, P.M. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci., 2016, 21(8), 699-712.
[http://dx.doi.org/10.1016/j.tplants.2016.04.005] [PMID: 27130471]
Torney, F.; Trewyn, B.G.; Lin, V.S.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2007, 2(5), 295-300.
[http://dx.doi.org/10.1038/nnano.2007.108] [PMID: 18654287]
Martin-Ortigosa, S.; Peterson, D.J.; Valenstein, J.S.; Lin, V.S.; Trewyn, B.G.; Lyznik, L.A.; Wang, K. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol., 2014, 164(2), 537-547.
[http://dx.doi.org/10.1104/pp.113.233650] [PMID: 24376280]
Slomberg, D.L.; Schoenfisch, M.H. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ. Sci. Technol., 2012, 46(18), 10247-10254.
[PMID: 22889047]
Kaur, P.; Thakur, R.; Kumar, S.; Dilbaghi, N. Interaction of ZnO nanoparticles with food borne pathogens Escherichia coli DH5Iñ and Staphylococcus aureus 5021 & their bactericidal efficacy. AIP Conf. Proc., 2011, 1393, 153-154.
Kaur, P.; Thakur, R.; Barnela, M.; Chopra, M.; Manuja, A.; Chaudhury, A. Synthesis, characterisation and In Vitro evaluation of cytotoxicity and antimicrobial activity of chitosan-metal nanocomposites. J. Chem. Technol. Biotechnol., 2014, 90(5)
[http://dx.doi.org/10.1002/ jctb.4383]
Saharan, V.; Sharma, G.; Yadav, M.; Choudhary, M.K.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol., 2015, 75, 346-353.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.027] [PMID: 25617841]
Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci. Rep., 2017, 7(1), 9754.
[http://dx.doi.org/10.1038/s41598-017-08571-0] [PMID: 28851884]
Chhipa, H. Nanofertilizers and nanopesticides for agriculture. Environ. Chem. Lett., 2017, 15(1), 15-22.
Perez, J.J.; Francois, N.J. Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr. Polym., 2016, 148, 134-142.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.054] [PMID: 27185124]
Shang, Q.; Shi, Y.; Zhang, Y.; Zheng, T.; Shi, H. Pesticide-conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate: pesticide-conjugated polyacrylate nanoparticles. Polym. Adv. Technol., 2013, 24(2), 137-143.
Wang, M.; Chen, Y.; Zhang, R.; Wang, W.; Zhao, X.; Du, Y.; Yin, H. Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (Triticum aestivum L.) in Northwest China. Field Crops Res., 2015, 172, 11-20.
Kaur, P.; Duhan, J.S.; Thakur, R. Comparative pot studies of chitosan and chitosan-metal nanocomposites as nanoagrochemicals against fusarium wilt of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol., 2018, 14, 466-471.
Castiglione, M.R.; Giorgetti, L.; Geri, C.; Cremonini, R. The effects of nano-TiO2 on seed germination, development, and mitosis of root tip cells of Vicianarbonensis L. and Zea mays L. J. Nanopart. Res., 2011, 13(6), 2443-2449.
ClA(c)ment, L.; Hurel, C.; Marmier, N. Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. Chemosphere, 2013, 90(3), 1083-1090.
[http://dx.doi.org/10.1016/j.chemosphere.2012.09.013] [PMID: 23062945]
Dimkpa, C.O.; McLean, J.E.; Martineau, N.; Britt, D.W.; Haverkamp, R.; Anderson, A.J. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ. Sci. Technol., 2013, 47(2), 1082-1090.
[http://dx.doi.org/10.1021/es302973y] [PMID: 23259709]
Jaberzadeh, A.; Moaveni, P.; Moghadam, H.R.T.; Zahedi, H. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici, 2013, 41(1), 201-207.
Jiang, H.S.; Qiu, X.N.; Li, G.B.; Li, W.; Yin, L.Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ. Toxicol. Chem., 2014, 33(6), 1398-1405.http://dx.doi.org/10.1002/etc.2577
[PMID: 24619507]
Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 2015, 7(12), 1584-1594.
[http://dx.doi.org/10.1039/C5MT00168D] [PMID: 26463441]
Okupnik, A.; Pflugmacher, S. Oxidative stress response of the aquatic macrophyte Hydrilla verticillata exposed to TiO2 nanoparticles. Environ. Toxicol. Chem., 2016, 35(11), 2859-2866.http://dx.doi.org/10.1002/etc.3469
[PMID: 27128384]
Cvjetko, P.; Milošić, A.; Domijan, A.M.; Vinković Vrček, I.; Tolić, S.; Peharec Štefanić, P. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf., 2017, 137, 18-28.
[http://dx.doi.org/10.1016/j.ecoenv.2016.11.009] [PMID: 27894021]
Tripathi, D.K.; Singh, S.; Singh, S.; Srivastava, P.K.; Singh, V.P.; Singh, S.; Prasad, S.M.; Singh, P.K.; Dubey, N.K.; Pandey, A.C.; Chauhan, D.K. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem., 2017, 110, 167-177.
[http://dx.doi.org/10.1016/j.plaphy.2016.06.015] [PMID: 27449300]
Nair, R. Effects of nanoparticles on plant growth and development in Plant. In: Plant Nanotechnology Principles and Practices Nanotechnology for Crop Improvement; Springer: Berlin, 2016; pp. 95-118.
Lahiani, M.H.; Chen, J.; Irin, F.; Puretzky, A.A.; Green, M.J.; Khodakovskaya, M.V. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon, 2015, 81, 607-619.
Monreal, C.; DeRosa, M.; Mallubhotla, S. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils, 2016, 52(3), 423-437.
Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ., 2015, 514, 131-139.
[http://dx.doi.org/10.1016/j.scitotenv.2015.01.104] [PMID: 25659311]
Kah, M.; Machinski, P.; Koerner, P.; Tiede, K.; Grillo, R.; Fraceto, L.F.; Hofmann, T. Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ. Sci. Pollut. Res. Int., 2014, 21(20), 11699-11707.
[http://dx.doi.org/10.1007/s11356-014-2523-6] [PMID: 24474560]
Salavati-niasari, M.; Davar, F.; Mir, N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 2008, 27(17), 3514-3518.
Jo, Y.K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis., 2009, 93(10), 1037-1043.
[http://dx.doi.org/10.1094/PDIS-93-10-1037] [PMID: 30754381]
Prasad, T.N.V.K.V.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Raja Reddy, K. Effect of nanoscale zinc oxide particles on the germination, growth, and yield of peanut. J. Plant Nutr., 2012, 35(6), 906-927.
Tai, C.Y.; Tai, C.; Chang, M.; Liu, H. Synthesis of Magnesium Hydroxide and Oxide Nanoparticles Using a Spinning Disk Reactor. Ind. Eng. Chem. Res., 2007, 46(17), 5536-5541.
Nair, P.M.; Chung, I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. Int., 2014, 21(22), 12709-12722.
[http://dx.doi.org/10.1007/s11356-014-3210-3] [PMID: 24965006]
Chormule, K.A. Synthesis and evaluation of antimicrobial potential of copper nanoparticles on bacterial blight of pomegranate. Parbhani: Vasantrao Naik Marathwada Krishi Vidyapeeth, 2017.
Jaberzadeh, A.; Moaveni, P.; Moghadam, H.R.T.; Zahedi, H. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not. Bot. Horti Agrobot. Cluj-Napoca, 2013, 41(1), 201-207.
Barrios, A.C.; Rico, C.M.; Trujillo-Reyes, J.; Medina-Velo, I.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci. Total Environ., 2016, 563-564, 956-964.
[http://dx.doi.org/10.1016/j.scitotenv.2015.11.143] [PMID: 26672385]
Majumdar, S.; Peralta-Videa, J.R.; Trujillo-Reyes, J.; Sun, Y.; Barrios, A.C.; Niu, G.; Margez, J.P.F.; Gardea-Torresdey, J.L. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Sci. Total Environ., 2016, 569-570, 201-211.
[http://dx.doi.org/10.1016/j.scitotenv.2016.06.087] [PMID: 27343939]
Iannone, M.F.; Groppa, M.D.; de Sousa, M.E.; van Raap, M.B.F.; Benavides, M.P. Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Journal. Environ. Exp. Bot., 2016, 131, 77-88.
Li, J.; Hu, J.; Ma, C.; Wang, Y.; Wu, C.; Huang, J.; Xing, B. Uptake, translocation and physiological effects of magnetic iron oxide (I3-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere, 2016, 159, 326-334.
[http://dx.doi.org/10.1016/j.chemosphere.2016.05.083] [PMID: 27314633]
Subramanian, J.K.; Thoppey, U.U.G.; Hikku, G.S. Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. Royal Soc. Chem. Adv., 2016, 6(19), 15451-15459.
Vecerova, K.; Vecera, Z.; Docekal, B.; Oravec, M.; Pompeiano, A.; Triska, J. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ. Pollut., 2016, 218, 207-218.
[http://dx.doi.org/10.1016/j.envpol.2016.05.013] [PMID: 27503055]
Barabadi, H.; Ovais, M.; Shinwari, Z.K.; Saravanan, M. Anti-cancer green bionanomaterials: present status and future prospects. Green Chem. Lett. Rev., 2017, 10, 285-314.
Emmanuel, R.; Saravanan, M.; Ovais, M.; Padmavathy, S.; Shinwari, Z.K.; Prakash, P. Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: A nanoantibiotic approach. Microb. Pathog., 2017, 113, 295-302.
[http://dx.doi.org/10.1016/j.micpath.2017.10.055] [PMID: 29101061]
Ovais, M.; Raza, A.; Naz, S.; Islam, N.U.; Khalil, A.T.; Ali, S.; Khan, M.A.; Shinwari, Z.K. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl. Microbiol. Biotechnol., 2017, 101(9), 3551-3565.
[http://dx.doi.org/10.1007/s00253-017-8250-4] [PMID: 28382454]
Singh, P.; Kim, Y-J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol., 2016, 34(7), 588-599.
[http://dx.doi.org/10.1016/j.tibtech.2016.02.006] [PMID: 26944794]
Baker, S.; Rakshith, D.; Kavitha, K.S.; Santosh, P.; Kavitha, H.U.; Rao, Y.; Satish, S. Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts, 2013, 3, 111.
[PMID: 24163802]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
Sintubin, L.; Verstraete, W.; Boon, N. Biologically produced nanosilver: current state and future perspectives. Biotechnol. Bioeng., 2012, 109(10), 2422-2436.
[http://dx.doi.org/10.1002/bit.24570] [PMID: 22674445]
Mukherjee, S.; Sushma, V.; Patra, S.; Barui, A.K.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45) 455103
[http://dx.doi.org/10.1088/0957-4484/23/45/455103] [PMID: 23064012]
Tang, L.; Shi, J.; Wu, H.; Zhang, S.; Liu, H.; Zou, H.; Wu, Y.; Zhao, J.; Jiang, Z. In situ biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis. Nanotechnology, 2017, 28(36) 365604
[http://dx.doi.org/10.1088/1361-6528/aa79e1] [PMID: 28617249]
Bansal, P.; Kaur, P.; Surekha, D.; Kumar, A.; Duhan, J.S. Microwave assisted quick synthesis method of silver nanoparticles using citrus hybrid. Kinnow and its potential against early blight of tomato. Res. Crops, 18(4), 650-655.
Budhian, A.; Siegel, S.J.; Winey, K.I. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int. J. Pharm., 2007, 336(2), 367-375.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.061] [PMID: 17207944]
Pereira, A.D.E.S.; Oliveira, H.C.; Fraceto, L.F. Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Sci. Rep., 2019, 9(1), 7135.
[http://dx.doi.org/10.1038/s41598-019-43494-y] [PMID: 31073210]
Kim, S.J.; Chung, B.H. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydr. Polym., 2016, 150, 400-407.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.021] [PMID: 27312651]
Ravi, sankar T.; Kesavulu, K.; Venkata, Ramana, P. Synthesis, characterization and applications of polymer-metal chelates derived from poly[((4-acryloxy acetophenone)-divinylbenzene)] benzoyl hydrazone resins. J. Chem. Sci., 2014, 126(3), 597-608.
Vogel, R.; Pal, A.K.; Jambhrunkar, S.; Patel, P.; Thakur, S.S. ReAtegui, E.; Parekh, H.S.; SaA, P.; Stassinopoulos, A.; Broom, M.F. High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci. Rep., 2017, 7(1), 17479.
[http://dx.doi.org/10.1038/s41598-017-14981-x] [PMID: 29234015]
Saeb, A.; Alshammari, A.; Al-Brahim, H.; Al-Rubeaan, K. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. ScientificWorldJournal, 2014, 1-9.
Selvakannan, P.; Mandal, S.; Phadtare, S.; Gole, A.; Pasricha, R.; Adyanthaya, S.D.; Sastry, M. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J. Colloid Interface Sci., 2004, 269(1), 97-102.
[http://dx.doi.org/10.1016/S0021-9797(03)00616-7] [PMID: 14651900]
Acikses, A.; Oksuz, F. Synthesis, Characterization, and Dielectric Behaviors of 4-Diethanolaminomethyl Styrene and Benzyl Methacrylate Copolymer and Its Metal Complexes. J. Chem., 2019, 2019, 1-12.
Aznar, R.; Barahona, F.; Geiss, O.; Ponti, J. JosA(c) Luis, T.; Barrero-Moreno, J. Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS. Talanta, 2017, 175, 200-208.
[http://dx.doi.org/10.1016/j.talanta.2017.07.048] [PMID: 28841979]
Ghosh, M.; Bhadra, S.; Adegoke, A.; Bandyopadhyay, M.; Mukherjee, A. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat. Res., 2015, 774, 49-58.
[http://dx.doi.org/10.1016/j.mrfmmm.2015.03.004] [PMID: 25829105]
Lin, H.Y.; Huang, C.H.; Chang, C.H.; Lan, Y.C.; Chui, H.C. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Opt. Express, 2010, 18(1), 165-172.
[http://dx.doi.org/10.1364/OE.18.000165] [PMID: 20173835]
Mohamady Ghobashy, M.; Awad, A.; Elhady, M.; Elbarbary, A. Silver rubber-hydrogel nanocomposite as pH-sensitive prepared by gamma radiation: Part I. Cogent Chemistry, 2017, 3(1) 1328770
Zhou, M.; Wei, Z.; Qiao, H.; Zhu, L.; Yang, H.; & Xia, T. Particle size and pore structure characterization of silver nanoparticles prepared by confined Arc plasma. J. Nanomater., 2009, 2009, 1-5.
Jabli, M.; Aloui, F.; Hassine, B. [Copper (II)/Cellulose-Chitosan] Microspheres complex for dye immobilization: isotherm, kinetic and thermodynamic analysis. J. Eng. Fibers Fabrics, 2013, 8(4) 155892501300800
Gritsch, L.; Lovell, C.; Goldmann, W.H.; Boccaccini, A.R. Fabrication and characterization of copper(II)-chitosan complexes as antibiotic-free antibacterial biomaterial. Carbohydr. Polym., 2018, 179, 370-378.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.095] [PMID: 29111063]
Awaad, A.M.; Salem, N.M. Green synthesis of silver nanoparticles by Mulberry leaves extract. J. Nanosci. Nanotechnol., 2012, 2(4), 125-128.
Banerjee, P.; Satapathy, M.; Mukhopahaya, A.; Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess., 2014, 3, 1-3.
Kumar, A.; Kaur, K.; Sharma, S. Synthesis, characterization and antibacterial potential of silver nanoparticles by Morus nigra leaf extract. Indian J. Pharma. Bio. Res., 2013, 1(4), 16-24.
Senapati, U.S.; Jha, D.K.; Sarkar, D. Green synthesis and characterization of ZnS nanoparticles. Research. J. Physiol. Sci., 2013, 1(7), 1-6.
Okafor, F.; Janen, A.; Kukhtareva, T.; Edwards, V.; Curley, M. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int. J. Environ. Res. Public Health, 2013, 10(10), 5221-5238.
[http://dx.doi.org/10.3390/ijerph10105221] [PMID: 24157517]
Taboada Valdes, E.; Cardenas Trivino, G. Chitosan metal complexes and chitosan-Cu ESR studies. J. Chil. Chem. Soc., 2009, 54(1), 1-5.
Yano, F.; Hiraoka, A.; Itoga, T.; Kojima, H.; Kanehori, K.; Mitsui, Y. Influence of ion implantation on native oxidation of Si in a clean-room atmosphere. Appl. Surf. Sci., 1996, 100-101, 138-142.
Mekahlia, S.; Bouzid, B. Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond- activity correlation study. Phys. Procedia, 2009, 2(3), 1045-1053.
Leveneur, J.; Geoffrey, I.N. Waterhouse, Kennedy, J.; Metson, J.B.; Mitchell, D.R.G. Nucleation and Growth of Fe Nanoparticles in SiO2: A TEM, XPS, and Fe L-Edge XANES Investigation. J. Phys. Chem. C, 2011, 115(43), 20978-20985.
Shameli, K.; Ahmad, M.B.; Jazayeri, S.D.; Shabanzadeh, P.; Sangpour, P.; Jahangirian, H.; Gharayebi, Y. Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem. Cent. J., 2012, 6(1), 73.
[http://dx.doi.org/10.1186/1752-153X-6-73] [PMID: 22839208]
Sadeghi, B.; Gholamhoseinpoor, F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. (SAA)., 2015, 134, 310-315.
[http://dx.doi.org/10.1016/j.saa.2014.06.046] [PMID: 25022503]
Mittal, A.K.; Tripathy, D.; Choudhary, A.; Aili, P.K.; Chatterjee, A.; Singh, I.P.; Banerjee, U.C. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. exHook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mater. Sci. Eng., 2015, C53, 120-127.
Shahwan, T.; Sirriah, S.A.; Nairat, M. BoyacŽñ, E.; Eroglu, A.E.; Scott, T.B.; Hallam, K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J., 2011, 172, 258-266.
Sosan, A.; Svistunenko, D.; Straltsova, D.; Tsiurkina, K.; Smolich, I.; Lawson, T.; Subramaniam, S.; Golovko, V.; Anderson, D.; Sokolik, A.; Colbeck, I.; Demidchik, V. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J., 2016, 85(2), 245-257.
[http://dx.doi.org/10.1111/tpj.13105] [PMID: 26676841]
Jin, S.E.; Bae, J.W.; Hong, S. Multiscale observation of biological interactions of nanocarriers: from nano to macro. Microsc. Res. Tech., 2010, 73(9), 813-823.
[http://dx.doi.org/10.1002/jemt.20847] [PMID: 20232368]
Guinebretière, S. BrianAon, S.; Lieto, J.; Mayer, C.; Fessi, H. Study of the emulsion-diffusion of solvent: preparation and characterization of nanocapsules. Drug Dev. Res., 2002, 2002(57), 18-33.
Barauskas, J.; Johnsson, M.; Tiberg, F. Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett., 2005, 5(8), 1615-1619.
[http://dx.doi.org/10.1021/nl050678i] [PMID: 16089498]
Hodoroaba, V.; Rades, S.; Unger, W. Inspection of morphology and elemental imaging of single nanoparticles by high-resolution SEM/EDX in transmission mode. Surf. Interface Anal., 2012, 46(10-11), 945-948.
Balasubramaniam, S.; Kayandan, S.; Lin, Y.N.; Kelly, D.F.; House, M.J.; Woodward, R.C.; St Pierre, T.G.; Riffle, J.S.; Davis, R.M. Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrast. Langmuir, 2014, 30(6), 1580-1587.
[http://dx.doi.org/10.1021/la403591z] [PMID: 24479874]
Wittemann, A.; Drechsler, M.; Talmon, Y.; Ballauff, M. High elongation of polyelectrolyte chains in the osmotic limit of spherical polyelectrolyte brushes: a study by cryogenic transmission electron microscopy. J. Am. Chem. Soc., 2005, 127(27), 9688-9689.
[http://dx.doi.org/10.1021/ja0513234] [PMID: 15998064]
Sekhon, B.S. Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl., 2014, 7, 31-53.
[http://dx.doi.org/10.2147/NSA.S39406] [PMID: 24966671]
Mishra, S.; Keswani, C.; Abhilash, P.C.; Fraceto, L.F.; Singh, H.B. Integrated Approach of Agri-nanotechnology: Challenges and Future Trends. Front. Plant Sci., 2017, 8, 471.
[http://dx.doi.org/10.3389/fpls.2017.00471] [PMID: 28421100]
Kondiah, P.; Choonara, Y.; Kondiah, P.; Marimuthu, T.; Kumar, P.; du Toit, L. Nanocomposites for therapeutic application in multiple sclerosis. In: Applications of Nanocomposite Materials in Drug Delivery; Elsevier: Amsterdam, 2018; pp. 391-408.
Pathak, C.; Vaidya, F.; Pandey, S. Mechanism for development of nanobased drug delivery System. In: Applications of Targeted Nano Drugs and Delivery Systems; Elsevier: Amsterdam, 2019; pp. 35-67.
Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 2010, 385(1-2), 113-142.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
Grillo, R.; Abhilash, P.C.; Fraceto, L.F. Nanotechnology applied to bio-encapsulation of pesticides. J. Nanosci. Nanotechnol., 2016, 16(1), 1231-1234.
[http://dx.doi.org/10.1166/jnn.2016.12332] [PMID: 27398594]
Mallakpour, S.; Behranvand, V. Polymeric nanoparticles: recent development in synthesis and application. Express Polym. Lett., 2016, 10, 895-913.
Pelegrino, T.M.; Seabra, A.B. Chitosan-based nanomaterials for skin regeneration. AIMS Med. Sci., 2017, 4, 352-381.
Seabra, A.B.; Duran, N. Nanoparticulated nitric oxide donors and their biomedical applications. Mini Rev. Med. Chem., 2017, 17(3), 216-223.
[http://dx.doi.org/10.2174/1389557516666160808124624] [PMID: 27515711]
Kollarigowda, R.H. Recent view on pectin-based polysaccharide nanoscience and their biological applications. Nano Life, 2017, 7(2) 1730002
Luo, Y.; Wang, Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol., 2014, 64, 353-367.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017] [PMID: 24360899]
dos Santos, M.A.; Grenha, A. Polysaccharide nanoparticles for protein and Peptide delivery: exploring less-known materials. Adv. Protein Chem. Struct. Biol., 2015, 98, 223-261.
[http://dx.doi.org/10.1016/bs.apcsb.2014.11.003] [PMID: 25819281]
Yang, F.L.; Li, X.G.; Zhu, F.; Lei, C.L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem., 2009, 57(21), 10156-10162.
[http://dx.doi.org/10.1021/jf9023118] [PMID: 19835357]
Forim, M.R.; Costa, E.S.; da Silva, M.F.; Fernandes, J.B.; Mondego, J.M. BoiAa Junior, A.L.; Boica, A.L., Junior Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J. Agric. Food Chem., 2013, 61(38), 9131-9139.
[http://dx.doi.org/10.1021/jf403187y] [PMID: 23991702]
Pradhan, S.; Roy, I.; Lodh, G.; Patra, P.; Choudhury, S.R.; Samanta, A.; Goswami, A. Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: a biologically safe alternative to neurotoxic pesticides. J. Environ. Sci. Health B, 2013, 48(7), 559-569.
[http://dx.doi.org/10.1080/03601234.2013.774891] [PMID: 23581688]
Memarizadeh, N.; Ghadamyari, M.; Adeli, M.; Talebi, K. Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol. Environ. Saf., 2014, 107, 77-83.
[http://dx.doi.org/10.1016/j.ecoenv.2014.05.009] [PMID: 24907455]
Oliveira, H.C.; Stolf-Moreira, R.; Martinez, C.B.R.; Grillo, R.; de Jesus, M.B.; Fraceto, L.F. Nanoencapsulation enhances the post emergence herbicidal activity of atrazine against mustard plants. PLoS One, 2015, 10(7) e0132971
[http://dx.doi.org/10.1371/journal.pone.0132971] [PMID: 26186597]
GonzAlez, J.W.; Yeguerman, C.; Marcovecchio, D.; Delrieux, C.; Ferrero, A.; Band, B.F. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach. Ecotoxicol. Environ. Saf., 2016, 130, 11-18.
[http://dx.doi.org/10.1016/j.ecoenv.2016.03.045] [PMID: 27062341]
Mondal, P.; Kumar, R.; Gogoi, R. Azomethine based nano-chemicals: Development, in vitro and in vivo fungicidal evaluation against Sclerotium rolfsii, Rhizoctonia bataticola and Rhizoctonia solani. Bioorg. Chem., 2017, 70, 153-162.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.006] [PMID: 28043718]
Pasquoto-Stigliani, T.; Campos, E.V.R.; Oliveira, J.L.; Silva, C.M.G. Bilesky-JosA(c), N.; Guilger, M.; Troost, J.; Oliveira, H.C.; Stolf-Moreira, R.; Fraceto, L.F.; de Lima, R. Nanocapsules containing neem (Azadirachtaindica) oil: development, characterization and toxicity evaluation. Sci. Rep., 2017, 7(1), 5929.
[http://dx.doi.org/10.1038/s41598-017-06092-4] [PMID: 28724950]
Tong, Y.; Wu, Y.; Zhao, C.; Xu, Y.; Lu, J.; Xiang, S.; Zong, F.; Wu, X. Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. J. Agric. Food Chem., 2017, 65(34), 7371-7378.
[http://dx.doi.org/10.1021/acs.jafc.7b02197] [PMID: 28783335]
Musazzi, U.M.; Youm, I.; Murowchick, J.B.; Ezoulin, M.J.; Youan, B.B. Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells. Colloids Surf. B Biointerfaces, 2014, 118(118), 234-242.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.054] [PMID: 24816150]
Ganachaud, F.; Katz, J.K. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem, 2005, 2005(6), 209-216.
Elizondo, E.; Veciana, J.; Ventosa, N. Nanostructuring molecular materials as particles and vesicles for drug delivery, using compressed and supercritical fluids. Nanomedicine (Lond.), 2012, 7(9), 1391-1408.
[http://dx.doi.org/10.2217/nnm.12.110] [PMID: 22994957]
Akagi, T.; Kaneko, T.; Kida, T.; Akashi, M. Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. J. Control. Release, 2005, 108(2-3), 226-236.
[http://dx.doi.org/10.1016/j.jconrel.2005.08.003] [PMID: 16125267]
Jeong, Y.I.; Cho, C.S.; Kim, S.H.; Ko, K.S.; Kim, S.I.; Shim, Y.H.; Nah, J-W.J.W. Preparation of poly(DL-lactide-co-glycolide) nanoparticles without surfactant. J. Appl. Polym. Sci., 2001, 80(12), 2228-2236.
Simsek, S.; Eroglu, H.; Kurum, B.; Ulubayram, K. Brain targeting of Atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles. J. Microencapsul., 2013, 30(1), 10-20.
[http://dx.doi.org/10.3109/02652048.2012.692400] [PMID: 22734433]
Naha, A.; Priya, J.; Dhoot, A.; Xalxo, N. A review on polymeric nanoparticles: a promising novel drug delivery system. J. Glob. Pharma Technol., 2018, 10(4), 10-17.
Kaliyappan, T.; Kannan, P. Co-ordination polymers. Prog. Polym. Sci., 2000, 25(3), 343-370.
Ravi Kumar, M. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
Webster, A.; Halling, M.D.; Grant, D.M. Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydr. Res., 2007, 342(9), 1189-1201.
[http://dx.doi.org/10.1016/j.carres.2007.03.008] [PMID: 17407772]
Cuenot, F.; Meyer, M.; Bucaille, A.; Guilard, R. A molecular approach to remove lead from drinking water. J. Mol. Liq., 2005, 118(1-3), 89-99.
Chiou, M.S.; Li, H.Y. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 2003, 50(8), 1095-1105.
[http://dx.doi.org/10.1016/S0045-6535(02)00636-7] [PMID: 12531717]
Zheng, Y.; Yi, Y.; Qi, Y.; Wang, Y.; Zhang, W.; Du, M. Preparation of chitosan-copper complexes and their antitumor activity. Bioorg. Med. Chem. Lett., 2006, 16(15), 4127-4129.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.077] [PMID: 16735119]
Coleman, N.; Bishop, A.; Booth, S.; Nicholoson, J. Ag+- and Zn2+-exchange kinetics and antimicrobial properties of 11A... tobermorites. J. Eur. Ceram. Soc., 2009, 29(6), 1109-1117.
Mori, Y.; Yokoi, H.; Fujise, Y. Structural Investigation of Iron(III) and Copper(II) Complexes with poly(vinyl alcohol) by NMR Techniques. Polym. J., 1995, 27(3), 271-279.
Rivas, B.; Seguel, G.; Ancatripai, C. Polymer-metal complexes: Synthesis, characterization, and properties of poly(maleic acid) metal complexes with Cu(II), Co(II), Ni(II), and Zn(II). Polym. Bull., 2000, 44(5-6), 445-452.
Mathew, B.; Madhusudanan, P.; Pillai, V. Effect of the nature of crosslinking agents on the thermal decomposition of metal complexes of crosslinked polyacrylamide-supported dithiocarbamates. Thermochim. Acta, 1992, 207, 265-277.
Rogers, R.D.; Bond, A.H.; Aguinaga, S. Synthesis and crystallographic characterization of [Cd (OH2) 2 (μ-Br) 4 (Cd (2-hydroxyethyl sulfide) (μ-Br)) 2]. J. Crystal. Spectro. Res., 1993, 23(11), 857-862.
An, Y.; Ushida, T.; Suzuki, M.; Koyama, T.; Hanabusa, K.; Shirai, H. Complex formation of partially phosphorylated poly(vinyl alcohol), with metal ions in aqueous solution. Polymer (Guildf.), 1996, 37(14), 3097-3100.
Sari, N.; Kahraman, E.; Sari, B.; Özgün, A. Synthesis of some polymer metal complexes and elucidation of their structures. J. Macromol. Sci. Part A, 2006, 43(8), 1227-1235.
Jun, S.; Shengqi, R. Yujie, Su; Rongrong, Xu; Yanjun, Yang. Magnetic carboxymethyl chitosan nanoparticles with immobilized metal ions for lysozyme adsorption. Colloids Surf., 2011, 389(1-3), 97-103.
Weickmann, H.; Tiller, J.C.; Thomann, R.; Mulhaupt, R. Metallized organoclays as new intermediates for aqueous nanohybrid dispersions, nanohybrid catalysts and antimicrobial polymer hybrid nanocomposites. Macromol. Mater. Eng., 2005, 290(9), 875-883.
Kaur, P.; Thakur, R.; Chaudhary, A. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int. J. Scientific Technol. Res., 2012, 1(6), 83-86.
Chopra, M.; Kaur, P.; Barnela, M.; Thakur, R. Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens. Food Control, 2014, 37, 158-164.
Chopra, M.; Bernela, M.; Kaur, P.; Manuja, A.; Kumar, B.; Thakur, R. Alginate/gum acacia bipolymeric nanohydrogels--promising carrier for zinc oxide nanoparticles. Int. J. Biol. Macromol., 2015, 72, 827-833.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.037] [PMID: 25304751]
Cometa, S.; Iatta, R.; Ricci, M.A.; Ferretti, C.; de Giglio, E. Analytical characterization and antimicrobial properties of novel copper nanoparticles-loaded electro synthesised hydrogel coatings. J. Bioact. Compat. Polym., 2013, 28(8), 508-522.
Pishbin, F. MouriAño, V.; Gilchrist, J.B.; McComb, D.W.; Kreppel, S.; Salih, V.; Ryan, M.P.; Boccaccini, A.R. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater., 2013, 9(7), 7469-7479.
[http://dx.doi.org/10.1016/j.actbio.2013.03.006] [PMID: 23511807]
Kumar, V.; Jolivalt, C.; Pulpytel, J.; Jafari, R.; Arefi-Khonsari, F. Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. J. Biomed. Mater. Res. A, 2013, 101(4), 1121-1132.
[http://dx.doi.org/10.1002/jbm.a.34419] [PMID: 23015534]
De Giglio, E.; Cafagna, D.; Cometa, S.; Allegretta, A.; Pedico, A.; Giannossa, L.C.; Sabbatini, L.; Mattioli-Belmonte, M.; Iatta, R. An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal. Bioanal. Chem., 2013, 405(2-3), 805-816.
[http://dx.doi.org/10.1007/s00216-012-6293-z] [PMID: 22926126]
Kaur, P.; Thakur, R.; Chaudhary, A. 2012, Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. J. Green Chem., 9, 33-38.
Trakhtenberg, L.; Gerasimov, G.; Aleksandrova, L.; Potapov, V. Photo and radiation cryochemical synthesis of metal-polymer films: structure, sensor and catalytic properties. Radiat. Phys. Chem., 2002, 65(4-5), 479-485.
Guibal, E. Interactions of metal ions with chitosan-based sorbents: a review. Separ. Purif. Tech., 2004, 38(1), 43-74.
Guibal, E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci., 2005, 30(1), 71-109.
Molvinger, K.; Quignard, F.; Brunel, D.; Boissiere, M.; Devoisselle, J.M. Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem. Mater., 2004, 16(17), 3367-3372.
Kadib, A.; Molvinger, K.; Guimon, C.; Quignard, F.; Brunel, D. Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts. Chem. Mater., 2008, 20(6), 2198-2204.
Li, D.; Dunlap, J.R.; Zhao, B. Thermosensitive water-dispersible hairy particle-supported pd nanoparticles for catalysis of hydrogenation in an aqueous/organic biphasic system. Langmuir, 2008, 24(11), 5911-5918.
[http://dx.doi.org/10.1021/la800277j] [PMID: 18459752]
Xiong, Z.; Zhao, D.; Pan, G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Res., 2007, 41(15), 3497-3505.
[http://dx.doi.org/10.1016/j.watres.2007.05.049] [PMID: 17597179]
Xiong, Y.; Chen, Q.; Tao, N.; Ye, J.; Tang, Y.; Feng, J.; Gu, X. The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly. Nanotechnology, 2007, 18(34) 345301
Mallick, K.; Witcomb, M.J.; Dinsmore, A.; Scurrell, M.S. Fabrication of a metal nanoparticles and polymer nanofibers composite material by an in situ chemical synthetic route. Langmuir, 2005, 21(17), 7964-7967.
[http://dx.doi.org/10.1021/la050534j] [PMID: 16089406]
Murugadoss, A.; Goswami, P.; Paul, A.; Chattopadhyay, A. Green chitosan bound silver nanoparticles for selective C-C bond formation via in situ iodination of phenols. J. Mol. Catal. Chem., 2009, 304(1-2), 153-158.
Wang, S.; Tan, Y.; Zhao, D.; Liu, G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens. Bioelectron., 2008, 23(12), 1781-1787.
[http://dx.doi.org/10.1016/j.bios.2008.02.014] [PMID: 18387292]
Kaushik, A.; Khan, R.; Solanki, P.R.; Pandey, P.; Alam, J.; Ahmad, S.; Malhotra, B.D. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron., 2008, 24(4), 676-683.
[http://dx.doi.org/10.1016/j.bios.2008.06.032] [PMID: 18692384]
Shin, S.; Yoon, H.; Jang, J. Polymer-encapsulated iron oxide nanoparticles as highly efficient Fenton catalysts. Catal. Commun., 2008, 10(2), 178-182.
Niembro, S.; Shafir, A.; Vallribera, A. AlibA(c)s, R. Palladium nanoparticles supported on an organic-inorganic fluorinated hybrid material. Application to microwave-based heck reaction. Org. Lett., 2008, 10(15), 3215-3218.
[http://dx.doi.org/10.1021/ol801091u] [PMID: 18576660]
Naderi, M.; Danesh-Shahraki, A. Nanofertilizers and their roles in sustainable agriculture. J. Agri. Crop Res., 2013, 5(19), 2229-2232.
Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot., 2012, 35, 64-70.
Islam, M.S.; Choi, W.S.; Lee, Y.B.; Lee, H.J. Self-assembly of individual polymer chain–metal nanoparticles for polymer cargo nanocomposites with tunable properties. J. Mater. Chem., 2013, 1, 3565-3574.
Leadbeater, N.E.; Marco, M. Preparation of polymer-supported ligands and metal complexes for use in catalysis. Chem. Rev., 2002, 102(10), 3217-3273.
[http://dx.doi.org/10.1021/cr010361c] [PMID: 12371884]
Yeum, J.H.; Park, S.M.; Kwon, I.J.; Kim, J.W.; Kim, Y.H.; Rabbani, M.M.; Hyun, J.M.; Kim, K.; Oh, W. Carbon nanotube embedded multi-functional polymer nanocomposites. In: Nanocomposites - New Trends and Developments; InTechOpen:. London, 2012.
Puoci, F.; Iemma, F.; Spizzirri, U.; Cirillo, G.; Curcio, M.; Picci, N. Polymer in Agriculture: a Review. Am. J. Agric. Biol. Sci., 2008, 3(1), 299-314.
Akelah, A. Novel utilizations of conventional agrochemicals by controlled release fomulations. Mater. Sci. Eng., 1996, 4(2), 83-98.
Abraham, J.V.N. Rajasekharan Pillai, Membrane-encapsulated controlled release urea fertilizers based on acrylamide copolymers. J. Appl. Polym. Sci., 1996, 60(13), 2347-2351.
Park, H.J. Kim. S.H.; Kim, J.; Choi, S.H.A New composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J., 2006, 22(3), 295-302.
Marsalek, R. Particle Size and Zeta Potential of ZnO. APCBEE Procedia, 2014, 9, 13-17.
Sharma, V.; Rao, L.J. An overview on chemical composition, bioactivity and processing of leaves of Cinnamomum tamala. Crit. Rev. Food Sci. Nutr., 2014, 54(4), 433-448.
[http://dx.doi.org/10.1080/10408398.2011.587615] [PMID: 24236996]
Bzdek, B.; Zordan, C.; Luther, G.; Johnston, M. Nanoparticle chemical composition during new particle formation. Aerosol Sci. Technol., 2011, 45(8), 1041-1048.
Thomas, S.; Joseph, K.; Malhotra, S.K.; Goda, K.; Sreekala, M.S. Polymer Composites, Nanocomposites; Wiley: Hoboken, 2013.
Xia, H.; Lai, M.; Lu, L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J. Mater. Chem., 2010, 20(33), 6896-6902.
Renfrew, Anna K. Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Metallomics, 2014, 698, 1324-1335.
Jawahar, N.; Meyyanathan, S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci., 2012, 1(4), 217.
Sant, S.; Thommes, M.; Hildgen, P. Microporous structure and drug release kinetics of polymeric nanoparticles. Langmuir, 2008, 24(1), 280-287.
[http://dx.doi.org/10.1021/la702244w] [PMID: 18052222]
Langer, R.; Peppas, N. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. J. Macromol. Sci., 1983, 23(1), 61-126.
Blagoeva, R.; Nedev, A. Monolithic controlled delivery systems: Part I. Basic characteristics and mechanisms. Bioautomation, 2006, 4, 80-88.
Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des., 2013, 47, 424-442.
Kumar, S.; Bhanjana, G.; Sharma, A.; Sidhu, M.C.; Dilbaghi, N. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym., 2014, 101, 1061-1067.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.025] [PMID: 24299874]
Kenawy, E.R. Recent advances in controlled release of agrochemicals. J. Macromol. Sci., 1998, 38(3), 365-390.
Reetz, H.F. Fertilizers and their efficient use. International Fertilizer industry Association; IFA, 2016.
Dananjaya, S.H.S.; Erandani, W.K.C.U.; Kim, C.H.; Nikapitiya, C.; Lee, J.; De Zoysa, M. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int. J. Biol. Macromol., 2017, 105(Pt 1), 478-488.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.056] [PMID: 28709896]
Saharan, V.; Mehrotra, A.; Khatik, R.; Rawal, P.; Sharma, S.S.; Pal, A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int. J. Biol. Macromol., 2013, 62, 677-683.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.012] [PMID: 24141067]
Rudzinski, W.E.; Dave, A.M.; Vaishnav, U.H.; Kumbar, S.G.; Kulkarni, A.R.; Aminabhavi, T.M. Hydrogels as controlled release devices in agriculture. Des. Monomers Polym., 2002, 5(1), 39-65.
Lee, Y.H.; Kim, J.S.; Kim, H.D. A study of biodegradable superabsorbent materials based on acrylonitrile grafted sodium alginate. Key Engineering Materials, Trans Tech Publications. 2005, 277, 450-454.
Garratt, J.; Kennedy, A. Use of models to assess the reduction in contamination of water bodies by agricultural pesticides through the implementation of policy instruments: A case study of the Voluntary Initiative in the UK. Pest Manag. Sci., 2006, 62(12), 1138-1149.
[http://dx.doi.org/10.1002/ps.1284] [PMID: 16981249]
Dasgupta, R.; Banthia, A.K.; Tibarewala, D.N. Study of diffusion characteristics of salicylic acids through cellulose acetate membrane and extracted mouse skin by iontophoresis. Trends Biomater. Artif. Organs, 2008, 21, 73-78.
Wang, C.; Ye, W.; Zheng, Y.; Liu, X.; Tong, Z. Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly. Int. J. Pharm., 2007, 338(1-2), 165-173.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.049] [PMID: 17324539]
Selina, O.E.; Chinarev, A.A.; Obukhova, P.S.; Bartkowiak, A.; Bovin, N.V.; Markvicheva, E.A. [Alginate-chitosan microspheres for the specific sorption of antibodies]. Bioorg. Khim., 2008, 34(4), 522-529.
[PMID: 18695725]
PaAños, I.; Acosta, N.; Heras, A. New drug delivery systems based on chitosan. Curr. Drug Discov. Technol., 2008, 5(4), 333-341.
[http://dx.doi.org/10.2174/157016308786733528] [PMID: 19075614]
Geng, B.; Jin, Z.; Li, T.; Qi, X. Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water. Sci. Total Environ., 2009, 407(18), 4994-5000.
[http://dx.doi.org/10.1016/j.scitotenv.2009.05.051] [PMID: 19545888]
Naik, M.R.; Kumar, B.K.; Manasa, K. Polymer coated fertilizers as advance technique in nutrient management. Asian J. Soil Sci., 2017, 12(1), 228-232.
Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem., 2014, 12(4), 453-469.
Ibrahim, S.; Nawwar, G.A.; Sultan, M. Development of bio-based polymeric hydrogel: Green, sustainable and low cost plant fertilizer packaging material. J. Environ. Chem. Eng., 2016, 4(1), 203-210.
Hussain, M.R.; Devi, R.R.; Maji, T.K. Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran. Polym. J., 2012, 21(8), 473-479.
Costa, M.M.; Cabral-Albuquerque, E.C.; Alves, T.L.; Pinto, J.C.; Fialho, R.L. Use of polyhydroxybutyrate and ethyl cellulose for coating of urea granules. J. Agric. Food Chem., 2013, 61(42), 9984-9991.
[http://dx.doi.org/10.1021/jf401185y] [PMID: 24059839]
Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials methods to produce controlled release coated urea fertilizer. J. Control. Release, 2014, 181, 11-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.020] [PMID: 24593892]
Sabadini, R.C.; Martins, V.C.; Pawlicka, A. Synthesis and characterization of gellan gum: chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose, 2015, 22(3), 2045-2054.
Cakmak, I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil, 2008, 302(1-2), 1-17.
Cakmak, I. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. J. Trace Elem. Med. Biol., 2009, 23(4), 281-289.
[http://dx.doi.org/10.1016/j.jtemb.2009.05.002] [PMID: 19747624]
Pich, A.; Tessier, A.; Boyko, V.; Lu, Y.; Adler, H.J.P. Synthesis and characterization of poly (vinylcaprolactam)-based microgels exhibiting temperature and pH-sensitive properties. Macromolecules, 2006, 39(22), 7701-7707.
Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2008, 33(4), 448-477.
Zhang, J.; Xu, S.; Kumacheva, E. Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J. Am. Chem. Soc., 2004, 126(25), 7908-7914.
[http://dx.doi.org/10.1021/ja031523k] [PMID: 15212539]
Agrawal, G. SchA1/4rings, M.P.; van Rijn, P.; Pich, A. Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(42), 13244-13251.
Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials, 2010, 31(32), 8371-8381.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.061] [PMID: 20701965]
Klinger, D.; Landfester, K. Stimuli-responsive microgels for the loading and release of functional compounds: Fundamental concepts and applications. Polymer (Guildf.), 2012, 53(23), 5209-5231.
Wang, Y.; Nie, J.; Chang, B.; Sun, Y.; Yang, W. Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromolecules, 2013, 14(9), 3034-3046.
[http://dx.doi.org/10.1021/bm401131w] [PMID: 23909593]
Meurer, R.A.; Kemper, S.; Knopp, S.; Eichert, T.; Jakob, F.; Goldbach, H.E.; Schwaneberg, U.; Pich, A. Biofunctional microgel-based fertilizers for controlled foliar delivery of nutrients to plants. Angew. Chem. Int. Ed. Engl., 2017, 56(26), 7380-7386.
[http://dx.doi.org/10.1002/anie.201701620] [PMID: 28524364]
Sempeho, S.I.; Kim, H.T.; Mubofu, E.; Hilonga, A. Meticulous overview on the controlled release fertilizers. Adv. Chem., 2014.
Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: a global perspective. Front. Plant Sci., 2017, 7, 2049.
[http://dx.doi.org/10.3389/fpls.2016.02049] [PMID: 28184225]
Sathiyabama, M.; Akila, G.; Charles, R.E. Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch. Phytopathol. Pflanzenschutz, 2014, 47(16), 1963-1973.
Mondal, M.M.A.; Malek, M.A.; Puteh, A.B.; Ismail, M.R.; Ashrafuzzaman, M.; Naher, L. Effect of foliar application of chitosan on growth and yield in okra. Aust. J. Crop Sci., 2012, 6(5), 918.
Ahmadi, B.; Shariatpanahi, M.E. Proline and chitosan enhanced efficiency of microspore embryogenesis induction and plantlet regeneration in Brassica napus L. Plant Cell Tissue Organ Cult. (PCTOC), 2015, 123(1), 57-65.
Salachna, P.; Zawadzińska, A. Effect of chitosan on plant growth, flowering and corms yield of potted freesia. J. Ecol. Eng., 2014, 15(3), 97-102.
Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol., 2015, 46(2), 159-166.
Riley, M.K.; Vermerris, W. Recent advances in nanomaterials for gene delivery-a review. Nanomaterials (Basel), 2017, 7(5), 94.
[http://dx.doi.org/10.3390/nano7050094] [PMID: 28452950]
Zhang, Z.; Zhao, Y.; Meng, X.; Zhao, D.; Zhang, D.; Wang, L.; Liu, C. A simple Zn2+ complex-based composite system for efficient gene delivery. PLoS One, 2016, 11(7) e0158766
[http://dx.doi.org/10.1371/journal.pone.0158766] [PMID: 27433798]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [1009 - 1028]
Pages: 20
DOI: 10.2174/1568026620666200330160810
Price: $65

Article Metrics

PDF: 19