Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Research Article

Tripterine: A Potential Anti-Allergic Compound

Author(s): Bao-Jun Zhu, Ze-Quan Qian, Hui-Run Yang and Ru-Xia Li*

Volume 22, Issue 1, 2021

Published on: 27 March, 2020

Page: [159 - 167] Pages: 9

DOI: 10.2174/1389201021666200327163322

Price: $65

Abstract

Background: Tripterine (TRI), an active monomer in Tripterygium wilfordii, has significant pharmacological activities, such as anti-inflammatory, immunosuppressive and anti-tumor activities. TRI may be used to treat allergic diseases because of its characteristics of immunosuppression.

Objective: This study aims to explore the anti-allergic effect of TRI.

Methods: It was tested in vivo and in vitro in this study.

Results: The results showed that TRI could significantly inhibit histamine release from rat peritoneal mast cells; the inhibitory effect of TRI on histamine release was stronger than that of other known histamine inhibitors such as disodium cromoglyceride. TRI also significantly inhibited systemic anaphylactic shock induced by compound 48/80 and skin allergy induced by IgE, and inhibited the expression of inflammatory factors secreted by Human Mast Cells (HMC-1) induced by Phorbol 12-Myristate 13- Acetate (PMA) and calcium carrier A23187. In the animal model of allergic rhinitis induced by Ovalbumin (OA), the scores of friction, histamine, IgE, inflammatory factors and inflammatory cells decreased after TRI was administered orally or nasally.

Conclusion: TRI, as an active immunoregulatory factor, has great potential in the treatment of mast cell-mediated allergic diseases.

Keywords: Tripterine (TRI), Systemic anaphylactic shock, skin allergies, Allergic Rhinitis (AR), Human Mast Cells (HMC-1), Seasonal Allergic Rhinitis (SAR).

Graphical Abstract
[1]
Yang, C.F.; Yang, C.C.; Wang, I.J. Association between allergic diseases, allergic sensitization and attention-deficit/hyperactivity disorder in children: A large-scale, population-based study. J. Chin. Med. Assoc., 2018, 81(3), 277-283.
[http://dx.doi.org/10.1016/j.jcma.2017.07.016] [PMID: 29239851]
[2]
Gelardi, M.; Guglielmi, A.V.; Iannuzzi, L.; Quaranta, V.N.; Quaranta, N.; Landi, M.; Correale, M.; Sonnante, A.; Rossini, M.; Mariggiò, M.A.; Canonica, G.W.; Passalacqua, G. Local allergic rhinitis: Entopy or spontaneous response? World Allergy Organ. J., 2016, 9(1), 39.
[http://dx.doi.org/10.1186/s40413-016-0126-z] [PMID: 27980704]
[3]
Shokouhi, S.R.; Pourpak, Z.; Fazlollahi, M.R.; Kazemnejad, A.; Nadali, F.; Ebadi, Z.; Tayebi, B.; Moslemi, M.; Karimi, A.; Valmohammadi, S.; Nazemi, A.M.; Mari, A.; Moin, M. The prevalence of allergic rhinitis, allergic conjunctivitis, atopic dermatitis and asthma among adults of Tehran. Iran. J. Public Health, 2018, 47, 1749-1755.
[4]
Warm, K.; Hedman, L.; Lindberg, A.; Lotvall, J.; Lundback, B.; Ronmark, E. Allergic sensitization is age-dependently associated with rhinitis, but less so with asthma. J. Allergy. Clin. Immunol., 2015, 136(), 1559-1565.e1552
[http://dx.doi.org/10.1016/j.jaci.2015.06.015]
[5]
Zhang, K.; Liu, J.; Truong, T.; Zukin, E.; Chen, W.; Saxon, A. Blocking allergic reaction through targeting surface-bound IgE with low-affinity anti-IgE antibodies. J. Immunol., 2017, 198(10), 3823-3834.
[http://dx.doi.org/10.4049/jimmunol.1602022] [PMID: 28396318]
[6]
Karli, R.; Balbaloglu, E.; Uzun, L.; Cinar, F.; Ugur, M.B. Correlation of symptoms with total IgE and specific IgE levels in patients presenting with allergic rhinitis. Ther. Adv. Respir. Dis., 2013, 7(2), 75-79.
[http://dx.doi.org/10.1177/1753465812468500] [PMID: 23197073]
[7]
Xu, N.; An, J. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines. Exp. Ther. Med., 2017, 14(6), 6201-6206.
[http://dx.doi.org/10.3892/etm.2017.5293] [PMID: 29250144]
[8]
Chang, H.C.; Huang, P.H.; Syu, F.S.; Hsieh, C.H.; Chang, S.L.; Lu, J.; Chen, H.C. Critical involvement of atypical chemokine receptor CXCR7 in allergic airway inflammation. Immunology, 2018, 154(2), 274-284.
[http://dx.doi.org/10.1111/imm.12881] [PMID: 29250768]
[9]
Gaffal, E.; Cron, M.; Glodde, N.; Bald, T.; Kuner, R.; Zimmer, A.; Lutz, B.; Tüting, T. Cannabinoid 1 receptors in keratinocytes modulate proinflammatory chemokine secretion and attenuate contact allergic inflammation. J. Immunol., 2013, 190(10), 4929-4936.
[http://dx.doi.org/10.4049/jimmunol.1201777] [PMID: 23585676]
[10]
Kwon, Y.; Kim, Y.; Eom, S.; Kim, M.; Park, D.; Kim, H.; Noh, K.; Lee, H.; Lee, Y.S.; Choe, J.; Kim, Y.M.; Jeoung, D. MicroRNA-26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. J. Biol. Chem., 2015, 290(22), 14245-14266.
[http://dx.doi.org/10.1074/jbc.M115.645580] [PMID: 25907560]
[11]
Chhiba, K.D.; Hsu, C.L.; Berdnikovs, S.; Bryce, P.J. Transcriptional heterogeneity of mast cells and basophils upon activation. J. Immunol., 2017, 198(12), 4868-4878.
[http://dx.doi.org/10.4049/jimmunol.1601825] [PMID: 28476932]
[12]
Yu, Y.; Blokhuis, B.R.; Garssen, J.; Redegeld, F.A. Non-IgE mediated mast cell activation. Eur. J. Pharmacol., 2016, 778, 33-43.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.017] [PMID: 26164792]
[13]
Jeong, H.J.; Shin, S.Y.; Oh, H.A.; Kim, M.H.; Cho, J.S.; Kim, H.M. IL-32 up-regulation is associated with inflammatory cytokine production in allergic rhinitis. J. Pathol., 2011, 224(4), 553-563.
[http://dx.doi.org/10.1002/path.2899] [PMID: 21598250]
[14]
Bilkhu, P.S.; Wolffsohn, J.S.; Naroo, S.A. A review of non-pharmacological and pharmacological management of seasonal and perennial allergic conjunctivitis. Cont. Lens Anterior Eye, 2012, 35(1), 9-16.
[http://dx.doi.org/10.1016/j.clae.2011.08.009] [PMID: 21925924]
[15]
Kaliner, M.A.; Berger, W.E.; Ratner, P.H.; Siegel, C.J. The efficacy of intranasal antihistamines in the treatment of allergic rhinitis. Ann. Allergy Asthma Immunol., 2011, 106(2)(Suppl.), S6-S11.
[http://dx.doi.org/10.1016/j.anai.2010.08.010] [PMID: 21277531]
[16]
Guo, H.; Liu, M.P. Mechanism of traditional Chinese medicine in the treatment of allergic rhinitis. Chin. Med. J. (Engl.), 2013, 126(4), 756-760.
[PMID: 23422202]
[17]
Camelio, A.M.; Johnson, T.C.; Siegel, D. Total synthesis of celastrol, development of a platform to access celastroid natural products. J. Am. Chem. Soc., 2015, 137(37), 11864-11867.
[http://dx.doi.org/10.1021/jacs.5b06261] [PMID: 26331410]
[18]
Yang, H.; Chen, D.; Cui, Q.C.; Yuan, X.; Dou, Q.P. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res., 2006, 66(9), 4758-4765.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4529] [PMID: 16651429]
[19]
Bodle, C.R.; Mackie, D.I.; Hayes, M.P.; Schamp, J.H.; Miller, M.R.; Henry, M.D.; Doorn, J.A.; Houtman, J.C.D.; James, M.A.; Roman, D.L. Natural products discovered in a high-throughput screen identified as inhibitors of RGS17 and as cytostatic and cytotoxic agents for lung and prostate cancer cell lines. J. Nat. Prod., 2017, 80(7), 1992-2000.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00112] [PMID: 28621943]
[20]
Li, H.; Fan, Y.; Yang, F.; Zhao, L.; Cao, B. The coordinated effects of Apatinib and Tripterine on the proliferation, invasiveness and apoptosis of human hepatoma Hep3B cells. Oncol. Lett., 2018, 16(1), 353-361.
[http://dx.doi.org/10.3892/ol.2018.8656] [PMID: 29928421]
[21]
Xu, X.J.; Zhao, W.B.; Feng, S.B.; Sun, C.; Chen, Q.; Ni, B.; Hu, H.Y. Celastrol alleviates angiotensin II-mediated vascular smooth muscle cell senescence via induction of autophagy. Mol. Med. Rep., 2017, 16(5), 7657-7664.
[http://dx.doi.org/10.3892/mmr.2017.7533] [PMID: 28944849]
[22]
Yu, Y.; Koehn, C.D.; Yue, Y.; Li, S.; Thiele, G.M.; Hearth-Holmes, M.P.; Mikuls, T.R.; O’Dell, J.R.; Klassen, L.W.; Zhang, Z.; Su, K. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr. Mol. Med., 2015, 15(4), 401-410.
[http://dx.doi.org/10.2174/1566524015666150505160743] [PMID: 25941817]
[23]
Liu, J.; Lee, J.; Salazar Hernandez, M.A.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell, 2015, 161(5), 999-1011.
[http://dx.doi.org/10.1016/j.cell.2015.05.011] [PMID: 26000480]
[24]
Borelli, V.; Trevisan, E.; Francesca, V.; Zabucchi, G. The secretory response of rat peritoneal mast cells on exposure to mineral fibers. Int. J. Environ. Res. Public Health, 2018, 15(1)E104
[http://dx.doi.org/10.3390/ijerph15010104] [PMID: 29320402]
[25]
Medic, N.; Vita, F.; Abbate, R.; Soranzo, M.R.; Pacor, S.; Fabbretti, E.; Borelli, V.; Zabucchi, G. Mast cell activation by myelin through scavenger receptor. J. Neuroimmunol., 2008, 200(1-2), 27-40.
[http://dx.doi.org/10.1016/j.jneuroim.2008.05.019] [PMID: 18657868]
[26]
Shin, T.Y.; Park, J.H.; Kim, H.M. Effect of Cryptotympana atrata extract on compound 48/80-induced anaphylactic reactions. J. Ethnopharmacol., 1999, 66(3), 319-325.
[http://dx.doi.org/10.1016/S0378-8741(98)00223-2] [PMID: 10473179]
[27]
Ko, Y.J.; Kim, H.H.; Kim, E.J.; Katakura, Y.; Lee, W.S.; Kim, G.S.; Ryu, C.H. Piceatannol inhibits mast cell-mediated allergic inflammation. Int. J. Mol. Med., 2013, 31(4), 951-958.
[http://dx.doi.org/10.3892/ijmm.2013.1283] [PMID: 23426871]
[28]
Kim, Y.Y.; Je, I.G.; Kim, M.J.; Kang, B.C.; Choi, Y.A.; Baek, M.C.; Lee, B.; Choi, J.K.; Park, H.R.; Shin, T.Y.; Lee, S.; Yoon, S.B.; Lee, S.R.; Khang, D.; Kim, S.H. 2-Hydroxy-3-methoxybenzoic acid attenuates mast cell-mediated allergic reaction in mice via modulation of the FcεRI signaling pathway. Acta Pharmacol. Sin., 2017, 38(1), 90-99.
[http://dx.doi.org/10.1038/aps.2016.112] [PMID: 27890918]
[29]
Kovanen, P.T.; Bot, I. Mast cells in atherosclerotic cardiovascular disease - Activators and actions. Eur. J. Pharmacol., 2017, 816, 37-46.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.013] [PMID: 29032103]
[30]
Draber, P.; Halova, I.; Polakovicova, I.; Kawakami, T. Signal transduction and chemotaxis in mast cells. Eur. J. Pharmacol., 2016, 778, 11-23.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.057] [PMID: 25941081]
[31]
Payne, V.; Kam, P.C. Mast cell tryptase: A review of its physiology and clinical significance. Anaesthesia, 2004, 59(7), 695-703.
[http://dx.doi.org/10.1111/j.1365-2044.2004.03757.x] [PMID: 15200544]
[32]
Galli, S.J.; Kalesnikoff, J.; Grimbaldeston, M.A.; Piliponsky, A.M.; Williams, C.M.; Tsai, M. Mast cells as “tunable” effector and immunoregulatory cells: Recent advances. Annu. Rev. Immunol., 2005, 23, 749-786.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141025] [PMID: 15771585]
[33]
Galli, S.J.; Nakae, S.; Tsai, M. Mast cells in the development of adaptive immune responses. Nat. Immunol., 2005, 6(2), 135-142.
[http://dx.doi.org/10.1038/ni1158] [PMID: 15662442]
[34]
Jin, S.E.; Jung, J.; Jun, J.; Jeon, D.W.; Kim, H.M.; Jeong, H.J. Anti-allergic activity of crystallinity controlled N-acetyl glucosamine. Immunopharmacol. Immunotoxicol., 2012, 34(6), 991-1000.
[http://dx.doi.org/10.3109/08923973.2012.684800] [PMID: 22578178]
[35]
Tasaka, K.; Mio, M.; Okamoto, M. Intracellular calcium release induced by histamine releasers and its inhibition by some antiallergic drugs. Ann. Allergy, 1986, 56(6), 464-469.
[PMID: 2424349]
[36]
Cook, E.B.; Stahl, J.L.; Barney, N.P.; Graziano, F.M. Mechanisms of antihistamines and mast cell stabilizers in ocular allergic inflammation. Curr. Drug Targets Inflamm. Allergy, 2002, 1(2), 167-180.
[http://dx.doi.org/10.2174/1568010023344733] [PMID: 14561198]
[37]
Han, N.R.; Kim, H.M.; Jeong, H.J. Pyeongwee-San extract (KMP6): A new anti-allergic effect. J. Pharm. Pharmacol., 2012, 64(2), 308-316.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01405.x] [PMID: 22221108]
[38]
Oh, H.A.; Kim, H.M.; Jeong, H.J. Distinct effects of imperatorin on allergic rhinitis: Imperatorin inhibits caspase-1 activity in vivo and in vitro. J. Pharmacol. Exp. Ther., 2011, 339(1), 72-81.
[http://dx.doi.org/10.1124/jpet.111.184275] [PMID: 21730010]
[39]
Jeong, H.J.; Moon, P.D.; Kim, S.J.; Seo, J.U.; Kang, T.H.; Kim, J.J.; Kang, I.C.; Um, J.Y.; Kim, H.M.; Hong, S.H. Activation of hypoxia-inducible factor-1 regulates human histidine decarboxylase expression. Cell. Mol. Life Sci., 2009, 66(7), 1309-1319.
[http://dx.doi.org/10.1007/s00018-009-9001-1] [PMID: 19266161]
[40]
Zhou, B.; Comeau, M.R.; De Smedt, T.; Liggitt, H.D.; Dahl, M.E.; Lewis, D.B.; Gyarmati, D.; Aye, T.; Campbell, D.J.; Ziegler, S.F. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol., 2005, 6(10), 1047-1053.
[http://dx.doi.org/10.1038/ni1247] [PMID: 16142237]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy