Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes

Author(s): Moein Ala, Razieh Mohammad Jafari, Ahmad Reza Dehpour*

Journal Name: Current Diabetes Reviews

Volume 16 , Issue 9 , 2020

Become EABM
Become Reviewer
Call for Editor


Diabetes and osteoporosis are two common diseases with different complications. Despite different therapeutic strategies, managing these diseases and reducing their burden have not been satisfactory, especially when they appear one after the other.

In this review, we aimed to clarify the similarity, common etiology and possible common adjunctive therapies of these two major diseases and designate the known molecular pattern observed in them.

Based on different experimental findings, we want to illuminate that interestingly similar pathways lead to diabetes and osteoporosis. Meanwhile, there are a few drugs involved in the treatment of both diseases, which most of the time act in the same line but sometimes with opposing results. Considering the correlation between diabetes and osteoporosis, more efficient management of both diseases, in conditions of concomitant incidence or cause and effect condition, is required.

Keywords: Diabetes, osteoporosis, similar etiology, similar pathways, drug-induced complications, immune system.

Jeng C-J, Hsieh Y-T, Yang C-M, Yang C-H, Lin C-L, Wang I-J. Diabetic retinopathy in patients with diabetic nephropathy: development and progression. PLoS One 2016; 11(8)e0161897
[http://dx.doi.org/10.1371/journal.pone.0161897] [PMID: 27564383]
Nentwich MM, Ulbig MW. Diabetic retinopathy - ocular complications of diabetes mellitus. World J Diabetes 2015; 6(3): 489-99.
[http://dx.doi.org/10.4239/wjd.v6.i3.489] [PMID: 25897358]
Cha S-A, Yun J-S, Lim T-S, et al. Diabetic cardiovascular autonomic neuropathy predicts recurrent cardiovascular diseases in patients with type 2 diabetes. PLoS One 2016; 11(10)e0164807
[http://dx.doi.org/10.1371/journal.pone.0164807] [PMID: 27741306]
Sinaki M. Postural Changes in Osteoporosis: Musculoskeletal Consequences Non-Pharmacological Management of Osteoporosis. Springer 2017; pp. 207-17.
Wong SK, Chin K-Y, Suhaimi FH, Ahmad F, Ima-Nirwana S. The relationship between metabolic syndrome and osteoporosis: a review. Nutrients 2016; 8(6): 347.
[http://dx.doi.org/10.3390/nu8060347] [PMID: 27338453]
Adil C, Aydın T, Taşpınar Ö, et al. Bone mineral density evaluation of patients with type 2 diabetes mellitus. J Phys Ther Sci 2015; 27(1): 179-82.
[http://dx.doi.org/10.1589/jpts.27.179] [PMID: 25642068]
Whittier X, Saag KG. Glucocorticoid-induced Osteoporosis. Rheum Dis Clin North Am 2016; 42(1): 177-89. x[x.]
[http://dx.doi.org/10.1016/j.rdc.2015.08.005] [PMID: 26611558]
Katsuyama T, Sada K-E, Namba S, et al. Risk factors for the development of glucocorticoid-induced diabetes mellitus. Diabetes Res Clin Pract 2015; 108(2): 273-9.
[http://dx.doi.org/10.1016/j.diabres.2015.02.010] [PMID: 25765669]
Schacter GI, Leslie WD. Diabetes and bone disease. Endocrinol Metab Clin North Am 2017; 46(1): 63-85.
[http://dx.doi.org/10.1016/j.ecl.2016.09.010] [PMID: 28131137]
Wang W, Jiang B, Ye S, Qian L, Eds. Risk Factor Analysis of Bone Mineral Density Based on Feature Selection in Type 2 Diabetes. 2018 IEEE International Conference on Big Knowledge (ICBK).
Dumic-Cule I, Ivanac G, Lucijanic T, et al. Drug-induced bone loss: a major safety concern in Europe. Expert opinion on drug safety 2018; 17(10): 1005-4.
Nguyen K-D, Bagheri B, Bagheri H. Drug-induced bone loss: a major safety concern in Europe. Expert Opin Drug Saf 2018; 17(10): 1005-14.
[http://dx.doi.org/10.1080/14740338.2018.1524868] [PMID: 30222369]
Fathallah N, Slim R, Larif S, Hmouda H, Ben Salem C. Drug-induced hyperglycaemia and diabetes. Drug Saf 2015; 38(12): 1153-68.
[http://dx.doi.org/10.1007/s40264-015-0339-z] [PMID: 26370106]
Leidig-Bruckner G, Grobholz S, Bruckner T, Scheidt-Nave C, Nawroth P, Schneider JG. Prevalence and determinants of osteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr Disord 2014; 14(1): 33.
[http://dx.doi.org/10.1186/1472-6823-14-33] [PMID: 24721668]
Anaforoglu I, Nar-Demirer A, Bascil-Tutuncu N, Ertorer ME. Prevalence of osteoporosis and factors affecting bone mineral density among postmenopausal Turkish women with type 2 diabetes. J Diabetes Complications 2009; 23(1): 12-7.
[http://dx.doi.org/10.1016/j.jdiacomp.2007.06.004] [PMID: 18413190]
Leidig-Bruckner G, Ziegler R. Diabetes mellitus a risk for osteoporosis? Exp Clin Endocrinol Diabetes 2001; 109(Suppl. 2): S493-514.
[http://dx.doi.org/10.1055/s-2001-18605] [PMID: 11460594]
Viégas M, Costa C, Lopes A, Griz L, Medeiro MA, Bandeira F. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complications 2011; 25(4): 216-21.
[http://dx.doi.org/10.1016/j.jdiacomp.2011.02.004] [PMID: 21458300]
Abdulameer SA, Sahib MN, Sulaiman SAS. The Prevalence of osteopenia and osteoporosis among Malaysian type 2 diabetic patients using quantitative ultrasound densitometer. Open Rheumatol J 2018; 12: 50-64.
[http://dx.doi.org/10.2174/1874312901812010050] [PMID: 29755605]
Hamilton EJ, Rakic V, Davis WA, et al. Prevalence and predictors of osteopenia and osteoporosis in adults with Type 1 diabetes. Diabet Med 2009; 26(1): 45-52.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02608.x] [PMID: 19125760]
Bayani MA, Karkhah A, Hoseini SR, Qarouei R, Nourodini HQ, Bijani A, et al. The relationship between type 2 diabetes mellitus and osteoporosis in elderly people: a cross-sectional study. International Biological and Biomedical Journal 2016; 2(1): 39-46.
Martinez-Laguna D, Tebe C, Javaid MK, et al. Incident type 2 diabetes and hip fracture risk: a population-based matched cohort study. Osteoporos Int 2015; 26(2): 827-33.
[http://dx.doi.org/10.1007/s00198-014-2986-9] [PMID: 25488807]
Hyassat D, Alyan T, Jaddou H, Ajlouni KM. Prevalence and risk factors of osteoporosis among jordanian postmenopausal women attending the national center for diabetes, endocrinology and genetics in Jordan. Biores Open Access 2017; 6(1): 85-93.
[http://dx.doi.org/10.1089/biores.2016.0045] [PMID: 28736691]
Hamilton EJ, Davis WA, Bruce DG, Davis TM. Risk and associates of incident hip fracture in type 1 diabetes: The Fremantle Diabetes Study diabetes research and clinical practice 2017; 134: 153-60.
DeShields SC, Cunningham TD. Comparison of osteoporosis in US adults with type 1 and type 2 diabetes mellitus. J Endocrinol Invest 2018; 41(9): 1051-60.
[http://dx.doi.org/10.1007/s40618-018-0828-x] [PMID: 29353395]
Chen G, Xu Q, Dai M, Liu X. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways. Biochem Biophys Res Commun 2019; 509(2): 329-34.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.112] [PMID: 30579598]
Li X-J, Zhu Z, Han S-L, Zhang Z-L. Bergapten exerts inhibitory effects on diabetes-related osteoporosis via the regulation of the PI3K/AKT, JNK/MAPK and NF-κB signaling pathways in osteoprotegerin knockout mice. Int J Mol Med 2016; 38(6): 1661-72.
[http://dx.doi.org/10.3892/ijmm.2016.2794] [PMID: 27840967]
Qi J, Hu K-S, Yang H-L. Roles of TNF-α, GSK-3β and RANKL in the occurrence and development of diabetic osteoporosis. Int J Clin Exp Pathol 2015; 8(10): 11995-2004.
[PMID: 26722385]
Akune T, Ogata N, Hoshi K, et al. Insulin receptor substrate-2 maintains predominance of anabolic function over catabolic function of osteoblasts. J Cell Biol 2002; 159(1): 147-56.
[http://dx.doi.org/10.1083/jcb.200204046] [PMID: 12379806]
Irwin R, Lin HV, Motyl KJ, McCabe LR. Normal bone density obtained in the absence of insulin receptor expression in bone. Endocrinology 2006; 147(12): 5760-7.
[http://dx.doi.org/10.1210/en.2006-0700] [PMID: 16973725]
Verhaeghe J, Suiker AM, Visser WJ, Van Herck E, Van Bree R, Bouillon R. The effects of systemic insulin, insulin-like growth factor-I and growth hormone on bone growth and turnover in spontaneously diabetic BB rats. J Endocrinol 1992; 134(3): 485-92.
[http://dx.doi.org/10.1677/joe.0.1340485] [PMID: 1402554]
Rosen CJ. Sugar and bone: a not-so sweet story Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2008; 23(12): 1881.
Mohan S, Baylink DJ. Impaired skeletal growth in mice with haploinsufficiency of IGF-I: genetic evidence that differences in IGF-I expression could contribute to peak bone mineral density differences. J Endocrinol 2005; 185(3): 415-20.
[http://dx.doi.org/10.1677/joe.1.06141] [PMID: 15930167]
McCabe LR. Understanding the pathology and mechanisms of type I diabetic bone loss. J Cell Biochem 2007; 102(6): 1343-57.
[http://dx.doi.org/10.1002/jcb.21573] [PMID: 17975793]
Cheng Y-Z, Yang S-L, Wang J-Y, et al. Irbesartan attenuates advanced glycation end products-mediated damage in diabetes-associated osteoporosis through the AGEs/RAGE pathway. Life Sci 2018; 205: 184-92.
[http://dx.doi.org/10.1016/j.lfs.2018.04.042] [PMID: 29702126]
Diascro DD Jr, Vogel RL, Johnson TE, et al. High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 1998; 13(1): 96-106.
[http://dx.doi.org/10.1359/jbmr.1998.13.1.96] [PMID: 9443795]
Botolin S, McCabe LR. Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol 2006; 209(3): 967-76.
[http://dx.doi.org/10.1002/jcp.20804] [PMID: 16972249]
Wang F-S, Lian W-S, Weng W-T, et al. Neuropeptide Y mediates glucocorticoid-induced osteoporosis and marrow adiposity in mice. Osteoporos Int 2016; 27(9): 2777-89.
[http://dx.doi.org/10.1007/s00198-016-3598-3] [PMID: 27080706]
Khan MP, Singh AK, Joharapurkar AA, et al. Pathophysiological mechanism of bone loss in type 2 diabetes involves inverse regulation of osteoblast function by PGC-1α and skeletal muscle atrogenes: AdipoR1 as a potential target for reversing diabetes-induced osteopenia. Diabetes 2015; 64(7): 2609-23.
[http://dx.doi.org/10.2337/db14-1611] [PMID: 25633418]
Bruno FJ, Ortega Filártiga E. Incidence of hyperglycemia in patients with corticosteroid therapy. Revista Virtual de la Sociedad Paraguaya de Medicina Interna 2018; 5(2): 38-44.
Darjani A, Nickhah N, Hedayati Emami MH, et al. Assessment of the prevalence and risk factors associated with glucocorticoid-induced diabetes mellitus in pemphigus vulgaris patients. Acta Med Iran 2017; 55(6): 375-80.
[PMID: 28843238]
Jeong Y, Han HS, Lee HD, Yang J, Jeong J, Choi MK, et al. A pilot study evaluating steroid-induced diabetes after antiemetic dexamethasone therapy in chemotherapy-treated cancer patients. Cancer research and treatment: official journal of Korean Cancer Association 2016; 48(4): 1429.
Tamura Y, Kawao N, Yano M, et al. Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice. Diabetes 2015; 64(6): 2194-206.
[http://dx.doi.org/10.2337/db14-1192] [PMID: 25552599]
Guo B, Zhang W, Xu S, Lou J, Wang S, Men X. GSK-3β mediates dexamethasone-induced pancreatic β cell apoptosis. Life Sci 2016; 144: 1-7.
[http://dx.doi.org/10.1016/j.lfs.2015.11.017] [PMID: 26606859]
Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin protects against dexamethasone-induced INS-1 cell apoptosis via ERK and p38MAPK signaling. International journal of endocrinology 2016 2016.
Ohneda M, Johnson JH, Inman LR, Unger RH. GLUT-2 function in glucose-unresponsive beta cells of dexamethasone-induced diabetes in rats. J Clin Invest 1993; 92(4): 1950-6.
[http://dx.doi.org/10.1172/JCI116788] [PMID: 8408647]
Pagano G, Cavallo-Perin P, Cassader M, et al. An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. J Clin Invest 1983; 72(5): 1814-20.
[http://dx.doi.org/10.1172/JCI111141] [PMID: 6355186]
Cadoudal T, Blouin JM, Collinet M, et al. Acute and selective regulation of glyceroneogenesis and cytosolic phosphoenolpyruvate carboxykinase in adipose tissue by thiazolidinediones in type 2 diabetes. Diabetologia 2007; 50(3): 666-75.
[http://dx.doi.org/10.1007/s00125-006-0560-5] [PMID: 17242918]
Razali N, Agarwal R, Agarwal P, et al. Role of adenosine receptors in resveratrol-induced intraocular pressure lowering in rats with steroid-induced ocular hypertension. Clin Exp Ophthalmol 2015; 43(1): 54-66.
[http://dx.doi.org/10.1111/ceo.12375] [PMID: 24995479]
Kaur S, Dhiman I, Kaushik S, Raj S, Pandav SS. Outcome of ocular steroid hypertensive response in children. J Glaucoma 2016; 25(4): 343-7.
[http://dx.doi.org/10.1097/IJG.0000000000000209] [PMID: 25651206]
Grossman E, Messerli FH. Drug-induced hypertension: an unappreciated cause of secondary hypertension. Am J Med 2012; 125(1): 14-22.
[http://dx.doi.org/10.1016/j.amjmed.2011.05.024] [PMID: 22195528]
Allen CS, Yeung JH, Vandermeer B, Homik J. Bisphosphonates for steroid‐induced osteoporosis.Cochrane Database of Systematic Reviews 2016; (10):
Mazziotti G, Angeli A, Bilezikian JP, Canalis E, Giustina A. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab 2006; 17(4): 144-9.
[http://dx.doi.org/10.1016/j.tem.2006.03.009] [PMID: 16678739]
Rossini M, Viapiana O, Vitiello M, et al. Prevalence and incidence of osteoporotic fractures in patients on long-term glucocorticoid treatment for rheumatic diseases: the Glucocorticoid Induced OsTeoporosis TOol (GIOTTO) study. Reumatismo 2017; 69(1): 30-9.
[http://dx.doi.org/10.4081/reumatismo.2017.922] [PMID: 28535619]
Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 1998; 102(2): 274-82.
[http://dx.doi.org/10.1172/JCI2799] [PMID: 9664068]
Almeida M, Han L, Ambrogini E, Weinstein RS, Manolagas SC. Glucocorticoids and tumor necrosis factor α increase oxidative stress and suppress Wnt protein signaling in osteoblasts. J Biol Chem 2011; 286(52): 44326-35.
[http://dx.doi.org/10.1074/jbc.M111.283481] [PMID: 22030390]
Yun S-I, Yoon H-Y, Jeong S-Y, Chung Y-S. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3β. J Bone Miner Metab 2009; 27(2): 140-8.
[http://dx.doi.org/10.1007/s00774-008-0019-5] [PMID: 19066717]
Lecka-Czernik B, Gubrij I, Moerman EJ, et al. Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 1999; 74(3): 357-71.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19990901)74:3<357:AID-JCB5>3.0.CO;2-7] [PMID: 10412038]
Jiang Y, Zhang Y, Zhang H, et al. Pravastatin prevents steroid-induced osteonecrosis in rats by suppressing PPARγ expression and activating Wnt signaling pathway. Exp Biol Med (Maywood) 2014; 239(3): 347-55.
[http://dx.doi.org/10.1177/1535370213519215] [PMID: 24510055]
Sun J, Wang Y, Li Y, Zhao G. Downregulation of PPARγ by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential. J Transl Med 2014; 12(1): 168.
[http://dx.doi.org/10.1186/1479-5876-12-168] [PMID: 24929254]
Hofbauer LC, Gori F, Riggs BL, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140(10): 4382-9.
[http://dx.doi.org/10.1210/endo.140.10.7034] [PMID: 10499489]
Xia X, Kar R, Gluhak-Heinrich J, et al. Glucocorticoid-induced autophagy in osteocytes. J Bone Miner Res 2010; 25(11): 2479-88.
[http://dx.doi.org/10.1002/jbmr.160] [PMID: 20564240]
Lin N-Y, Chen C-W, Kagwiria R, et al. Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss. Ann Rheum Dis 2016; 75(6): 1203-10.
[http://dx.doi.org/10.1136/annrheumdis-2015-207240] [PMID: 26113650]
DeSelm CJ, Miller BC, Zou W, et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 2011; 21(5): 966-74.
[http://dx.doi.org/10.1016/j.devcel.2011.08.016] [PMID: 22055344]
Onal M, Piemontese M, Xiong J, et al. Suppression of autophagy in osteocytes mimics skeletal aging. J Biol Chem 2013; 288(24): 17432-40.
[http://dx.doi.org/10.1074/jbc.M112.444190] [PMID: 23645674]
Chen K, Yang Y-H, Jiang S-D, Jiang L-S. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population. Histochem Cell Biol 2014; 142(3): 285-95.
[http://dx.doi.org/10.1007/s00418-014-1194-1] [PMID: 24553790]
Luo D, Ren H, Li T, Lian K, Lin D. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy. Osteoporos Int 2016; 27(3): 1093-101.
[http://dx.doi.org/10.1007/s00198-015-3325-5] [PMID: 26395886]
Gonzalez CD, Lee M-S, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 2011; 7(1): 2-11.
[http://dx.doi.org/10.4161/auto.7.1.13044] [PMID: 20935516]
Bachar-Wikstrom E, Wikstrom JD, Ariav Y, et al. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013; 62(4): 1227-37.
[http://dx.doi.org/10.2337/db12-1474] [PMID: 23274896]
Barlow AD, Thomas DC. Autophagy in diabetes: β-cell dysfunction, insulin resistance, and complications. DNA Cell Biol 2015; 34(4): 252-60.
[http://dx.doi.org/10.1089/dna.2014.2755] [PMID: 25665094]
Rossini M, Orsolini G, Viapiana O, Adami S, Gatti D. Bisphosphonates in the treatment of glucocorticoid-induced osteoporosis: pros. Endocrine 2015; 49(3): 620-7.
[http://dx.doi.org/10.1007/s12020-014-0506-5] [PMID: 25649760]
Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD. Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 1998; 102(8): 1627-33.
[http://dx.doi.org/10.1172/JCI3914] [PMID: 9788977]
Langdahl BL, Marin F, Shane E, et al. Teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: an analysis by gender and menopausal status. Osteoporos Int 2009; 20(12): 2095-104.
[http://dx.doi.org/10.1007/s00198-009-0917-y] [PMID: 19350340]
Jagpal A, De SD, Singh SA, Kirk A. Is tacrolimus more likely to induce diabetes mellitus than ciclosporin in heart transplant patients? 2018.
Velleca A, Kittleson M, Patel J, Rafiei M, Osborne A, Ngan A, et al. Tacrolimus-versus cyclosporine-induced diabetes leads to more diabetic complications after heart transplantation. J Heart Lung Transplant 2013; 32(4): S202.
Baran D, Ashkar J, Galin I, Sandler D, Segura L, Courtney M, Eds. Tacrolimus and new onset diabetes mellitus: the effect of steroid weaning. Transplantation proceedings. 2002.
Li Z, Sun F, Zhang Y, et al. Tacrolimus induces insulin resistance and increases the glucose absorption in the jejunum: a potential mechanism of the diabetogenic effects. PLoS One 2015; 10(11)e0143405
[http://dx.doi.org/10.1371/journal.pone.0143405] [PMID: 26599323]
Rodríguez-Rodríguez AE, Triñanes J, Porrini E, et al. Glucose homeostasis changes and pancreatic β-cell proliferation after switching to cyclosporin in tacrolimus-induced diabetes mellitus. Nefrologia 2015; 35(3): 264-72. [English Edition]
[http://dx.doi.org/10.1016/j.nefroe.2015.06.006 ] [PMID: 26299169]
Triñanes J, Rodriguez-Rodriguez AE, Brito-Casillas Y, et al. Deciphering Tacrolimus-Induced Toxicity in Pancreatic β Cells. Am J Transplant 2017; 17(11): 2829-40.
[http://dx.doi.org/10.1111/ajt.14323] [PMID: 28432716]
Jin J, Lim SW, Jin L, et al. Effects of metformin on hyperglycemia in an experimental model of tacrolimus- and sirolimus-induced diabetic rats. Korean J Intern Med (Korean Assoc Intern Med) 2017; 32(2): 314-22.
[http://dx.doi.org/10.3904/kjim.2015.394] [PMID: 27688296]
Sheu A, Diamond T. Secondary osteoporosis. Aust Prescr 2016; 39(3): 85-7.
[PMID: 27346916]
Spolidorio LC, Nassar PO, Nassar CA, Spolidorio DM, Muscará MN. Conversion of immunosuppressive monotherapy from cyclosporin a to tacrolimus reverses bone loss in rats. Calcif Tissue Int 2007; 81(2): 114-23.
[http://dx.doi.org/10.1007/s00223-007-9040-2] [PMID: 17612778]
Ponticelli C, Aroldi A, Goffin E, Devendra D, Wilkin T. Osteoporosis after organ transplantation. Lancet 2001; 357(9268): 1623.
[http://dx.doi.org/10.1016/S0140-6736(00)04765-6] [PMID: 11386321]
Martin-Fernandez M, Rubert M, Montero M, de la Piedra C, Eds. Effects of cyclosporine, tacrolimus, and rapamycin on osteoblasts Transplantation proceedings. Elsevier 2017.
Smallwood G, Burns D, Fasola C, Steiber A, Heffron T, Eds. Relationship between immunosuppression and osteoporosis in an outpatient liver transplant clinic Transplantation proceedings. Elsevier 2005.
Westenfeld R, Schlieper G, Wöltje M, et al. Impact of sirolimus, tacrolimus and mycophenolate mofetil on osteoclastogenesis--implications for post-transplantation bone disease. Nephrol Dial Transplant 2011; 26(12): 4115-23.
[http://dx.doi.org/10.1093/ndt/gfr214] [PMID: 21622987]
Stein E, Ebeling P, Shane E. Post-transplantation osteoporosis. Endocrinol Metab Clin North Am 2007; 36(4): 937-63. [viii.]
[http://dx.doi.org/10.1016/j.ecl.2007.07.008] [PMID: 17983930]
Goldner MG, Zarowitz H, Akgun S. Hyperglycemia and glycosuria due to thiazide derivatives administered in diabetes mellitus. N Engl J Med 1960; 262(8): 403-5.
[http://dx.doi.org/10.1056/NEJM196002252620807] [PMID: 13850721]
Scheen AJ. Type 2 diabetes and thiazide diuretics. Curr Diab Rep 2018; 18(2): 6.
[http://dx.doi.org/10.1007/s11892-018-0976-6] [PMID: 29399724]
Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006; 48(2): 219-24.
[http://dx.doi.org/10.1161/01.HYP.0000231552.10054.aa] [PMID: 16801488]
Shafi T, Appel LJ, Miller ER III, Klag MJ, Parekh RS. Changes in serum potassium mediate thiazide-induced diabetes. Hypertension 2008; 52(6): 1022-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.119438] [PMID: 18981326]
Rapoport MI, Hurd HF, Hurd H. Thiazide-induced glucose intolerance treated with potassium. Arch Intern Med 1964; 113(3): 405-8.
[http://dx.doi.org/10.1001/archinte.1964.00280090091014] [PMID: 14096393]
Helderman JH, Elahi D, Andersen DK, Raizes GS, Tobin JD, Shocken D, et al. Prevention of the Glucose Intolerance of Thiazide Diuretics by Maintenance of Body-Potassium Diuretika III. Springer 1986; pp. 98-109.
Brown MJ, Williams B, Morant SV, et al. Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial. Lancet Diabetes Endocrinol 2016; 4(2): 136-47.
[http://dx.doi.org/10.1016/S2213-8587(15)00377-0] [PMID: 26489809]
Transbøl I, Christensen MS, Jensen GF, Christiansen C, McNair P. Thiazide for the postponement of postmenopausal bone loss. Metabolism 1982; 31(4): 383-6.
[http://dx.doi.org/10.1016/0026-0495(82)90115-9] [PMID: 7078423]
Cauley JA, Cummings SR, Seeley DG, et al. Effects of thiazide diuretic therapy on bone mass, fractures, and falls. Ann Intern Med 1993; 118(9): 666-73.
[http://dx.doi.org/10.7326/0003-4819-118-9-199305010-00002] [PMID: 8489642]
Xiao X, Xu Y, Wu Q. Thiazide diuretic usage and risk of fracture: a meta-analysis of cohort studies. Osteoporos Int 2018; 29(7): 1515-24.
[http://dx.doi.org/10.1007/s00198-018-4486-9] [PMID: 29574519]
Legroux-Gerot I, Catanzariti L, Marchandise X, Duquesnoy B, Cortet B. Bone mineral density changes in hypercalciuretic osteoporotic men treated with thiazide diuretics. Joint Bone Spine 2004; 71(1): 51-5.
[http://dx.doi.org/10.1016/j.jbspin.2003.09.009] [PMID: 14769521]
Kruse C, Eiken P, Vestergaard P. Continuous and long-term treatment is more important than dosage for the protective effect of thiazide use on bone metabolism and fracture risk. J Intern Med 2016; 279(1): 110-22.
[http://dx.doi.org/10.1111/joim.12397] [PMID: 26223424]
Cheng L, Zhang K, Zhang Z. Effectiveness of thiazides on serum and urinary calcium levels and bone mineral density in patients with osteoporosis: a systematic review and meta-analysis. Drug Des Devel Ther 2018; 12: 3929-35.
[http://dx.doi.org/10.2147/DDDT.S179568] [PMID: 30532521]
Mefford IN, Wade EU. Proton pump inhibitors as a treatment method for type II diabetes. Med Hypotheses 2009; 73(1): 29-32.
[http://dx.doi.org/10.1016/j.mehy.2009.02.010] [PMID: 19304401]
Suarez-Pinzon WL, Cembrowski GS, Rabinovitch A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor restores normoglycaemia in non-obese diabetic mice. Diabetologia 2009; 52(8): 1680-2.
[http://dx.doi.org/10.1007/s00125-009-1390-z] [PMID: 19455306]
Crouch MA, Mefford IN, Wade EU. Proton pump inhibitor therapy associated with lower glycosylated hemoglobin levels in type 2 diabetes. J Am Board Fam Med 2012; 25(1): 50-4.
[http://dx.doi.org/10.3122/jabfm.2012.01.100161] [PMID: 22218624]
Inci F, Atmaca M, Ozturk M, et al. Pantoprazole may improve beta cell function and diabetes mellitus. J Endocrinol Invest 2014; 37(5): 449-54.
[http://dx.doi.org/10.1007/s40618-013-0040-y] [PMID: 24682913]
Singh PK, Hota D, Dutta P, et al. Pantoprazole improves glycemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab 2012; 97(11): E2105-8.
[http://dx.doi.org/10.1210/jc.2012-1720] [PMID: 22904177]
Lin H-C, Hsiao Y-T, Lin H-L, et al. The use of proton pump inhibitors decreases the risk of diabetes mellitus in patients with upper gastrointestinal disease: A population-based retrospective cohort study. Medicine (Baltimore) 2016; 95(28)e4195
[http://dx.doi.org/10.1097/MD.0000000000004195] [PMID: 27428221]
Suarez-Pinzon WL, Lakey JR, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin induces β-cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice. Cell Transplant 2008; 17(6): 631-40.
[http://dx.doi.org/10.3727/096368908786092775] [PMID: 18819251]
Téllez N, Joanny G, Escoriza J, Vilaseca M, Montanya E. Gastrin treatment stimulates β-cell regeneration and improves glucose tolerance in 95% pancreatectomized rats. Endocrinology 2011; 152(7): 2580-8.
[http://dx.doi.org/10.1210/en.2011-0066] [PMID: 21558313]
Téllez N, Montanya E. Gastrin induces ductal cell dedifferentiation and β-cell neogenesis after 90% pancreatectomy. J Endocrinol 2014; 223(1): 67-78.
[http://dx.doi.org/10.1530/JOE-14-0222] [PMID: 25122000]
Suarez-Pinzon WL, Rabinovitch A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor induces β-cell neogenesis from adult human pancreatic duct cells implanted in immunodeficient mice. Cell Transplant 2011; 20(9): 1343-9.
[http://dx.doi.org/10.3727/096368910X557263] [PMID: 21396168]
Yu EW, Bauer SR, Bain PA, Bauer DC. Proton pump inhibitors and risk of fractures: a meta-analysis of 11 international studies. Am J Med 2011; 124(6): 519-26.
[http://dx.doi.org/10.1016/j.amjmed.2011.01.007] [PMID: 21605729]
Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD. Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ 2008; 179(4): 319-26.
[http://dx.doi.org/10.1503/cmaj.071330] [PMID: 18695179]
Gray SL, LaCroix AZ, Larson J, et al. Proton pump inhibitor use, hip fracture, and change in bone mineral density in postmenopausal women: results from the Women’s Health Initiative. Arch Intern Med 2010; 170(9): 765-71.
[http://dx.doi.org/10.1001/archinternmed.2010.94] [PMID: 20458083]
Zhou B, Huang Y, Li H, Sun W, Liu J. Proton-pump inhibitors and risk of fractures: an update meta-analysis. Osteoporos Int 2016; 27(1): 339-47.
[http://dx.doi.org/10.1007/s00198-015-3365-x] [PMID: 26462494]
Sugiyama T, Torio T, Miyajima T, Kim YT, Oda H. Calcium, proton pump inhibitors, and fracture risk. Osteoporos Int 2016; 27(1): 349-50.
[http://dx.doi.org/10.1007/s00198-015-3403-8] [PMID: 26556735]
Ito T, Jensen RT. Association of long-term proton pump inhibitor therapy with bone fractures and effects on absorption of calcium, vitamin B12, iron, and magnesium. Curr Gastroenterol Rep 2010; 12(6): 448-57.
[http://dx.doi.org/10.1007/s11894-010-0141-0] [PMID: 20882439]
Nassar Y, Richter S. Proton-pump inhibitor use and fracture risk: An updated systematic review and meta-analysis. J Bone Metab 2018; 25(3): 141-51.
[http://dx.doi.org/10.11005/jbm.2018.25.3.141] [PMID: 30237993]
Nehra AK, Alexander JA, Loftus CG, Nehra V, Eds. Proton pump inhibitors: review of emerging concerns Mayo Clinic Proceedings. Elsevier 2018.
Chidakel A, Mentuccia D, Celi FS. Peripheral metabolism of thyroid hormone and glucose homeostasis. Thyroid 2005; 15(8): 899-903.
[http://dx.doi.org/10.1089/thy.2005.15.899] [PMID: 16131332]
De Vito P, Candelotti E, G, Ahmed R, Luly P, J, Davis P, Incerpi S, et al. Role of thyroid hormones in insulin resistance and diabetes. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Immunology, Endocrine & Metabolic Agents) 2015; 15(1): 86-93.
Pasupathi P, Chandrasekar V, Kumar US. Evaluation of oxidative stress, enzymatic and non-enzymatic antioxidants and metabolic thyroid hormone status in patients with diabetes mellitus. Diabetes Metab Syndr 2009; 3(3): 160-5.
Islam S, Yesmine S, Khan SA, Alam NH, Islam S. A comparative study of thyroid hormone levels in diabetic and non-diabetic patients. Southeast Asian J Trop Med Public Health 2008; 39(5): 913-6.
[PMID: 19058589]
Pasupathi P, Bakthavathsalam G, Saravanan G, Sundaramoorthi R. Screening for thyroid dysfunction in the diabetic/non-diabetic population. Thyroid Science 2008; 3(8): 1-6.
Dimitriadis GD, Raptis SA. Thyroid hormone excess and glucose intolerance. Exp Clin Endocrinol Diabetes 2001; 109(Suppl. 2): S225-39.
[http://dx.doi.org/10.1055/s-2001-18584] [PMID: 11460573]
Teixeira SS, Tamrakar AK, Goulart-Silva F, Serrano-Nascimento C, Klip A, Nunes MT. Triiodothyronine acutely stimulates glucose transport into L6 muscle cells without increasing surface GLUT4, GLUT1, or GLUT3. Thyroid 2012; 22(7): 747-54.
[http://dx.doi.org/10.1089/thy.2011.0422] [PMID: 22663547]
Brunetto EL, Teixeira Sda S, Giannocco G, Machado UF, Nunes MT. T3 rapidly increases SLC2A4 gene expression and GLUT4 trafficking to the plasma membrane in skeletal muscle of rat and improves glucose homeostasis. Thyroid 2012; 22(1): 70-9.
[http://dx.doi.org/10.1089/thy.2010.0409] [PMID: 22136156]
Dimitriadis G, Parry-Billings M, Bevan S, et al. The effects of insulin on transport and metabolism of glucose in skeletal muscle from hyperthyroid and hypothyroid rats. Eur J Clin Invest 1997; 27(6): 475-83.
[http://dx.doi.org/10.1046/j.1365-2362.1997.1380688.x] [PMID: 9229227]
Dimitriadis GD, Leighton B, Vlachonikolis IG, et al. Effects of hyperthyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat. Biochem J 1988; 253(1): 87-92.
[http://dx.doi.org/10.1042/bj2530087] [PMID: 3048254]
Klieverik LP, Janssen SF, van Riel A, et al. Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc Natl Acad Sci USA 2009; 106(14): 5966-71.
[http://dx.doi.org/10.1073/pnas.0805355106] [PMID: 19321430]
Bauer M, Silverman DH, Schlagenhauf F, et al. Brain glucose metabolism in hypothyroidism: a positron emission tomography study before and after thyroid hormone replacement therapy. J Clin Endocrinol Metab 2009; 94(8): 2922-9.
[http://dx.doi.org/10.1210/jc.2008-2235] [PMID: 19435829]
Gronich N, Deftereos SN, Lavi I, Persidis AS, Abernethy DR, Rennert G. Hypothyroidism is a risk factor for new-onset diabetes: a cohort study. Diabetes Care 2015; 38(9): 1657-64.
[http://dx.doi.org/10.2337/dc14-2515] [PMID: 26070591]
Chaker L, Baumgartner C, den Elzen WP, et al. V ölzke H, Franco OH, Cappola AR, Rodondi N, Peeters RP; Thyroid Studies Collaboration. Thyroid function within the reference range and the risk of stroke: an individual participant data analysis. J Clin Endocrinol Metab 2016; 101(11): 4270-82.
[http://dx.doi.org/10.1210/jc.2016-2255] [PMID: 27603906]
Chandankhede M, Gupta M, Chari S. Correlation Between Insulin Resistance and Homocysteine in Hypothyroid Patients. Journal of Krishna Institute of Medical Sciences 2018; 7(1) [JKIMSU]
Yang N, Yao Z, Miao L, et al. Novel clinical evidence of an association between homocysteine and insulin resistance in patients with hypothyroidism or subclinical hypothyroidism. PLoS One 2015; 10(5)e0125922
[http://dx.doi.org/10.1371/journal.pone.0125922] [PMID: 25938439]
Neves C, Oliveira SC, Neves JS, Pereira MG, Sokhatska O, Oliveira A, et al. Improvement of Insulin Resistance and Cardiovascular Risk Factors with Treatment of Subclinical Hypothyroidism in Patients with Autoimmune Thyroiditis. Am Diabetes Assoc 2018.
Prasad RS, Nandkeoliar MK, Rai G, Srivastava S, Saxena R. Assessment of insulin resistance in diabetic hypothyroidism patients–A clinical insight. population 2017; 3-4.
Kadiyala R, Peter R, Okosieme OE. Thyroid dysfunction in patients with diabetes: clinical implications and screening strategies. Int J Clin Pract 2010; 64(8): 1130-9.
[http://dx.doi.org/10.1111/j.1742-1241.2010.02376.x] [PMID: 20642711]
Duntas LH, Orgiazzi J, Brabant G. The interface between thyroid and diabetes mellitus. Clin Endocrinol (Oxf) 2011; 75(1): 1-9.
[http://dx.doi.org/10.1111/j.1365-2265.2011.04029.x] [PMID: 21521298]
Papazafiropoulou A, Sotiropoulos A, Kokolaki A, Kardara M, Stamataki P, Pappas S. Prevalence of thyroid dysfunction among greek type 2 diabetic patients attending an outpatient clinic. J Clin Med Res 2010; 2(2): 75-8.
[http://dx.doi.org/10.4021/jocmr2010.03.281w] [PMID: 21811523]
Han C, He X, Xia X, et al. Subclinical hypothyroidism and type 2 diabetes: a systematic review and meta-analysis. PLoS One 2015; 10(8)e0135233
[http://dx.doi.org/10.1371/journal.pone.0135233] [PMID: 26270348]
Tsourdi E, Rijntjes E, Köhrle J, Hofbauer LC, Rauner M. Hyperthyroidism and hypothyroidism in male mice and their effects on bone mass, bone turnover, and the Wnt inhibitors sclerostin and dickkopf-1. Endocrinology 2015; 156(10): 3517-27.
[http://dx.doi.org/10.1210/en.2015-1073] [PMID: 26218891]
Skowrońska-Jóźwiak E, Krawczyk-Rusiecka K, Lewandowski KC, Adamczewski Z, Lewiński A. Successful treatment of thyrotoxicosis is accompanied by a decrease in serum sclerostin levels. Thyroid Res 2012; 5(1): 14.
[http://dx.doi.org/10.1186/1756-6614-5-14] [PMID: 23146624]
Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone 2017; 96: 29-37.
[http://dx.doi.org/10.1016/j.bone.2016.10.007] [PMID: 27742498]
Li X, Ominsky MS, Villasenor KS, et al. Sclerostin antibody reverses bone loss by increasing bone formation and decreasing bone resorption in a rat model of male osteoporosis. Endocrinology 2018; 159(1): 260-71.
[http://dx.doi.org/10.1210/en.2017-00794] [PMID: 29069393]
Segna D, Bauer DC, Feller M, et al. Association between subclinical thyroid dysfunction and change in bone mineral density in prospective cohorts. J Intern Med 2018; 283(1): 56-72.
[http://dx.doi.org/10.1111/joim.12688] [PMID: 29034571]
Barbosa A, Mascarenhas M, Bicho M, Oliveira AG. Trabecular Bone Score and Vertebral Fracture Assessment in Portuguese Premenopausal Women with Hyperthyroidism Available at SSRN 3204911 2018
Williams GR, Bassett JHD. Thyroid diseases and bone health. J Endocrinol Invest 2018; 41(1): 99-109.
[http://dx.doi.org/10.1007/s40618-017-0753-4] [PMID: 28853052]
Sheppard MC, Holder R, Franklyn JA. Levothyroxine treatment and occurrence of fracture of the hip. Arch Intern Med 2002; 162(3): 338-43.
[http://dx.doi.org/10.1001/archinte.162.3.338] [PMID: 11822927]
Viniol A, Hickstein L, Walker J, Donner-Banzhoff N, Baum E, Becker A. Influence of thyroid hormone therapy on the fracture rate - A claims data cohort study. Bone 2016; 86: 86-90.
[http://dx.doi.org/10.1016/j.bone.2016.03.002] [PMID: 26946131]
Blum MR, Bauer DC, Collet T-H, et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 2015; 313(20): 2055-65.
[http://dx.doi.org/10.1001/jama.2015.5161] [PMID: 26010634]
Kim MK, Yun K-J, Kim M-H, et al. The effects of thyrotropin-suppressing therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Bone 2015; 71: 101-5.
[http://dx.doi.org/10.1016/j.bone.2014.10.009] [PMID: 25445448]
Abe E, Marians RC, Yu W, et al. TSH is a negative regulator of skeletal remodeling. Cell 2003; 115(2): 151-62.
[http://dx.doi.org/10.1016/S0092-8674(03)00771-2] [PMID: 14567913]
Baliram R, Sun L, Cao J, et al. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J Clin Invest 2012; 122(10): 3737-41.
[http://dx.doi.org/10.1172/JCI63948] [PMID: 22996689]
Grimnes G, Emaus N, Joakimsen RM, Figenschau Y, Jorde R. The relationship between serum TSH and bone mineral density in men and postmenopausal women: the Tromsø study. Thyroid 2008; 18(11): 1147-55.
[http://dx.doi.org/10.1089/thy.2008.0158] [PMID: 18925834]
Svare A, Nilsen TIL, Bjøro T, Forsmo S, Schei B, Langhammer A. Hyperthyroid levels of TSH correlate with low bone mineral density: the HUNT 2 study. Eur J Endocrinol 2009; 161(5): 779-86.
[http://dx.doi.org/10.1530/EJE-09-0139] [PMID: 19671706]
Lee Y, Yoon B-H, Lee S, Chung YK, Lee Y-K. Risk of Osteoporotic Fractures after Thyroid-stimulating Hormone Suppression Therapy in Patients with Thyroid Cancer. J Bone Metab 2019; 26(1): 45-50.
[http://dx.doi.org/10.11005/jbm.2019.26.1.45] [PMID: 30899724]
Shirazi M, Dehpour AR, Jafari F. The effect of thyroid hormone on orthodontic tooth movement in rats. J Clin Pediatr Dent 1999; 23(3): 259-64.
[PMID: 10686873]
Bassett JH, O’Shea PJ, Sriskantharajah S, et al. Thyroid hormone excess rather than thyrotropin deficiency induces osteoporosis in hyperthyroidism. Mol Endocrinol 2007; 21(5): 1095-107.
[http://dx.doi.org/10.1210/me.2007-0033] [PMID: 17327419]
Bassett JH, Nordström K, Boyde A, et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007; 21(8): 1893-904.
[http://dx.doi.org/10.1210/me.2007-0157] [PMID: 17488972]
Tisch R, Yang X-D, Singer SM, Liblau RS, Fugger L, McDevitt HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 1993; 366(6450): 72-5.
[http://dx.doi.org/10.1038/366072a0] [PMID: 8232539]
Li Y, Toraldo G, Li A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 2007; 109(9): 3839-48.
[http://dx.doi.org/10.1182/blood-2006-07-037994] [PMID: 17202317]
Gao Y, Qian W-P, Dark K, et al. Estrogen prevents bone loss through transforming growth factor β signaling in T cells. Proc Natl Acad Sci USA 2004; 101(47): 16618-23.
[http://dx.doi.org/10.1073/pnas.0404888101] [PMID: 15531637]
Cenci S, Weitzmann MN, Roggia C, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-α. J Clin Invest 2000; 106(10): 1229-37.
[http://dx.doi.org/10.1172/JCI11066] [PMID: 11086024]
Shevde NK, Bendixen AC, Dienger KM, Pike JW. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA 2000; 97(14): 7829-34.
[http://dx.doi.org/10.1073/pnas.130200197] [PMID: 10869427]
Pacifici R. Role of T cells in ovariectomy induced bone loss--revisited. J Bone Miner Res 2012; 27(2): 231-9.
[http://dx.doi.org/10.1002/jbmr.1500] [PMID: 22271394]
Li J-Y, Tawfeek H, Bedi B, et al. Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci USA 2011; 108(2): 768-73.
[http://dx.doi.org/10.1073/pnas.1013492108] [PMID: 21187391]
Gao Y, Wu X, Terauchi M, et al. T cells potentiate PTH-induced cortical bone loss through CD40L signaling. Cell Metab 2008; 8(2): 132-45.
[http://dx.doi.org/10.1016/j.cmet.2008.07.001] [PMID: 18680714]
Tawfeek H, Bedi B, Li J-Y, et al. Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS One 2010; 5(8)e12290
[http://dx.doi.org/10.1371/journal.pone.0012290] [PMID: 20808842]
Bedi B, Li J-Y, Tawfeek H, et al. Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci USA 2012; 109(12): E725-33.
[http://dx.doi.org/10.1073/pnas.1120735109] [PMID: 22393015]
Terauchi M, Li J-Y, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab 2009; 10(3): 229-40.
[http://dx.doi.org/10.1016/j.cmet.2009.07.010] [PMID: 19723499]
Robinson JW, Li JY, Walker LD, et al. T cell-expressed CD40L potentiates the bone anabolic activity of intermittent PTH treatment. J Bone Miner Res 2015; 30(4): 695-705.
[http://dx.doi.org/10.1002/jbmr.2394] [PMID: 25359628]
Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 2012; 7(9)e44552
[http://dx.doi.org/10.1371/journal.pone.0044552] [PMID: 22970248]
DeSelm CJ, Takahata Y, Warren J, et al. IL-17 mediates estrogen-deficient osteoporosis in an Act1-dependent manner. J Cell Biochem 2012; 113(9): 2895-902.
[http://dx.doi.org/10.1002/jcb.24165] [PMID: 22511335]
Molnár I, Bohaty I, Somogyiné-Vári É. IL-17A-mediated sRANK ligand elevation involved in postmenopausal osteoporosis. Osteoporos Int 2014; 25(2): 783-6.
[http://dx.doi.org/10.1007/s00198-013-2548-6] [PMID: 24337660]
Zhang J, Fu Q, Ren Z, et al. Changes of serum cytokines-related Th1/Th2/Th17 concentration in patients with postmenopausal osteoporosis. Gynecol Endocrinol 2015; 31(3): 183-90.
[http://dx.doi.org/10.3109/09513590.2014.975683] [PMID: 25384921]
Li J-Y, D’Amelio P, Robinson J, et al. IL-17A is increased in humans with primary hyperparathyroidism and mediates PTH-induced bone loss in mice. Cell Metab 2015; 22(5): 799-810.
[http://dx.doi.org/10.1016/j.cmet.2015.09.012] [PMID: 26456334]
Erdal N, Gürgül S, Demirel C, Yildiz A. The effect of insulin therapy on biomechanical deterioration of bone in streptozotocin (STZ)-induced type 1 diabetes mellitus in rats. Diabetes Res Clin Pract 2012; 97(3): 461-7.
[http://dx.doi.org/10.1016/j.diabres.2012.03.005] [PMID: 22483749]
Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 2011; 26(4): 677-80.
[http://dx.doi.org/10.1002/jbmr.321] [PMID: 21433069]
Hwang Y-C, Jeong I-K, Ahn K-J, Chung H-Y. Circulating osteocalcin level is associated with improved glucose tolerance, insulin secretion and sensitivity independent of the plasma adiponectin level. Osteoporos Int 2012; 23(4): 1337-42.
[http://dx.doi.org/10.1007/s00198-011-1679-x] [PMID: 21656264]
Kanazawa I, Yamaguchi T, Tada Y, Yamauchi M, Yano S, Sugimoto T. Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone 2011; 48(4): 720-5.
[http://dx.doi.org/10.1016/j.bone.2010.12.020] [PMID: 21185419]
Ngarmukos C. Chailurkit Lo, Chanprasertyothin S, Hengprasith B, Sritara P, Ongphiphadhanakul B. A reduced serum level of total osteocalcin in men predicts the development of diabetes in a long‐term follow‐up cohort. Horumon To Rinsho 2012; 77(1): 42-6.
Yang J, Zhang X, Wang W, Liu J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct 2010; 28(4): 334-41.
[http://dx.doi.org/10.1002/cbf.1668] [PMID: 20517899]
Zhang W, Shen X, Wan C, et al. Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct 2012; 30(4): 297-302.
[http://dx.doi.org/10.1002/cbf.2801] [PMID: 22249904]
Gandhi A, Beam HA, O’Connor JP, Parsons JR, Lin SS. The effects of local insulin delivery on diabetic fracture healing. Bone 2005; 37(4): 482-90.
[http://dx.doi.org/10.1016/j.bone.2005.04.039] [PMID: 16027060]
Malekzadeh B, Tengvall P, Öhrnell LO, Wennerberg A, Westerlund A. Effects of locally administered insulin on bone formation in non-diabetic rats. J Biomed Mater Res A 2013; 101(1): 132-7.
[http://dx.doi.org/10.1002/jbm.a.34313] [PMID: 22825804]
Shin D, Kim S, Kim KH, Lee K, Park SM. Association between insulin resistance and bone mass in men. J Clin Endocrinol Metab 2014; 99(3): 988-95.
[http://dx.doi.org/10.1210/jc.2013-3338] [PMID: 24423302]
Xu F, Ye YP, Dong YH, Guo FJ, Chen AM, Huang SL. Inhibitory effects of high glucose/insulin environment on osteoclast formation and resorption in vitro. J Huazhong Univ Sci Technolog Med Sci 2013; 33(2): 244-9. [Medical Sciences]
[http://dx.doi.org/10.1007/s11596-013-1105-z] [PMID: 23592138]
Wittrant Y, Gorin Y, Woodruff K, et al. High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone 2008; 42(6): 1122-30.
[http://dx.doi.org/10.1016/j.bone.2008.02.006] [PMID: 18378205]
Kiechl S, Wittmann J, Giaccari A, et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med 2013; 19(3): 358-63.
[http://dx.doi.org/10.1038/nm.3084] [PMID: 23396210]
Lasco A, Morabito N, Basile G, et al. Denosumab inhibition of RANKL and insulin resistance in postmenopausal women with osteoporosis. Calcif Tissue Int 2016; 98(2): 123-8.
[http://dx.doi.org/10.1007/s00223-015-0075-5] [PMID: 26498169]
Kondegowda NG, Fenutria R, Pollack IR, et al. Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of NF-κB ligand pathway. Cell Metab 2015; 22(1): 77-85.
[http://dx.doi.org/10.1016/j.cmet.2015.05.021] [PMID: 26094891]
Wei J, Hanna T, Suda N, Karsenty G, Ducy P. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 2014; 63(3): 1021-31.
[http://dx.doi.org/10.2337/db13-0887] [PMID: 24009262]
Tsentidis C, Gourgiotis D, Kossiva L, et al. Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporos Int 2016; 27(4): 1631-43.
[http://dx.doi.org/10.1007/s00198-015-3422-5] [PMID: 26588909]
Xia J, Zhong Y, Huang G, Chen Y, Shi H, Zhang Z, Eds. The relationship between insulin resistance and osteoporosis in elderly male type 2 diabetes mellitus and diabetic nephropathy Annales d’endocrinologie. Elsevier 2012.
Snounou G. Improving Plasmodium vivax malaria treatment: a little more chloroquine. Lancet Infect Dis 2018; 18(9): 934-5.
[http://dx.doi.org/10.1016/S1473-3099(18)30413-4] [PMID: 30033232]
Dai C, Xiao X, Li D, et al. Chloroquine ameliorates carbon tetrachloride-induced acute liver injury in mice via the concomitant inhibition of inflammation and induction of apoptosis. Cell Death Dis 2018; 9(12): 1164.
[http://dx.doi.org/10.1038/s41419-018-1136-2] [PMID: 30478280]
Kanvinde S, Chhonker YS, Ahmad R, et al. Pharmacokinetics and efficacy of orally administered polymeric chloroquine as macromolecular drug in the treatment of inflammatory bowel disease. Acta Biomater 2018; 82: 158-70.
[http://dx.doi.org/10.1016/j.actbio.2018.10.027] [PMID: 30342282]
Wu F, Wei X, Wu Y, et al. Chloroquine promotes the recovery of acute spinal cord injury by inhibiting autophagy-associated inflammation and endoplasmic reticulum stress. J Neurotrauma 2018; 35(12): 1329-44.
[http://dx.doi.org/10.1089/neu.2017.5414] [PMID: 29316847]
Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 2015; 23(5): 231-69.
[http://dx.doi.org/10.1007/s10787-015-0239-y] [PMID: 26246395]
Powrie JK, Smith GD, Shojaee-Moradie F, Sönksen PH, Jones RH. Mode of action of chloroquine in patients with non-insulin-dependent diabetes mellitus. Am J Physiol 1991; 260(6 Pt 1): E897-904.
[PMID: 2058666]
Asamoah KA, Robb DA, Furman BL. Chronic chloroquine treatment enhances insulin release in rats. Diabetes Res Clin Pract 1990; 9(3): 273-8.
[http://dx.doi.org/10.1016/0168-8227(90)90056-Y] [PMID: 2146103]
Quatraro A, Consoli G, Magno M, et al. Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug? Ann Intern Med 1990; 112(9): 678-81.
[http://dx.doi.org/10.7326/0003-4819-112-9-678] [PMID: 2110430]
Gerstein HC, Thorpe KE, Taylor DW, Haynes RB. The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas--a randomized trial. Diabetes Res Clin Pract 2002; 55(3): 209-19.
[http://dx.doi.org/10.1016/S0168-8227(01)00325-4] [PMID: 11850097]
Mercer E, Rekedal L, Garg R, Lu B, Massarotti EM, Solomon DH. Hydroxychloroquine improves insulin sensitivity in obese non-diabetic individuals. Arthritis Res Ther 2012; 14(3): R135.
[http://dx.doi.org/10.1186/ar3868] [PMID: 22676348]
Satpathy SC, Purkait I, Talware A. Improvement of type 2 diabetes mellitus control with hydroxychloroquine added to triple oral antidiabetis drugs: a case report. Clin Diabetol 2017; 6(6): 211-4.
Wasko MCM, Hubert HB, Lingala VB, et al. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA 2007; 298(2): 187-93.
[http://dx.doi.org/10.1001/jama.298.2.187] [PMID: 17622600]
Shojania K, Koehler BE, Elliott T. Hypoglycemia induced by hydroxychloroquine in a type II diabetic treated for polyarthritis. J Rheumatol 1999; 26(1): 195-6.
[PMID: 9918262]
Rekedal LR, Massarotti E, Garg R, et al. Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases. Arthritis Rheum 2010; 62(12): 3569-73.
[http://dx.doi.org/10.1002/art.27703] [PMID: 20722019]
Halaby M-J, Kastein BK, Yang D-Q. Chloroquine stimulates glucose uptake and glycogen synthase in muscle cells through activation of Akt. Biochem Biophys Res Commun 2013; 435(4): 708-13.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.047] [PMID: 23702482]
Xiu Y, Xu H, Zhao C, et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J Clin Invest 2014; 124(1): 297-310.
[http://dx.doi.org/10.1172/JCI66947] [PMID: 24316970]
Al-Bari MAA, Shinohara M, Nagai Y, Takayanagi H. Inhibitory effect of chloroquine on bone resorption reveals the key role of lysosomes in osteoclast differentiation and function. Inflamm Regen 2012; 32(5): 222-31.
Florencio-Silva R, Sasso GR, Simões MJ, et al. .Osteoporosis and autophagy: What is the relationship? Rev Assoc Med Bras (1992) 2017; 63(2): 173-9.
[http://dx.doi.org/10.1590/1806-9282.63.02.173] [PMID: 28355379]
Gamez-Nava JI, Zavaleta-Muñiz SA, Vazquez-Villegas ML, et al. Prescription for antiresorptive therapy in Mexican patients with rheumatoid arthritis: is it time to reevaluate the strategies for osteoporosis prevention? Rheumatol Int 2013; 33(1): 145-50.
[http://dx.doi.org/10.1007/s00296-011-2341-9] [PMID: 22238026]
Shen G, Ren H, Shang Q, et al. Autophagy as a target for glucocorticoid-induced osteoporosis therapy. Cell Mol Life Sci 2018; 75(15): 2683-93.
[http://dx.doi.org/10.1007/s00018-018-2776-1] [PMID: 29427075]
Wang T, He H, Liu S, et al. Autophagy: A Promising Target for Age-related Osteoporosis. Curr Drug Targets 2019; 20(3): 354-65.
[http://dx.doi.org/10.2174/1389450119666180626120852] [PMID: 29943700]
Wang L, Heckmann BL, Yang X, Long H. Osteoblast autophagy in glucocorticoid-induced osteoporosis. J Cell Physiol 2019; 234(4): 3207-15.
[http://dx.doi.org/10.1002/jcp.27335] [PMID: 30417506]
Pons-Duran C, Piqueras M, Aponte J, Ter Kuile F. Mefloquine for preventing malaria in pregnant women. Cochrane Database of Syst ematic Reviews 2018; 3p CD011444
Yadav RK, Rawat JK, Gautam S, et al. Antidiabetic activity of mefloquine via GLP-1 receptor modulation against STZ–NAinduced diabetes in albino wistar rats. 3 Biotech 2018; 8(5): 240.
Kaithwas G. Ps 16-29 Glp-1 receptor agonistic and antidiabetic activity of mefloquine against Stz-na induced diabetes in albino wistar rats. J Hypertens 2016; 34e472
Gribble FM, Davis TM, Higham CE, Clark A, Ashcroft FM. The antimalarial agent mefloquine inhibits ATP-sensitive K-channels. Br J Pharmacol 2000; 131(4): 756-60.
[http://dx.doi.org/10.1038/sj.bjp.0703638] [PMID: 11030725]
Seemann N, Welling A, Rustenbeck I. The inhibitor of connexin Cx36 channels, mefloquine, inhibits voltage-dependent Ca2+ channels and insulin secretion. Mol Cell Endocrinol 2018; 472: 97-106.
[http://dx.doi.org/10.1016/j.mce.2017.11.024] [PMID: 29208420]
Pacheco-Costa R, Davis HM, Atkinson EG, et al. Reversal of loss of bone mass in old mice treated with mefloquine. Bone 2018; 114: 22-31.
[http://dx.doi.org/10.1016/j.bone.2018.06.002] [PMID: 29879544]
Abbasi A, Corpeleijn E, Postmus D, et al. Plasma procalcitonin and risk of type 2 diabetes in the general population. Diabetologia 2011; 54(9): 2463-5.
[http://dx.doi.org/10.1007/s00125-011-2216-3] [PMID: 21674177]
Abbasi A, Corpeleijn E, Postmus D, et al. Plasma procalcitonin is associated with obesity, insulin resistance, and the metabolic syndrome. J Clin Endocrinol Metab 2010; 95(9): E26-31.
[http://dx.doi.org/10.1210/jc.2010-0305] [PMID: 20534760]
Hjuler ST, Gydesen S, Andreassen KV, Karsdal MA, Henriksen K. The dual amylin-and calcitonin-receptor agonist KBP-042 works as adjunct to metformin on fasting hyperglycemia and HbA1c in a rat model of type 2 diabetes. J Pharmacol Exp Ther 2017; 362(1): 24-30.
[http://dx.doi.org/10.1124/jpet.117.241281] [PMID: 28438778]
Hjuler ST, Andreassen KV, Gydesen S, Karsdal MA, Henriksen K. KBP-042 improves bodyweight and glucose homeostasis with indices of increased insulin sensitivity irrespective of route of administration. Eur J Pharmacol 2015; 762: 229-38.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.051] [PMID: 26027795]
Hjuler ST, Gydesen S, Andreassen KV, et al. The dual amylin- and calcitonin-receptor agonist KBP-042 increases insulin sensitivity and induces weight loss in rats with obesity. Obesity (Silver Spring) 2016; 24(8): 1712-22.
[http://dx.doi.org/10.1002/oby.21563] [PMID: 27296301]
Andreassen KV, Michael FM, Hjuler ST, et al. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts anti-obesity and anti-diabetic effects in rats. Am J Physiol Heart Circ Physiol 2014.
Feigh M, Nielsen RH, Hansen C, Henriksen K, Christiansen C, Karsdal MA. Oral salmon calcitonin improves fasting and postprandial glycemic control in lean healthy rats. Horm Metab Res 2012; 44(2): 130-4.
[http://dx.doi.org/10.1055/s-0031-1298027] [PMID: 22198815]
Feigh M, Hjuler ST, Andreassen KV, et al. Oral salmon calcitonin enhances insulin action and glucose metabolism in diet-induced obese streptozotocin-diabetic rats. Eur J Pharmacol 2014; 737: 91-6.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.016] [PMID: 24858364]
Dexue L, Yueyue Z. Salmon calcitonin in the treatment of elderly women with type 2 diabetes complicated with osteoporosis. Pak J Pharm Sci 2014; 27(6)(Suppl.): 2079-81.
[PMID: 25410076]
Binkley N, Bolognese M, Sidorowicz-Bialynicka A, et al. A phase 3 trial of the efficacy and safety of oral recombinant calcitonin: the Oral Calcitonin in Postmenopausal Osteoporosis (ORACAL) trial. J Bone Miner Res 2012; 27(8): 1821-9.
[http://dx.doi.org/10.1002/jbmr.1602] [PMID: 22437792]
Rosen HN, Rosen C, Schmader K, Mulder J. Calcitonin in the prevention and treatment of osteoporosis 2017.
Zhou H, Seibel MJ. Bone: Osteoblasts and global energy metabolism - beyond osteocalcin. Nat Rev Rheumatol 2017; 13(5): 261-2.
[http://dx.doi.org/10.1038/nrrheum.2017.35] [PMID: 28275261]
Jagtap VR, Ganu JV, Nagane NS. BMD and serum intact osteocalcin in postmenopausal osteoporosis women. Indian J Clin Biochem 2011; 26(1): 70-3.
[http://dx.doi.org/10.1007/s12291-010-0074-2] [PMID: 22211018]
Hamdi RA. Evaluation of Serum Osteocalcin level in Iraqi Postmenopausal women with primary osteoporosis. Journal of the Faculty of Medicine 2013; 55(2): 166-9.
Soroush M, Khabbazi A, Malek Mahdavi A. Serum osteocalcin levels in postmenopausal osteoporotic women receiving alendronate. Rheumatology Research 2018; 3(2): 83-9.
Susanto LTM. Serum osteocalcin and bone mineral density in postmenopausal women. Universa Medicina 2016; 30(3): 155-61.
Singh S, Kumar D, Lal AK. Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women. J Clin Diagn Res 2015; 9(8): RC04-7.
[http://dx.doi.org/10.7860/JCDR/2015/14857.6318] [PMID: 26436008]
Kindblom JM, Ohlsson C, Ljunggren O, et al. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 2009; 24(5): 785-91.
[http://dx.doi.org/10.1359/jbmr.081234] [PMID: 19063687]
Kanazawa I, Yamaguchi T, Yamamoto M, et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 2009; 94(1): 45-9.
[http://dx.doi.org/10.1210/jc.2008-1455] [PMID: 18984661]
Im J-A, Yu B-P, Jeon JY, Kim S-H. Relationship between osteocalcin and glucose metabolism in postmenopausal women. Clin Chim Acta 2008; 396(1-2): 66-9.
[http://dx.doi.org/10.1016/j.cca.2008.07.001] [PMID: 18657532]
Zhou M, Ma X, Li H, et al. Serum osteocalcin concentrations in relation to glucose and lipid metabolism in Chinese individuals. Eur J Endocrinol 2009; 161(5): 723-9.
[http://dx.doi.org/10.1530/EJE-09-0585] [PMID: 19671707]
García RR, Moreno PR, Muñoz-Torres M. Osteocalcin and atherosclerosis: a complex relationship. Diabetes Res Clin Pract 2011; 92(3): 405-6.
Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 2012; 50(2): 568-75.
[http://dx.doi.org/10.1016/j.bone.2011.04.017] [PMID: 21550430]
Hwang YC, Jeong IK, Ahn KJ, Chung HY. The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced β-cell function in middle-aged male subjects. Diabetes Metab Res Rev 2009; 25(8): 768-72.
[http://dx.doi.org/10.1002/dmrr.1045] [PMID: 19877133]
Shea MK, Gundberg CM, Meigs JB, et al. γ-carboxylation of osteocalcin and insulin resistance in older men and women. Am J Clin Nutr 2009; 90(5): 1230-5.
[http://dx.doi.org/10.3945/ajcn.2009.28151] [PMID: 19776145]
Rached M-T, Kode A, Silva BC, et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest 2010; 120(1): 357-68.
[http://dx.doi.org/10.1172/JCI39901] [PMID: 20038793]
Levinger I, Lin X, Zhang X, et al. The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo. Osteoporos Int 2016; 27(2): 653-63.
[http://dx.doi.org/10.1007/s00198-015-3273-0] [PMID: 26259649]
Guedes JAC, Esteves JV, Morais MR, Zorn TM, Furuya DT. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone. Bone 2018; 115: 68-82.
[http://dx.doi.org/10.1016/j.bone.2017.11.020] [PMID: 29183784]
Kalra SP, Dube MG, Iwaniec UT. Leptin increases osteoblast-specific osteocalcin release through a hypothalamic relay. Peptides 2009; 30(5): 967-73.
[http://dx.doi.org/10.1016/j.peptides.2009.01.020] [PMID: 19428775]
Goldstone AP, Howard JK, Lord GM, et al. Leptin prevents the fall in plasma osteocalcin during starvation in male mice. Biochem Biophys Res Commun 2002; 295(2): 475-81.
[http://dx.doi.org/10.1016/S0006-291X(02)00697-6] [PMID: 12150974]
Paz-Filho G, Mastronardi C, Wong M-L, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab 2012; 16(Suppl. 3): S549-55.
[http://dx.doi.org/10.4103/2230-8210.105571] [PMID: 23565489]
Ebihara K, Ogawa Y, Masuzaki H, et al. Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes. Diabetes 2001; 50(6): 1440-8.
[http://dx.doi.org/10.2337/diabetes.50.6.1440] [PMID: 11375346]
Wang MY, Chen L, Clark GO, et al. Leptin therapy in insulin-deficient type I diabetes. Proc Natl Acad Sci USA 2010; 107(11): 4813-9.
[http://dx.doi.org/10.1073/pnas.0909422107] [PMID: 20194735]
Winhofer Y, Handisurya A, Tura A, et al. Osteocalcin is related to enhanced insulin secretion in gestational diabetes mellitus. Diabetes Care 2010; 33(1): 139-43.
[http://dx.doi.org/10.2337/dc09-1237] [PMID: 19808925]
Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia 2011; 54(6): 1291-7.
[http://dx.doi.org/10.1007/s00125-011-2155-z] [PMID: 21503740]
Karsenty G, Ducy PF. Undercarboxylated/uncarboxylated osteocalcin increases beta-cell proliferation, insulin secretion, insulin sensitivity, glucose tolerance and decreases fat mass. Google Patents 2017.
Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM. The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 2008; 14(20): 6364-70.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4879] [PMID: 18927274]
Kim JJ, Accili D. Signalling through IGF-I and insulin receptors: where is the specificity? Growth Horm IGF Res 2002; 12(2): 84-90.
[http://dx.doi.org/10.1054/ghir.2002.0265] [PMID: 12175645]
Heald AH, Cruickshank JK, Riste LK, et al. Close relation of fasting insulin-like growth factor binding protein-1 (IGFBP-1) with glucose tolerance and cardiovascular risk in two populations. Diabetologia 2001; 44(3): 333-9.
[http://dx.doi.org/10.1007/s001250051623] [PMID: 11317665]
Gokulakrishnan K, Velmurugan K, Ganesan S, Mohan V. Circulating levels of insulin-like growth factor binding protein-1 in relation to insulin resistance, type 2 diabetes mellitus, and metabolic syndrome (Chennai Urban Rural Epidemiology Study 118). Metabolism 2012; 61(1): 43-6.
[http://dx.doi.org/10.1016/j.metabol.2011.05.014] [PMID: 21741060]
Lewitt MS, Hilding A, Östenson C-G, Efendic S, Brismar K, Hall K. Insulin-like growth factor-binding protein-1 in the prediction and development of type 2 diabetes in middle-aged Swedish men. Diabetologia 2008; 51(7): 1135-45.
[http://dx.doi.org/10.1007/s00125-008-1016-x] [PMID: 18496669]
Miyake H, Kanazawa I, Sugimoto T. Decreased serum insulin-like growth factor-I is a risk factor for non-vertebral fractures in diabetic postmenopausal women. Intern Med 2017; 56(3): 269-73.
[http://dx.doi.org/10.2169/internalmedicine.56.7416] [PMID: 28154269]
Kanazawa I, Notsu M, Miyake H, Tanaka K, Sugimoto T. Assessment using serum insulin-like growth factor-I and bone mineral density is useful for detecting prevalent vertebral fractures in patients with type 2 diabetes mellitus. Osteoporos Int 2018; 29(11): 2527-35.
[http://dx.doi.org/10.1007/s00198-018-4638-y] [PMID: 30030585]
Mohamad MI, Khater MS. Evaluation of insulin like growth factor-1 (IGF-1) level and its impact on muscle and bone mineral density in frail elderly male. Arch Gerontol Geriatr 2015; 60(1): 124-7.
[http://dx.doi.org/10.1016/j.archger.2014.08.011] [PMID: 25240725]
Zhang W, Zhang LC, Chen H, Tang PF, Zhang LH. Association between polymorphisms in insulin-like growth factor-1 and risk of osteoporosis. Genet Mol Res 2015; 14(3): 7655-60.
[http://dx.doi.org/10.4238/2015.July.13.10] [PMID: 26214445]
Wang Y, Gao C, Guo T, Yang R, Shao F, Ma W, et al. Association of insulin-like growth factor-I receptor and-II receptor gene polymorphisms with osteoporosis in postmenopausal women of Han Chinese. Int J Clin Exp Pathol 2017; 10(2): 2100-9.
Zhang M, Xuan S, Bouxsein ML, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 2002; 277(46): 44005-12.
[http://dx.doi.org/10.1074/jbc.M208265200] [PMID: 12215457]
McCarthy TL, Centrella M, Canalis E. Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. Endocrinology 1989; 124(1): 301-9.
[http://dx.doi.org/10.1210/endo-124-1-301] [PMID: 2909370]
Shi Y, Chen J, Karner CM, Long F. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci USA 2015; 112(15): 4678-83.
[http://dx.doi.org/10.1073/pnas.1502301112] [PMID: 25825734]
Mochizuki H, Hakeda Y, Wakatsuki N, et al. Insulin-like growth factor-I supports formation and activation of osteoclasts. Endocrinology 1992; 131(3): 1075-80.
[http://dx.doi.org/10.1210/endo.131.3.1505451] [PMID: 1505451]
Hill PA, Reynolds JJ, Meikle MC. Osteoblasts mediate insulin-like growth factor-I and -II stimulation of osteoclast formation and function. Endocrinology 1995; 136(1): 124-31.
[http://dx.doi.org/10.1210/endo.136.1.7828521] [PMID: 7828521]
Wang C, Xiao F, Qu X, et al. Sitagliptin, an anti-diabetic drug, suppresses estrogen deficiency-induced osteoporosisin vivo and inhibits RANKL-induced osteoclast formation and bone resorption in vitro. Front Pharmacol 2017; 8: 407.
[http://dx.doi.org/10.3389/fphar.2017.00407] [PMID: 28713268]
Mansur SA, Mieczkowska A, Flatt PR, Chappard D, Irwin N, Mabilleau G. Sitagliptin Alters Bone Composition in High-Fat-Fed Mice. Calcif Tissue Int 2019; 104(4): 437-48.
[PMID: 30564859]
Majumdar SR, Josse RG, Lin M, Eurich DT. Does sitagliptin affect the rate of osteoporotic fractures in type 2 diabetes? Population-based cohort study. J Clin Endocrinol Metab 2016; 101(5): 1963-9.
[http://dx.doi.org/10.1210/jc.2015-4180] [PMID: 26930183]
Gamble J-M, Donnan JR, Chibrikov E, Twells LK, Midodzi WK, Majumdar SR. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: a cohort study diabetes research and clinical practice 2018; 136: 159-67.
Nuche-Berenguer B, Lozano D, Gutiérrez-Rojas I, et al. GLP-1 and exendin-4 can reverse hyperlipidic-related osteopenia. J Endocrinol 2011; 209(2): 203-10.
[http://dx.doi.org/10.1530/JOE-11-0015] [PMID: 21372151]
Meng J, Ma X, Wang N, et al. Activation of GLP-1 receptor promotes bone marrow stromal cell osteogenic differentiation through β-catenin. Stem Cell Reports 2016; 6(4): 579-91.
[http://dx.doi.org/10.1016/j.stemcr.2016.02.002] [PMID: 26947974]
Crespel A, De Boisvilliers F, Gros L, Kervran A. Effects of glucagon and glucagon-like peptide-1-(7-36) amide on C cells from rat thyroid and medullary thyroid carcinoma CA-77 cell line. Endocrinology 1996; 137(9): 3674-80.
[http://dx.doi.org/10.1210/endo.137.9.8756532] [PMID: 8756532]
Yamada C, Yamada Y, Tsukiyama K, et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 2008; 149(2): 574-9.
[http://dx.doi.org/10.1210/en.2007-1292] [PMID: 18039776]
Molinuevo MS, Schurman L, McCarthy AD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res 2010; 25(2): 211-21.
[http://dx.doi.org/10.1359/jbmr.090732] [PMID: 19594306]
Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 2006; 536(1-2): 38-46.
[http://dx.doi.org/10.1016/j.ejphar.2006.02.030] [PMID: 16564524]
Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications 2010; 24(5): 334-44.
[http://dx.doi.org/10.1016/j.jdiacomp.2009.05.002] [PMID: 19628413]
Mai QG, Zhang ZM, Xu S, et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 2011; 112(10): 2902-9.
[http://dx.doi.org/10.1002/jcb.23206] [PMID: 21618594]
Zhao J, Li Y, Zhang H, et al. Preventative effects of metformin on glucocorticoid-induced osteoporosis in rats. J Bone Miner Metab 2019; 37(5): 805-14.
[http://dx.doi.org/10.1007/s00774-019-00989-y] [PMID: 30706148]
Adami S. Bone health in diabetes: considerations for clinical management. Curr Med Res Opin 2009; 25(5): 1057-72.
[http://dx.doi.org/10.1185/03007990902801147] [PMID: 19292601]
Byreddy D, Bouchonville M II, Lewiecki E. Drug-induced osteoporosis: from Fuller Albright to aromatase inhibitorsClimacteric 2015; 18(sup2): 39-46.
Lecka-Czernik B. Bone loss in diabetes: use of antidiabetic thiazoli dinediones and secondary osteoporosis. Current osteoporos is reports 2010; 8(4): 178-84.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 06 November, 2020
Page: [984 - 1001]
Pages: 18
DOI: 10.2174/1573399816666200324152517
Price: $65

Article Metrics

PDF: 35
PRC: 4