Studies on Structures and Functions of Kinases leading to Prostate Cancer and Their Inhibitors

Author(s): Anantha N. Nagappa, Shvetank Bhatt*, Jovita Kanoujia*

Journal Name: Current Enzyme Inhibition

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cancer is the uncontrolled growth of abnormal cells in any part of the body. These abnormalities in the cells make them cancer cells, malignant cells, or tumour cells. These cells can infiltrate normal body tissues. Prostate Cancer begins when cells in the prostate gland start to grow out of control.

Introduction: According to the National Cancer Institute, an estimated 20 percent of men experience Prostate Cancer in their lifetimes. Prostate Cancer can be divided into castration sensitive or hormone- sensitive Prostate Cancer (CSPC or HSPC) and castration-resistant Prostate Cancer (CRPC). Different therapies showed potential for the treatment of Prostate Cancer in that androgen receptor antagonist, cytochrome p17 inhibitors, radiation therapy, brachytherapy, surgical removal of the gland, androgen deprivation therapy and LnRH antagonists are some of the important ones. Despite various available treatment options in our understanding of the biological basis of Prostate Cancer, the management of the disease, especially in the castration-resistant phase, remains a significant challenge. Several Tyrosine kinase inhibitors (TKIs) have been evaluated in the preclinical setting in Advanced Prostate Cancer. TKIs are small drug molecules that work by competitive ATP inhibition at the catalytic binding site of tyrosine kinase. This results in complete inhibition of the catalytic activity of certain enzymes. If chosen correctly, TKIs can target and inhibit critical, mutated pathways important for the development, progression and metastasis of Prostate Cancer. The review focuses on various tyrosine kinase drug targets and their chemical structure to discuss the mechanism and pathways in the treatment of Prostate Cancer.

Methods: The method adopted for the study was mainly based on the secondary search through a systematic literature review. Targets discussed in this review include the epidermal growth factor family (EGFR), vascular endothelial growth factor family (VEGF) receptor, c-Src family kinases (Proto-oncogene tyrosine-protein kinase) (c-Src), platelet-derived growth factor (PDGF) and cmesenchymal- epithelial transition factor (c-Met), which showed some promising results in various studies.

Results: Even with the strong scientific rationale for many TKIs in the treatment of Prostate Cancer, the clinical trial experience showed some negative results in advanced phases. However, despite various challenges, the validation studies targeting kinases hold great potential in Prostate Cancer. Given the success of kinase inhibitors across multiple other cancer types, it is likely that this drug class will eventually improve outcomes in Prostate Cancer.

Conclusion: Modifications in structures and certain other aspects of TKIs may make these agents promising for the treatment of Prostate Cancer.

Keywords: c-MET, cabozantinib, EGFR, erlotinib, kinase inhibitor, lapatinib.

[1]
Cagan, R.; Meyer, P. Rethinking cancer: current challenges and opportunities in cancer research. Dis. Model. Mech., 2017, 10(4), 349-352.
[http://dx.doi.org/10.1242/dmm.030007] [PMID: 28381596]
[2]
Akinleye, A.; Rasool, Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol., 2019, 12(1), 92.
[http://dx.doi.org/10.1186/s13045-019-0779-5] [PMID: 31488176]
[4]
Miliotou, A.N.; Papadopoulou, L.C. CAR T-cell Therapy: A New Era in Cancer Immunotherapy. Curr. Pharm. Biotechnol., 2018, 19(1), 5-18.
[http://dx.doi.org/10.2174/1389201019666180418095526] [PMID: 29667553]
[5]
Curran, K.J.; Pegram, H.J.; Brentjens, R.J. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J. Gene Med., 2012, 14(6), 405-415.
[http://dx.doi.org/10.1002/jgm.2604] [PMID: 22262649]
[6]
6. Prostate Cancer: Statistics, Prostate Cancer: Statistics, Approved by the Cancer.Net Editorial Board. . https://www.Cancer.net/Cancer-types/Prostate-Cancer/statistics
[7]
Atan, A.; Güzel, Ö. How should prostate specific antigen be interpreted? Turk. J. Urol., 2013, 39(3), 188-193.
[http://dx.doi.org/10.5152/tud.2013.038] [PMID: 26328106]
[8]
Oesterling, J.E.; Jacobsen, S.J.; Chute, C.G.; Guess, H.A.; Girman, C.J.; Panser, L.A.; Lieber, M.M. Serum prostate-specific antigen in a community-based population of healthy men. Establishment of age-specific reference ranges. JAMA, 1993, 270(7), 860-864.
[http://dx.doi.org/10.1001/jama.1993.03510070082041] [PMID: 7688054]
[9]
Aaron, L.; Franco, O.E.; Hayward, S.W. Review of Prostate Anatomy and Embryology and the Etiology of Benign Prostatic Hyperplasia. Urol. Clin. North Am., 2016, 43(3), 279-288.
[http://dx.doi.org/10.1016/j.ucl.2016.04.012] [PMID: 27476121]
[10]
Marker, P.C.; Donjacour, A.A.; Dahiya, R.; Cunha, G.R. Hormonal, cellular, and molecular control of prostatic development. Dev. Biol., 2003, 253(2), 165-174.
[http://dx.doi.org/10.1016/S0012-1606(02)00031-3] [PMID: 12645922]
[11]
Hamilton, W.; Sharp, D. Symptomatic diagnosis of prostate cancer in primary care: a structured review. Br. J. Gen. Pract., 2004, 54(505), 617-621.
[PMID: 15296564]
[12]
Pinthus, J.H.; Pacik, D.; Ramon, J. Diagnosis of prostate cancer. Recent Results Cancer Res., 2007, 175, 83-99.
[http://dx.doi.org/10.1007/978-3-540-40901-4_6] [PMID: 17432555]
[13]
Descotes, J.L. Diagnosis of prostate cancer. Asian J. Urol., 2019, 6(2), 129-136.
[http://dx.doi.org/10.1016/j.ajur.2018.11.007] [PMID: 31061798]
[14]
Litwin, M.S.; Tan, H.J. The Diagnosis and Treatment of Prostate Cancer: A Review. JAMA, 2017, 317(24), 2532-2542.
[http://dx.doi.org/10.1001/jama.2017.7248] [PMID: 28655021]
[15]
Martin, L.J.; Alibhai, S.M.H.; Komisarenko, M.; Timilshina, N.; Finelli, A. Identification of subgroups of metastatic castrate-resistant prostate cancer (mCRPC) patients treated with abiraterone plus prednisone at low- vs. high-risk of radiographic progression: An analysis of COU-AA-302. Can. Urol. Assoc. J., 2019, 13(6), 192-200.
[PMID: 30407155]
[16]
Baciarello, G.; Gizzi, M.; Fizazi, K. Advancing therapies in metastatic castration-resistant prostate cancer. Expert Opin. Pharmacother., 2018, 19(16), 1797-1804.
[http://dx.doi.org/10.1080/14656566.2018.1527312] [PMID: 30311804]
[17]
Gianluca, I. Beatrice, Detti.; Daniele, Scartoni.; Andrea, Lancia.; Irene, Giacomelli.; Muhammed, Baki.; Giulio, Carta.; Lorenzo, Livi.; Riccardo, Santoni. Current therapeutic options in metastatic castration-resistant Prostate Cancer. Semin. Oncol., 2018, 45(5-6)
[18]
Chen, T.C.; Sakaki, T.; Yamamoto, K.; Kittaka, A. The roles of cytochrome P450 enzymes in prostate cancer development and treatment. Anticancer Res., 2012, 32(1), 291-298.
[PMID: 22213318]
[19]
Nowak, D.G.; Katsenelson, K.C.; Watrud, K.E.; Chen, M.; Mathew, G.; D’Andrea, V.D.; Lee, M.F.; Swamynathan, M.M.; Casanova-Salas, I.; Jibilian, M.C.; Buckholtz, C.L.; Ambrico, A.J.; Pan, C.H.; Wilkinson, J.E.; Newton, A.C.; Trotman, L.C. The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. J. Cell Biol., 2019, 218(6), 1943-1957.
[http://dx.doi.org/10.1083/jcb.201902048] [PMID: 31092557]
[20]
Geldof, A.A.; Dijkstra, I.; Newling, D.W.; Rao, B.R. Inhibition of 3 beta-hydroxysteroid-dehydrogenase: an approach for prostate cancer treatment? Anticancer Res., 1995, 15(4), 1349-1354.
[PMID: 7654020]
[21]
Alqahtani, A.; Choucair, K.; Ashraf, M.; Hammouda, D.M.; Alloghbi, A.; Khan, T.; Senzer, N.; Nemunaitis, J. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci. OA, 2019, 5(3)FSO372
[http://dx.doi.org/10.4155/fsoa-2018-0115] [PMID: 30906568]
[22]
Kaushik, D.; Vashistha, V.; Isharwal, S.; Sediqe, S.A.; Lin, M.F. Histone deacetylase inhibitors in castration-resistant prostate cancer: molecular mechanism of action and recent clinical trials. Ther. Adv. Urol., 2015, 7(6), 388-395.
[http://dx.doi.org/10.1177/1756287215597637] [PMID: 26622323]
[23]
Cheung, A.S.; Grossmann, M. COX-2 inhibitors in prostate cancer treatment--hold your horses? Asian J. Androl., 2012, 14(4), 518-519.
[http://dx.doi.org/10.1038/aja.2012.51] [PMID: 22635163]
[24]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[25]
Quan, C.; Xiao, J.; Liu, L.; Duan, Q.; Yuan, P.; Zhu, F. Protein Kinases as Tumor Biomarkers and Therapeutic Targets. Curr. Pharm. Des., 2017, 23(29), 4209-4225.
[http://dx.doi.org/10.2174/1381612823666170720113216] [PMID: 28730960]
[26]
Maurer, G.; Tarkowski, B.; Baccarini, M. Raf kinases in cancer-roles and therapeutic opportunities. Oncogene, 2011, 30(32), 3477-3488.
[http://dx.doi.org/10.1038/onc.2011.160] [PMID: 21577205]
[27]
Mirshafiey, A.; Ghalamfarsa, G.; Asghari, B.; Azizi, G. Receptor tyrosine kinase and tyrosine kinase inhibitors: new hope for success in multiple sclerosis therapy. Innov. Clin. Neurosci., 2014, 11(7-8), 23-36.
[PMID: 25337443]
[28]
Natoli, C.; Perrucci, B.; Perrotti, F.; Falchi, L.; Iacobelli, S. Tyrosine kinase inhibitors. Curr. Cancer Drug Targets, 2010, 10(5), 462-483.
[http://dx.doi.org/10.2174/156800910791517208] [PMID: 20384577]
[29]
Ojemuyiwa, M.A.; Madan, R.A.; Dahut, W.L. Tyrosine kinase inhibitors in the treatment of prostate cancer: taking the next step in clinical development. Expert Opin. Emerg. Drugs, 2014, 19(4), 459-470.
[http://dx.doi.org/10.1517/14728214.2014.969239] [PMID: 25345821]
[30]
Whang, Y.E.; Armstrong, A.J.; Rathmell, W.K.; Godley, P.A.; Kim, W.Y.; Pruthi, R.S.; Wallen, E.M.; Crane, J.M.; Moore, D.T.; Grigson, G.; Morris, K.; Watkins, C.P.; George, D.J. A phase II study of lapatinib, a dual EGFR and HER-2 tyrosine kinase inhibitor, in patients with castration-resistant prostate cancer. Urol. Oncol., 2013, 31(1), 82-86.
[http://dx.doi.org/10.1016/j.urolonc.2010.09.018] [PMID: 21396844]
[31]
Gonzalo, R.B.; Benito, F. PilarMart’ınez, O.; Gabriel O; Ricardo P; Mar, R. MAP Kinases and Prostate Cancer. J. Signal Transduct., 2012, 2012169170
[32]
Aggarwal, B.B. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann. Rheum. Dis., 2000, 59(1)(Suppl. 1), i6-i16.
[http://dx.doi.org/10.1136/ard.59.suppl_1.i6] [PMID: 11053079]
[33]
Bai, X.; Zhang, E.; Ye, H.; Nandakumar, V.; Wang, Z.; Chen, L.; Tang, C.; Li, J.; Li, H.; Zhang, W.; Han, W.; Lou, F.; Zhang, D.; Sun, H.; Dong, H.; Zhang, G.; Liu, Z.; Dong, Z.; Guo, B.; Yan, H.; Yan, C.; Wang, L.; Su, Z.; Li, Y.; Jones, L.; Huang, X.F.; Chen, S.Y.; Gao, J. PIK3CA and TP53 gene mutations in human breast cancer tumors frequently detected by ion torrent DNA sequencing. PLoS One, 2014, 9(6)e99306
[http://dx.doi.org/10.1371/journal.pone.0099306] [PMID: 24918944]
[34]
Elfiky, A.A.; Jiang, Z. The PI3 kinase signaling pathway in prostate cancer. Curr. Cancer Drug Targets, 2013, 13(2), 157-164.
[http://dx.doi.org/10.2174/1568009611313020005] [PMID: 23215719]
[35]
Fayard, E.; Xue, G.; Parcellier, A.; Bozulic, L.; Hemmings, B.A. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway.Phosphoinositide 3-kinase in health and disease; Springer: New York, 2011, pp. 31-56.
[36]
Wegiel, B.; Bjartell, A.; Culig, Z.; Persson, J.L. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. Int. J. Cancer, 2008, 122(7), 1521-1529.
[http://dx.doi.org/10.1002/ijc.23261] [PMID: 18027847]
[37]
Chien, C.S.; Shen, K.H.; Huang, J.S.; Ko, S.C.; Shih, Y.W. Antimetastatic potential of fisetin involves inactivation of the PI3K/Akt and JNK signaling pathways with downregulation of MMP-2/9 expressions in prostate cancer PC-3 cells. Mol. Cell. Biochem., 2010, 333(1-2), 169-180.
[http://dx.doi.org/10.1007/s11010-009-0217-z] [PMID: 19633975]
[38]
Baiz, D. Pinder, Hassan, T.A.; Karpova, Y.; Salsbury, F.; Welker, M.E.; Kulik, G. Synthesis and characterization of a novel prostate cancer-targeted PI3 kinase inhibitor prodrug. J. Med. Chem., 2012, 55(18), 8038-8046.
[http://dx.doi.org/10.1021/jm300881a] [PMID: 22924393]
[39]
LeBeau, A.M.; Banerjee, S.R.; Pomper, M.G.; Mease, R.C.; Denmeade, S.R. Optimization of peptide-based inhibitors of prostate-specific antigen (PSA) as targeted imaging agents for prostate cancer. Bioorg. Med. Chem., 2009, 17, 4888-4893.
[40]
Coombs, G.S.; Bergstrom, R.C.; Pellequer, J.L.; Baker, S.I.; Navre, M.; Smith, M.M.; Tainer, J.A.; Madison, E.L.; Corey, D.R. Substrate specificity of prostate-specific antigen (PSA). Chem. Biol., 1998, 5(9), 475-488.
[http://dx.doi.org/10.1016/S1074-5521(98)90004-7] [PMID: 9751643]
[41]
Vlahos, C.J.; Matter, W.F.; Brown, R.F.; Traynor-Kaplan, A.E.; Heyworth, P.G.; Prossnitz, E.R.; Ye, R.D.; Marder, P.; Schelm, J.A.; Rothfuss, K.J. Investigation of neutrophil signal transduction using a specific inhibitor of phosphatidylinositol 3-kinase. J. Immunol., 1995, 154(5), 2413-2422.
[42]
Ke, R.; Xu, Q.; Li, C.; Luo, L.; Huang, D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol. Int., 2018, 42(4), 384-392.
[http://dx.doi.org/10.1002/cbin.10915] [PMID: 29205673]
[43]
Sakoda, H.; Ogihara, T.; Anai, M.; Fujishiro, M.; Ono, H.; Onishi, Y.; Katagiri, H.; Abe, M.; Fukushima, Y.; Shojima, N.; Inukai, K.; Kikuchi, M.; Oka, Y.; Asano, T. Activation of AMPK is essential for AICAR-induced glucose uptake by skeletal muscle but not adipocytes. American journal of physiology. Endocrin and metabol, 2002, 282(6), E1239-44.
[44]
Evans, J.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ, 2005, 330(7503), 1304-1305.
[http://dx.doi.org/10.1136/bmj.38415.708634.F7] [PMID: 15849206]
[45]
Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; Musi, N.; Hirshman, M.F.; Goodyear, L.J.; Moller, D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest., 2001, 108(8), 1167-1174.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[46]
Shen, M.; Zhang, Z.; Ratnam, M.; Dou, Q.P. The interplay of AMP-activated protein kinase and androgen receptor in prostate cancer cells. J. Cell. Physiol., 2014, 229(6), 688-695.
[47]
Feldman, B.J.; Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer, 2001, 1(1), 34-45.
[http://dx.doi.org/10.1038/35094009] [PMID: 11900250]
[48]
Didichenko, S.A.; Tilton, B.; Hemmings, B.A.; Ballmer-Hofer, K.; Thelen, M. Constitutive activation of protein kinase B and phosphorylation of p47phox by a membrane-targeted phosphoinositide 3-kinase. Curr. Biol., 1996, 6(10), 1271-1278.
[http://dx.doi.org/10.1016/S0960-9822(02)70713-6] [PMID: 8939574]
[49]
Roskoski, R., Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res., 2016, 103, 26-48.
[http://dx.doi.org/10.1016/j.phrs.2015.10.021] [PMID: 26529477]
[50]
Choudhury, A.D.; Schinzel, A.C.; Cotter, M.B.; Lis, R.T.; Labella, K.; Lock, Y.J.; Izzo, F.; Guney, I.; Bowden, M.; Li, Y.Y.; Patel, J.; Hartman, E.; Carr, S.A.; Schenone, M.; Jaffe, J.D.; Kantoff, P.W.; Hammerman, P.S.; Hahn, W.C. Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6. Cancer Res., 2017, 77(3), 753-765.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0455] [PMID: 27899381]
[51]
Faltermeier, C.M.; Drake, J.M.; Clark, P.M.; Smith, B.A.; Zong, Y.; Volpe, C.; Mathis, C.; Morrissey, C.; Castor, B.; Huang, J.; Witte, O.N. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc. Natl. Acad. Sci. USA, 2016, 113(2), E172-E181.
[http://dx.doi.org/10.1073/pnas.1521674112] [PMID: 26621741]
[52]
Stone, L. Prostate cancer: A walk on the wild side - wild-type kinases promote metastasis. Nat. Rev. Urol., 2016, 13(2), 63.
[http://dx.doi.org/10.1038/nrurol.2015.300] [PMID: 26689840]
[53]
Festuccia, C.; Gravina, G.L.; Biordi, L.; D’Ascenzo, S.; Dolo, V.; Ficorella, C.; Ricevuto, E.; Tombolini, V. Effects of EGFR tyrosine kinase inhibitor erlotinib in prostate cancer cells in vitro. Prostate, 2009, 69(14), 1529-1537.
[http://dx.doi.org/10.1002/pros.20995] [PMID: 19562712]
[54]
Thomas, R.; Srivastava, S.; Katreddy, R.R.; Sobieski, J.; Weihua, Z. Kinase-inactivated EGFR is required for the survival of wild-type EGFR-expressing cancer cells treated with tyrosine kinase inhibitors. Int. J. Mol. Sci., 2019, 20(10), 10-20.
[http://dx.doi.org/10.3390/ijms20102515] [PMID: 31121829]
[55]
Kharmate, G.; Hosseini-Beheshti, E.; Caradec, J.; Chin, M.Y.; Tomlinson G., E.S. Epidermal growth factor receptor in prostate cancer derived exosomes. PLoS One, 2016, 11(5)e0154967
[http://dx.doi.org/10.1371/journal.pone.0154967] [PMID: 27152724]
[56]
Guérin, O.; Fischel, J.L.; Ferrero, J.M.; Bozec, A.; Milano, G. EGFR Targeting in Hormone-Refractory Prostate Cancer: Current Appraisal and Prospects for Treatment. Pharmaceuticals (Basel), 2010, 3(7), 2238-2247.
[http://dx.doi.org/10.3390/ph3072238] [PMID: 27713352]
[57]
Bonaccorsi, L.; Marchiani, S.; Muratori, M.; Forti, G.; Baldi, E. Gefitinib (‘IRESSA’, ZD1839) inhibits EGF-induced invasion in prostate cancer cells by suppressing PI3 K/AKT activation. J. Cancer Res. Clin. Oncol., 2004, 130(10), 604-614.
[http://dx.doi.org/10.1007/s00432-004-0581-8] [PMID: 15258753]
[58]
Sharifi, N.; Salmaninejad, A.; Ferdosi, S.; Bajestani, A.N.; Khaleghiyan, M.; Estiar, M.A.; Jamali, M.; Nowroozi, M.R.; Shakoori, A. HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method. Oncol. Lett., 2016, 12(6), 4651-4658.
[http://dx.doi.org/10.3892/ol.2016.5235] [PMID: 28105172]
[59]
Day, K.C.; Lorenzatti Hiles, G.; Kozminsky, M.; Dawsey, S.J.; Paul, A.; Broses, L.J.; Shah, R.; Kunja, L.P.; Hall, C.; Palanisamy, N.; Daignault-Newton, S.; El-Sawy, L.; Wilson, S.J.; Chou, A.; Ignatoski, K.W.; Keller, E.; Thomas, D.; Nagrath, S.; Morgan, T.; Day, M.L. HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone. Cancer Res., 2017, 77(1), 74-85.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1656] [PMID: 27793843]
[60]
Hsu, J. L.; Hung, M. C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast Cancer. Cancer meta. rev., 2016, 35(4), 575-588.
[61]
Whang, Y.E.; Armstrong, A.J.; Rathmell, W.K.; Godley, P.A.; Kim, W.Y.; Pruthi, R.S.; Wallen, E.M.; Crane, J.M.; Moore, D.T.; Grigson, G.; Morris, K.; Watkins, C.P.; George, D.J. A phase II study of lapatinib, a dual EGFR and HER-2 tyrosine kinase inhibitor, in patients with castration-resistant prostate cancer. Urol. Oncol., 2013, 31(1), 82-86.
[62]
Nordby, Y.; Richardsen, E.; Rakaee, M.; Ness, N.; Donnem, T.; Patel, H.R.; Busund, L.T.; Bremnes, R.M.; Andersen, S. High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Sci. Rep., 2017, 7, 43378.
[http://dx.doi.org/10.1038/srep43378] [PMID: 28233816]
[63]
Liu, Q.; Jernigan, D.; Zhang, Y.; Fatatis, A. Implication of platelet-derived growth factor receptor alpha in prostate cancer skeletal metastasis. Chin. J. Cancer, 2011, 30(9), 612-619.
[http://dx.doi.org/10.5732/cjc.011.10225] [PMID: 21880182]
[64]
Papadopoulos, J.; Kim, S.J.; Kim, J-S.; Kim, S.W.; Maya, M.; He, J.; Fan, D.; Fidler, I. The role of platelet-derived growth factor in Prostate Cancer development and progression depends on organ site of involvement in an orthotopic mouse model. Cancer Res., 2008, 68(9)(Suppl.), 4203.
[65]
Rosenberg, A.; Mathew, P. Imatinib and prostate cancer: lessons learned from targeting the platelet-derived growth factor receptor. Expert Opin. Investig. Drugs, 2013, 22(6), 787-794.
[http://dx.doi.org/10.1517/13543784.2013.787409]
[66]
Bajaj, G.K.; Zhang, Z.; Garrett-Mayer, E.; Drew, R.; Sinibaldi, V.; Pili, R.; Denmeade, S.R.; Carducci, M.A.; Eisenberger, M.A.; DeWeese, T.L. Phase II study of imatinib mesylate in patients with prostate cancer with evidence of biochemical relapse after definitive radical retropubic prostatectomy or radiotherapy. Urology, 2007, 69(3), 526-531.
[http://dx.doi.org/10.1016/j.urology.2006.12.006] [PMID: 17382158]
[67]
Varkaris, A.; Katsiampoura, A.D.; Araujo, J.C.; Gallick, G.E.; Corn, P.G. Src signaling pathways in prostate cancer. Cancer Metastasis Rev., 2014, 33(2-3), 595-606.
[http://dx.doi.org/10.1007/s10555-013-9481-1] [PMID: 24522479]
[68]
Tatarov, O.; Edwards, J. The role of SRC family kinases in prostate cancer. Transl. Oncogenomics, 2007, 2(2), 67-77.
[PMID: 23641146]
[69]
Chong, Y.P.; Ia, K.K.; Mulhern, T.D.; Cheng, H.C. Endogenous and synthetic inhibitors of the Src-family protein tyrosine kinases. Biochim. Biophys. Acta, 2005, 1754(1-2), 210-220.
[http://dx.doi.org/10.1016/j.bbapap.2005.07.027] [PMID: 16198159]
[70]
Zhoul, J.; Hernandez, G.; Tu, S.W.; Huang, C.L.; Tseng, C.P.; Hsieh, J.T. The role of DOC-2/DAB2 in modulating androgen receptor-mediated cell growth via the nongenomic c-Src-mediated pathway in normal prostatic epithelium and cancer. Cancer Res., 2005, 65(21), 9906-9913.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1481] [PMID: 16267015]
[71]
Lombardo, L.J.; Lee, F.Y.; Chen, P.; Norris, D.; Barrish, J.C.; Behnia, K.; Castaneda, S.; Cornelius, L.A.; Das, J.; Doweyko, A.M.; Fairchild, C.; Hunt, J.T.; Inigo, I.; Johnston, K.; Kamath, A.; Kan, D.; Klei, H.; Marathe, P.; Pang, S.; Peterson, R.; Pitt, S.; Schieven, G.L.; Schmidt, R.J.; Tokarski, J.; Wen, M.L.; Wityak, J.; Borzilleri, R.M. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem., 2004, 47(27), 6658-6661.
[http://dx.doi.org/10.1021/jm049486a] [PMID: 15615512]
[72]
Song, L.; Morris, M.; Bagui, T.; Lee, F.Y.; Jove, R.; Haura, E.B. Dasatinib (BMS-354825) selectively induces apoptosis in lung cancer cells dependent on epidermal growth factor receptor signaling for survival. Cancer Res., 2006, 66(11), 5542-5548.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4620] [PMID: 16740687]
[73]
Trevino, J.G.; Summy, J.M.; Lesslie, D.P.; Parikh, N.U.; Hong, D.S.; Lee, F.Y.; Donato, N.J.; Abbruzzese, J.L.; Baker, C.H.; Gallick, G.E. Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am. J. Pathol., 2006, 168(3), 962-972.
[http://dx.doi.org/10.2353/ajpath.2006.050570] [PMID: 16507911]
[74]
Johnson, F.M.; Saigal, B.; Talpaz, M.; Donato, N.J. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin. Cancer Res., 2005, 11(19 Pt 1), 6924-6932.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0757] [PMID: 16203784]
[75]
Shor, A.C.; Keschman, E.A.; Lee, F.Y.; Muro-Cacho, C.; Letson, G.D.; Trent, J.C.; Pledger, W.J.; Jove, R. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res., 2007, 67(6), 2800-2808.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3469] [PMID: 17363602]
[76]
Varkaris, A.; Corn, P.G.; Gaur, S.; Dayyani, F.; Logothetis, C.J.; Gallick, G.E. The role of HGF/c-Met signaling in prostate cancer progression and c-Met inhibitors in clinical trials. Expert Opin. Investig. Drugs, 2011, 20(12), 1677-1684.
[http://dx.doi.org/10.1517/13543784.2011.631523] [PMID: 22035268]
[77]
Lee, C.; Whang, Y.M.; Campbell, P.; Mulcrone, P.L.; Elefteriou, F.; Cho, S.W.; Park, S.I. Dual targeting c-met and VEGFR2 in osteoblasts suppresses growth and osteolysis of prostate cancer bone metastasis. Cancer Lett., 2018, 414, 205-213.
[http://dx.doi.org/10.1016/j.canlet.2017.11.016] [PMID: 29174801]
[78]
Patnaik, A.; Swanson, K.D.; Csizmadia, E.; Solanki, A.; Landon-Brace, N.; Gehring, M.P.; Helenius, K.; Olson, B.M.; Pyzer, A.R.; Wang, L.C.; Elemento, O.; Novak, J.; Thornley, T.B.; Asara, J.M.; Montaser, L.; Timmons, J.J.; Morgan, T.M.; Wang, Y.; Levantini, E.; Clohessy, J.G.; Kelly, K.; Pandolfi, P.P.; Rosenblatt, J.M.; Avigan, D.E.; Ye, H.; Karp, J.M.; Signoretti, S.; Balk, S.P.; Cantley, L.C. Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity. Cancer Discov., 2017, 7(7), 750-765.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0778] [PMID: 28274958]
[79]
Aragon-Ching, J.B.; Dahut, W.L. VEGF inhibitors and prostate cancer therapy. Curr. Mol. Pharmacol., 2009, 2(2), 161-168.
[http://dx.doi.org/10.2174/1874467210902020161] [PMID: 19617926]
[80]
Dror Michaelson, M.; Regan, M.M.; Oh, W.K.; Kaufman, D.S.; Olivier, K.; Michaelson, S.Z.; Spicer, B.; Gurski, C.; Kantoff, P.W.; Smith, M.R. Phase II study of sunitinib in men with advanced prostate cancer. Ann. Oncol., 2009, 20(5), 913-920.
[http://dx.doi.org/10.1093/annonc/mdp111] [PMID: 19403935]
[81]
Zaborowska, M.; Szmit, S.; Szczylik, C. Sorafenib in progressive castrate-resistant prostate cancer. Can we talk about a new therapeutic option? Arch. Med. Sci., 2012, 8(3), 528-532.
[http://dx.doi.org/10.5114/aoms.2012.29533] [PMID: 22852011]
[82]
Dahut, W.L.; Madan, R.A.; Karakunnel, J.J.; Adelberg, D.; Gulley, J.L.; Turkbey, I.B.; Chau, C.H.; Spencer, S.D.; Mulquin, M.; Wright, J.; Parnes, H.L.; Steinberg, S.M.; Choyke, P.L.; Figg, W.D. Phase II clinical trial of cediranib in patients with metastatic castration-resistant prostate cancer. BJU Int., 2013, 111(8), 1269-1280.
[http://dx.doi.org/10.1111/j.1464-410X.2012.11667.x] [PMID: 23419134]
[83]
Abdelrahim, M.; Safe, S.; Baker, C.; Abudayyeh, A. RNAi and cancer: Implications and applications. J. RNAi Gene Silencing, 2006, 2(1), 136-145.
[PMID: 19771215]
[84]
Mansoori, B.; Sandoghchian Shotorbani, S.; Baradaran, B. RNA interference and its role in cancer therapy. Adv. Pharm. Bull., 2014, 4(4), 313-321.
[PMID: 25436185]
[85]
Whitworth, H.; Bhadel, S.; Ivey, M.; Conaway, M.; Spencer, A.; Hernan, R.; Holemon, H.; Gioeli, D. Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen. PLoS One, 2012, 7(6)e38950
[http://dx.doi.org/10.1371/journal.pone.0038950] [PMID: 22761715]
[86]
Gallo, K.A.; Johnson, G.L. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 663-672.
[http://dx.doi.org/10.1038/nrm906] [PMID: 12209126]
[87]
Alshaker, H.; Wang, Q.; Brewer, D.; Pchejetski, D. Transcriptome-wide effects of sphingosine kinases knockdown in metastatic prostate and breast cancer cells: implications for therapeutic targeting. Front. Pharmacol., 2019, 10(303), 303.
[http://dx.doi.org/10.3389/fphar.2019.00303] [PMID: 30971929]
[88]
Alshaker, H.; Sauer, L.; Monteil, D.; Ottaviani, S.; Srivats, S.; Böhler, T.; Pchejetski, D. Therapeutic potential of targeting SK1 in human cancers. Adv. Cancer Res., 2013, 117, 143-200.
[http://dx.doi.org/10.1016/B978-0-12-394274-6.00006-6] [PMID: 23290780]
[89]
Tonelli, F.; Alossaimi, M.; Natarajan, V.; Gorshkova, I.; Berdyshev, E.; Bittman, R.; Watson, D.G.; Pyne, S.; Pyne, N.J. The roles of sphingosine kinase 1 and 2 in regulating the metabolome and survival of prostate cancer cells. Biomolecules, 2013, 3(2), 316-333.
[http://dx.doi.org/10.3390/biom3020316] [PMID: 24970170]
[90]
Pchejetski, D.; Böhler, T.; Stebbing, J.; Waxman, J. Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer. Nat. Rev. Urol., 2011, 8(10), 569-678.
[http://dx.doi.org/10.1038/nrurol.2011.117] [PMID: 21912422]
[91]
Xie, Y.; Bayakhmetov, S. PIM1 kinase as a promise of targeted therapy in prostate cancer stem cells. Mol. Clin. Oncol., 2016, 4(1), 13-17.
[http://dx.doi.org/10.3892/mco.2015.673] [PMID: 26835011]
[92]
Xie, Y.; Xu, K.; Dai, B.; Guo, Z.; Jiang, T.; Chen, H.; Qiu, Y. The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene, 2006, 25(1), 70-78.
[http://dx.doi.org/10.1038/sj.onc.1209058] [PMID: 16186805]
[93]
Zhang, X.; Song, M.; Kundu, J.K.; Lee, M.H.; Liu, Z.Z. PIM kinase as an executional target in cancer. J. Cancer Prev., 2018, 23(3), 109-116.
[http://dx.doi.org/10.15430/JCP.2018.23.3.109] [PMID: 30370255]
[94]
Tursynbay, Y.; Zhang, J.; Li, Z.; Tokay, T.; Zhumadilov, Z.; Wu, D.; Xie, Y. Pim-1 kinase as cancer drug target: An update. Biomed. Rep., 2016, 4(2), 140-146.
[http://dx.doi.org/10.3892/br.2015.561] [PMID: 26893828]
[95]
Li, W.; Peng, C.; Lee, M.H.; Lim, D.; Zhu, F.; Fu, Y.; Yang, G.; Sheng, Y.; Xiao, L.; Dong, X.; Ma, W.; Bode, A.M.; Cao, Y.; Dong, Z. TRAF4 is a critical molecule for Akt activation in lung cancer. Cancer Res., 2013, 73(23), 6938-6950.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0913] [PMID: 24154876]
[96]
Ahmed, F.; Shiraishi, T.; Vessella, R.L.; Kulkarni, P. Tumor necrosis factor receptor associated factor-4: an adapter protein overexpressed in metastatic prostate cancer is regulated by microRNA-29a. Oncol. Rep., 2013, 30(6), 2963-2968.
[http://dx.doi.org/10.3892/or.2013.2789] [PMID: 24100420]
[97]
Wood, E.R.; Kuyper, L.; Petrov, K.G.; Hunter, R.N., III; Harris, P.A.; Lackey, K. Discovery and in vitro evaluation of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg. Med. Chem. Lett., 2004, 14(4), 953-957.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.002] [PMID: 15013000]
[98]
Singh, R.; Karri, D.; Shen, H.; Shao, J.; Dasgupta, S.; Huang, S.; Edwards, D.P.; Ittmann, M.M.; O’Malley, B.W.; Yi, P. TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. J. Clin. Invest., 2018, 128(7), 3129-3143.
[99]
Onda, T.; Uzawa, K.; Endo, Y.; Bukawa, H.; Yokoe, H.; Shibahara, T.; Tanzawa, H. Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma. Br. J. Cancer, 2006, 94(5), 698-709.
[http://dx.doi.org/10.1038/sj.bjc.6602986] [PMID: 16479256]
[100]
Schlattner, U.; Tokarska-Schlattner, M.; Wallimann, T. Mitochondrial creatine kinase in human health and disease. Biochim. Biophys. Acta, 2006, 1762(2), 164-180.
[http://dx.doi.org/10.1016/j.bbadis.2005.09.004] [PMID: 16236486]
[101]
Amamoto, R.; Uchiumi, T.; Yagi, M.; Monji, K.; Song, Y.; Oda, Y.; Shiota, M.; Yokomizo, A.; Naito, S.; Kang, D. The expression of ubiquitous mitochondrial creatine kinase is downregulated as prostate cancer progression. J. Cancer, 2016, 7(1), 50-59.
[http://dx.doi.org/10.7150/jca.13207] [PMID: 26722360]
[102]
Rigas, A.C.; Robson, C.N.; Curtin, N.J. Therapeutic potential of CDK inhibitor NU2058 in androgen-independent prostate cancer. Oncogene, 2007, 26(55), 7611-7619.
[http://dx.doi.org/10.1038/sj.onc.1210586] [PMID: 17599054]
[103]
Gomella, L.G.; Centenera, M.M.; Brody, J.R.; Butler, L.M.; Tilley, W.D.; Knudsen, K.E. Targeting cell cycle and hormone receptor pathways in cancer. Oncogene, 2013, 32(48), 5481-5491.
[104]
Itkonen, H.M.; Poulose, N.; Walker, S.; Mills, I.G. CDK9 Inhibition induces a metabolic switch that renders prostate cancer cells dependent on fatty acid oxidation. Neoplasia, 2019, 21(7), 713-720.
[http://dx.doi.org/10.1016/j.neo.2019.05.001] [PMID: 31151054]
[105]
Filella, X.; Fernández-Galan, E.; Fernández Bonifacio, R.; Foj, L. Emerging biomarkers in the diagnosis of prostate cancer. Pharm. Genomics Pers. Med., 2018, 11, 83-94.
[http://dx.doi.org/10.2147/PGPM.S136026] [PMID: 29844697]
[106]
Alford, A.V.; Brito, J.M.; Yadav, K.K.; Yadav, S.S.; Tewari, A.K.; Renzulli, J. The use of biomarkers in prostate cancer screening and treatment. Rev. Urol., 2017, 19(4), 221-234.
[PMID: 29472826]
[107]
Himisha, B.; Emmanuel, S.; Antonarakis, M.J. Morris, Gerhardt, A. Emerging molecular biomarkers in advanced prostate cancer: translation to the clinic. Am. Soc. Clin. Oncol. Educ. Book, 2016, 36, 131-141.
[http://dx.doi.org/10.14694/EDBK_159248]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [90 - 105]
Pages: 16
DOI: 10.2174/1573408016666200324152018
Price: $65

Article Metrics

PDF: 13
HTML: 1