Polyphenols can Potentially Prevent Atherosclerosis and Cardiovascular Disease by Modulating Macrophage Cholesterol Metabolism

Author(s): Fumiaki Ito*

Journal Name: Current Molecular Pharmacology

Volume 14 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Arterial atherosclerosis is the main pathological cause of coronary artery disease and peripheral arterial disease. Atherosclerosis is a chronic condition characterized by the presence of cholesterol-rich macrophages in the arterial intima. Accumulation of cholesterol in these macrophages is due to increased oxidation of low-density lipoprotein (LDL) and its uptake via scavenger receptors on the macrophages. Cholesterol efflux from the cholesterol-laden macrophages into high-density lipoprotein (HDL) is also a key process in maintaining cholesterol homeostasis and preventing cholesterol accumulation. Four pathways for the efflux of cholesterol to HDL exist in macrophages, including passive and active pathways. Several HDL characteristics determine cholesterol efflux capacity, namely composition, oxidative status, and HDL size. Oxidation of LDL and HDL, as well as an imbalance in cholesterol uptake and efflux, could lead to the accumulation of cholesterol in macrophages and initiation of atherosclerogenesis.

Epidemiological studies have demonstrated that polyphenol-rich foods reduce cardiovascular events in the general population and in patients at risk of cardiovascular diseases. Many studies have reported that polyphenols in polyphenol-rich foods have anti-atherosclerotic properties by preventing cholesterol accumulation in macrophages through the suppression of lipoproteins oxidation and regulation of cholesterol uptake and efflux.

Keywords: Atherosclerosis, cardiovascular disease, polyphenols, low-density lipoprotein, high-density lipoprotein, oxidation of lipoproteins, cholesterol efflux capacity, ATP-binding cassette (ABC) transporters, macrophage cholesterol metabolism.

[1]
McLaren, J.E.; Michael, D.R.; Ashlin, T.G.; Ramji, D.P. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog. Lipid Res., 2011, 50(4), 331-347.
[http://dx.doi.org/10.1016/j.plipres.2011.04.002] [PMID: 21601592]
[2]
Yu, X.H.; Fu, Y.C.; Zhang, D.W.; Yin, K.; Tang, C.K. Foam cells in atherosclerosis. Clin. Chim. Acta, 2013, 424, 245-252.
[http://dx.doi.org/10.1016/j.cca.2013.06.006] [PMID: 23782937]
[3]
Steinberg, D. The LDL modification hypothesis of atherogenesis: an update. J. Lipid Res., 2009, 50(Suppl, S376–381)
[4]
Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; McBride, P.; Schwartz, J.S.; Shero, S.T.; Smith, S.C., Jr; Watson, K.; Wilson, P.W.; Eddleman, K.M.; Jarrett, N.M.; LaBresh, K.; Nevo, L.; Wnek, J.; Anderson, J.L.; Halperin, J.L.; Albert, N.M.; Bozkurt, B.; Brindis, R.G.; Curtis, L.H.; DeMets, D.; Hochman, J.S.; Kovacs, R.J.; Ohman, E.M.; Pressler, S.J.; Sellke, F.W.; Shen, W.K.; Smith, S.C., Jr; Tomaselli, G.F. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014, 129(25)(Suppl. 2), S1-S45.
[http://dx.doi.org/10.1161/01.cir.0000437738.63853.7a] [PMID: 24222016]
[5]
Qiu, C.; Zhao, X.; Zhou, Q.; Zhang, Z. High-density lipoprotein cholesterol efflux capacity is inversely associated with cardiovascular risk: a systematic review and meta-analysis. Lipids Health Dis., 2017, 16(1), 212.
[http://dx.doi.org/10.1186/s12944-017-0604-5] [PMID: 29126414]
[6]
Loffredo, L.; Perri, L.; Nocella, C.; Violi, F. Antioxidant and antiplatelet activity by polyphenol-rich nutrients: focus on extra virgin olive oil and cocoa. Br. J. Clin. Pharmacol., 2017, 83(1), 96-102.
[http://dx.doi.org/10.1111/bcp.12923] [PMID: 26922974]
[7]
Favero, G.; Paganelli, C.; Buffoli, B.; Rodella, L.F.; Rezzani, R. Endothelium and its alterations in cardiovascular diseases: life style intervention. BioMed Res. Int., 2014, 2014, 801896.
[http://dx.doi.org/10.1155/2014/801896] [PMID: 24719887]
[8]
Hernáez, Á.; Remaley, A.T.; Farràs, M.; Fernández-Castillejo, S.; Subirana, I.; Schröder, H.; Fernández-Mampel, M.; Muñoz-Aguayo, D.; Sampson, M.; Solà, R.; Farré, M.; de la Torre, R.; López-Sabater, M.C.; Nyyssönen, K.; Zunft, H.J.; Covas, M.I.; Fitó, M. Zunft, H.J.; Covas, M.I.; Fitó, M. Olive oil polyphenols decrease LDL concentrations and LDL atherogenicity in men in a randomized controlled trial. J. Nutr., 2015, 145(8), 1692-1697.
[http://dx.doi.org/10.3945/jn.115.211557] [PMID: 26136585]
[9]
Dubick, M.A.; Omaye, S.T. Evidence for grape, wine and tea polyphenols as modulators of atherosclerosis and ischemic heart disease in humans. J. Nutraceut. Funct. Med. Foods, 2001, 3, 67-93.
[http://dx.doi.org/10.1300/J133v03n03_04]
[10]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[11]
Ito, F.; Sono, Y.; Ito, T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants, 2019, 8(3), 72.
[http://dx.doi.org/10.3390/antiox8030072] [PMID: 30934586]
[12]
Liao, J.K. Linking endothelial dysfunction with endothelial cell activation. J. Clin. Invest., 2013, 123(2), 540-541.
[http://dx.doi.org/10.1172/JCI66843] [PMID: 23485580]
[13]
Mannarino, E.; Pirro, M. Endothelial injury and repair: a novel theory for atherosclerosis. Angiology, 2008, 59(2)(Suppl.), 69S-72S.
[http://dx.doi.org/10.1177/0003319708320761] [PMID: 18628277]
[14]
Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxid. Med. Cell. Longev., 2019, 2019, 8563845.
[http://dx.doi.org/10.1155/2019/8563845] [PMID: 31354915]
[15]
Zhu, Z.; Li, J.; Zhang, X. Astragaloside IV protects against oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury by reducing oxidative stress and inflammation. Med. Sci. Monit., 2019, 25, 2132-2140.
[http://dx.doi.org/10.12659/MSM.912894] [PMID: 30901320]
[16]
Chen, H.; Li, D.; Saldeen, T.; Mehta, J.L. Transforming growth factor-β(1) modulates oxidatively modified LDL-induced expression of adhesion molecules: role of LOX-1. Circ. Res., 2001, 89(12), 1155-1160.
[http://dx.doi.org/10.1161/hh2401.100598] [PMID: 11739280]
[17]
Takei, A.; Huang, Y.; Lopes-Virella, M.F. Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis, 2001, 154(1), 79-86.
[http://dx.doi.org/10.1016/S0021-9150(00)00465-2] [PMID: 11137085]
[18]
Rader, D.J.; Puré, E. Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab., 2005, 1(4), 223-230.
[http://dx.doi.org/10.1016/j.cmet.2005.03.005] [PMID: 16054067]
[19]
Phillips, M.C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem., 2014, 289(35), 24020-24029.
[http://dx.doi.org/10.1074/jbc.R114.583658] [PMID: 25074931]
[20]
Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and reverse cholesterol transport: basic mechanisms and their roles in vascular health and disease. Circ. Res., 2019, 124(10), 1505-1518.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.312617] [PMID: 31071007]
[21]
Greene, D.J.; Skeggs, J.W.; Morton, R.E. Elevated triglyceride content diminishes the capacity of high density lipoprotein to deliver cholesteryl esters via the scavenger receptor class B type I (SR-BI). J. Biol. Chem., 2001, 276(7), 4804-4811. [SR-BI].
[http://dx.doi.org/10.1074/jbc.M008725200] [PMID: 11067853]
[22]
Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The role of lipids and lipoproteins in atherosclerosis. In: Endotext [Internet]; MDText.com, Inc.; 2000: South Dartmouth [MA], 2019. 3 Jan;
[23]
Moore, K.J.; Sheedy, F.J.; Fisher, E.A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol., 2013, 13(10), 709-721.
[http://dx.doi.org/10.1038/nri3520] [PMID: 23995626]
[24]
Steinbrecher, U.P.; Parthasarathy, S.; Leake, D.S.; Witztum, J.L.; Steinberg, D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. USA, 1984, 81(12), 3883-3887.
[http://dx.doi.org/10.1073/pnas.81.12.3883] [PMID: 6587396]
[25]
Itabe, H. Oxidized low-density lipoproteins: what is understood and what remains to be clarified. Biol. Pharm. Bull., 2003, 26(1), 1-9.
[http://dx.doi.org/10.1248/bpb.26.1] [PMID: 12520163]
[26]
Goldstein, J.L.; Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol., 2009, 29(4), 431-438.
[http://dx.doi.org/10.1161/ATVBAHA.108.179564] [PMID: 19299327]
[27]
Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest., 2002, 109(9), 1125-1131.
[http://dx.doi.org/10.1172/JCI0215593] [PMID: 11994399]
[28]
Febbraio, M.; Hajjar, D.P.; Silverstein, R.L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest., 2001, 108(6), 785-791.
[http://dx.doi.org/10.1172/JCI14006] [PMID: 11560944]
[29]
Endemann, G.; Stanton, L.W.; Madden, K.S.; Bryant, C.M.; White, R.T.; Protter, A.A. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem., 1993, 268(16), 11811-11816.
[PMID: 7685021]
[30]
Thorne, R.F.; Mhaidat, N.M.; Ralston, K.J.; Burns, G.F. CD36 is a receptor for oxidized high density lipoprotein: implications for the development of atherosclerosis. FEBS Lett., 2007, 581(6), 1227-1232.
[http://dx.doi.org/10.1016/j.febslet.2007.02.043] [PMID: 17346709]
[31]
Choromańska, B.; Myśliwiec, P.; Choromańska, K.; Dadan, J.; Chabowski, A. The role of CD36 receptor in the pathogenesis of atherosclerosis. Adv. Clin. Exp. Med., 2017, 26(4), 717-722.
[http://dx.doi.org/10.17219/acem/62325] [PMID: 28691408]
[32]
Xie, S.; Lee, Y.F.; Kim, E.; Chen, L.M.; Ni, J.; Fang, L.Y.; Liu, S.; Lin, S.J.; Abe, J.; Berk, B.; Ho, F.M.; Chang, C. TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc. Natl. Acad. Sci. USA, 2009, 106(32), 13353-13358.
[http://dx.doi.org/10.1073/pnas.0905724106] [PMID: 19666541]
[33]
Yamanaka, M.; Ishikawa, T.; Griep, A.; Axt, D.; Kummer, M.P.; Heneka, M.T. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci., 2012, 32(48), 17321-17331.
[http://dx.doi.org/10.1523/JNEUROSCI.1569-12.2012] [PMID: 23197723]
[34]
Han, J.; Hajjar, D.P.; Zhou, X.; Gotto, A.M., Jr; Nicholson, A.C. Regulation of peroxisome proliferator-activated receptor-gamma-mediated gene expression. A new mechanism of action for high density lipoprotein. J. Biol. Chem., 2002, 277(26), 23582-23586.
[http://dx.doi.org/10.1074/jbc.M200685200] [PMID: 11953427]
[35]
Wang, X.Y.; Facciponte, J.; Chen, X.; Subjeck, J.R.; Repasky, E.A. Scavenger receptor-A negatively regulates antitumor immunity. Cancer Res., 2007, 67(10), 4996-5002.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3138] [PMID: 17510431]
[36]
Suzuki, H.; Kurihara, Y.; Takeya, M.; Kamada, N.; Kataoka, M.; Jishage, K.; Ueda, O.; Sakaguchi, H.; Higashi, T.; Suzuki, T.; Takashima, Y.; Kawabe, Y.; Cynshi, O.; Wada, Y.; Honda, M.; Kurihara, H.; Aburatani, H.; Doi, T.; Matsumoto, A.; Azuma, S.; Noda, T.; Toyoda, Y.; Itakura, H.; Yazaki, Y.; Kodama, T. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature, 1997, 386(6622), 292-296.
[http://dx.doi.org/10.1038/386292a0] [PMID: 9069289]
[37]
Moore, K.J.; Rosen, E.D.; Fitzgerald, M.L.; Randow, F.; Andersson, L.P.; Altshuler, D.; Milstone, D.S.; Mortensen, R.M.; Spiegelman, B.M.; Freeman, M.W. The role of PPAR-γ in macrophage differentiation and cholesterol uptake. Nat. Med., 2001, 7(1), 41-47.
[http://dx.doi.org/10.1038/83328] [PMID: 11135614]
[38]
Chinetti, G.; Lestavel, S.; Bocher, V.; Remaley, A.T.; Neve, B.; Torra, I.P.; Teissier, E.; Minnich, A.; Jaye, M.; Duverger, N.; Brewer, H.B.; Fruchart, J.C.; Clavey, V.; Staels, B. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med., 2001, 7(1), 53-58.
[http://dx.doi.org/10.1038/83348] [PMID: 11135616]
[39]
Vosper, H.; Patel, L.; Graham, T.L.; Khoudoli, G.A.; Hill, A.; Macphee, C.H.; Pinto, I.; Smith, S.A.; Suckling, K.E.; Wolf, C.R.; Palmer, C.N. The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J. Biol. Chem., 2001, 276(47), 44258-44265.
[http://dx.doi.org/10.1074/jbc.M108482200] [PMID: 11557774]
[40]
Shiomi, M.; Ito, T.; Tsukada, T.; Tsujita, Y.; Horikoshi, H. Combination treatment with troglitazone, an insulin action enhancer, and pravastatin, an inhibitor of HMG-CoA reductase, shows a synergistic effect on atherosclerosis of WHHL rabbits. Atherosclerosis, 1999, 142(2), 345-353.
[http://dx.doi.org/10.1016/S0021-9150(98)00259-7] [PMID: 10030386]
[41]
Koshiyama, H.; Shimono, D.; Kuwamura, N.; Minamikawa, J.; Nakamura, Y. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J. Clin. Endocrinol. Metab., 2001, 86(7), 3452-3456.
[http://dx.doi.org/10.1210/jcem.86.7.7810] [PMID: 11443224]
[42]
Oram, J.F.; Lawn, R.M.; Garvin, M.R.; Wade, D.P. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J. Biol. Chem., 2000, 275(44), 34508-34511.
[http://dx.doi.org/10.1074/jbc.M006738200] [PMID: 10918070]
[43]
Kennedy, M.A.; Barrera, G.C.; Nakamura, K.; Baldán, A.; Tarr, P.; Fishbein, M.C.; Frank, J.; Francone, O.L.; Edwards, P.A. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab., 2005, 1(2), 121-131.
[http://dx.doi.org/10.1016/j.cmet.2005.01.002] [PMID: 16054053]
[44]
Du, X.M.; Kim, M.J.; Hou, L.; Le Goff, W.; Chapman, M.J.; Van Eck, M.; Curtiss, L.K.; Burnett, J.R.; Cartland, S.P.; Quinn, C.M.; Kockx, M.; Kontush, A.; Rye, K.A.; Kritharides, L.; Jessup, W. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ. Res., 2015, 116(7), 1133-1142.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305485] [PMID: 25589556]
[45]
Wang, N.; Silver, D.L.; Thiele, C.; Tall, A.R. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J. Biol. Chem., 2001, 276(26), 23742-23747.
[http://dx.doi.org/10.1074/jbc.M102348200] [PMID: 11309399]
[46]
Gillotte, K.L.; Zaiou, M.; Lund-Katz, S.; Anantharamaiah, G.M.; Holvoet, P.; Dhoest, A.; Palgunachari, M.N.; Segrest, J.P.; Weisgraber, K.H.; Rothblat, G.H.; Phillips, M.C. Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. J. Biol. Chem., 1999, 274(4), 2021-2028.
[http://dx.doi.org/10.1074/jbc.274.4.2021] [PMID: 9890960]
[47]
Lin, G.; Oram, J.F. Apolipoprotein binding to protruding membrane domains during removal of excess cellular cholesterol. Atherosclerosis, 2000, 149(2), 359-370.
[http://dx.doi.org/10.1016/S0021-9150(99)00503-1] [PMID: 10729386]
[48]
Litvinov, D.Y.; Savushkin, E.V.; Dergunov, A.D. Intracellular and plasma membrane events in cholesterol transport and homeostasis. J. Lipids, 2018, 2018, 3965054.
[http://dx.doi.org/10.1155/2018/3965054] [PMID: 30174957]
[49]
Wang, N.; Lan, D.; Chen, W.; Matsuura, F.; Tall, A.R.; Tall, A.R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl. Acad. Sci. USA, 2004, 101(26), 9774-9779.
[http://dx.doi.org/10.1073/pnas.0403506101] [PMID: 15210959]
[50]
Sankaranarayanan, S.; Oram, J.F.; Asztalos, B.F.; Vaughan, A.M.; Lund-Katz, S.; Adorni, M.P.; Phillips, M.C.; Rothblat, G.H. Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J. Lipid Res., 2009, 50(2), 275-284.
[http://dx.doi.org/10.1194/jlr.M800362-JLR200] [PMID: 18827283]
[51]
Zannis, V.I.; Chroni, A.; Krieger, M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J. Mol. Med. (Berl.), 2006, 84(4), 276-294.
[http://dx.doi.org/10.1007/s00109-005-0030-4] [PMID: 16501936]
[52]
Ji, Y.; Jian, B.; Wang, N.; Sun, Y.; Moya, M.L.; Phillips, M.C.; Rothblat, G.H.; Swaney, J.B.; Tall, A.R. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J. Biol. Chem., 1997, 272(34), 20982-20985.
[http://dx.doi.org/10.1074/jbc.272.34.20982] [PMID: 9261096]
[53]
Rodrigueza, W.V.; Thuahnai, S.T.; Temel, R.E.; Lund-Katz, S.; Phillips, M.C.; Williams, D.L. Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J. Biol. Chem., 1999, 274(29), 20344-20350.
[http://dx.doi.org/10.1074/jbc.274.29.20344] [PMID: 10400657]
[54]
Thuahnai, S.T.; Lund-Katz, S.; Dhanasekaran, P.; de la Llera-Moya, M.; Connelly, M.A.; Williams, D.L.; Rothblat, G.H.; Phillips, M.C. Scavenger receptor class B type I-mediated cholesteryl ester-selective uptake and efflux of unesterified cholesterol. Influence of high density lipoprotein size and structure. J. Biol. Chem., 2004, 279(13), 12448-12455.
[http://dx.doi.org/10.1074/jbc.M311718200] [PMID: 14718538]
[55]
Adorni, M.P.; Zimetti, F.; Billheimer, J.T.; Wang, N.; Rader, D.J.; Phillips, M.C.; Rothblat, G.H. The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res., 2007, 48(11), 2453-2462.
[http://dx.doi.org/10.1194/jlr.M700274-JLR200] [PMID: 17761631]
[56]
Hsieh, V.; Kim, M-J.; Gelissen, I.C.; Brown, A.J.; Sandoval, C.; Hallab, J.C.; Kockx, M.; Traini, M.; Jessup, W.; Kritharides, L. Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1. J. Biol. Chem., 2014, 289(11), 7524-7536.
[http://dx.doi.org/10.1074/jbc.M113.515890] [PMID: 24500716]
[57]
Costet, P.; Luo, Y.; Wang, N.; Tall, A.R. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J. Biol. Chem., 2000, 275(36), 28240-28245.
[PMID: 10858438]
[58]
Janowski, B.A.; Willy, P.J.; Devi, T.R.; Falck, J.R.; Mangelsdorf, D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXR α. Nature, 1996, 383(6602), 728-731.
[http://dx.doi.org/10.1038/383728a0] [PMID: 8878485]
[59]
Malerød, L.; Juvet, L.K.; Hanssen-Bauer, A.; Eskild, W.; Berg, T. Oxysterol-activated LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem. Biophys. Res. Commun., 2002, 299(5), 916-923.
[http://dx.doi.org/10.1016/S0006-291X(02)02760-2] [PMID: 12470667]
[60]
Panousis, C.G.; Zuckerman, S.H. Regulation of cholesterol distribution in macrophage-derived foam cells by interferon-γ. J. Lipid Res., 2000, 41(1), 75-83.
[PMID: 10627504]
[61]
Panousis, C.G.; Zuckerman, S.H. Interferon-γ induces downregulation of Tangier disease gene (ATP-binding-cassette transporter 1) in macrophage-derived foam cells. Arterioscler. Thromb. Vasc. Biol., 2000, 20(6), 1565-1571.
[http://dx.doi.org/10.1161/01.ATV.20.6.1565] [PMID: 10845873]
[62]
Panousis, C.G.; Evans, G.; Zuckerman, S.H. TGF-β increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells: opposing the effects of IFN-γ. J. Lipid Res., 2001, 42(5), 856-863.
[PMID: 11352993]
[63]
Hu, Y.W.; Wang, Q.; Ma, X.; Li, X.X.; Liu, X.H.; Xiao, J.; Liao, D.F.; Xiang, J.; Tang, C.K. TGF-β1 up-regulates expression of ABCA1, ABCG1 and SR-BI through liver X receptor α signaling pathway in THP-1 macrophage-derived foam cells. J. Atheroscler. Thromb., 2010, 17(5), 493-502.
[http://dx.doi.org/10.5551/jat.3152] [PMID: 20057170]
[64]
Han, J.; Hajjar, D.P.; Tauras, J.M.; Feng, J.; Gotto, A.M., Jr; Nicholson, A.C. Transforming growth factor-β1 (TGF-β1) and TGF-β2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-γ. J. Biol. Chem., 2000, 275(2), 1241-1246.
[http://dx.doi.org/10.1074/jbc.275.2.1241] [PMID: 10625669]
[65]
Tang, S.L.; Chen, W.J.; Yin, K.; Zhao, G.J.; Mo, Z.C.; Lv, Y.C.; Ouyang, X.P.; Yu, X.H.; Kuang, H.J.; Jiang, Z.S.; Fu, Y.C.; Tang, C.K. PAPP-A negatively regulates ABCA1, ABCG1 and SR-B1 expression by inhibiting LXRα through the IGF-I-mediated signaling pathway. Atherosclerosis, 2012, 222(2), 344-354.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.03.005] [PMID: 22503545]
[66]
Monette, J.S.; Hutchins, P.M.; Ronsein, G.E.; Wimberger, J.; Irwin, A.D.; Tang, C.; Sara, J.D.; Shao, B.; Vaisar, T.; Lerman, A.; Heinecke, J.W. Patients with coronary endothelial dysfunction have impaired cholesterol efflux capacity and reduced HDL particle concentration. Circ. Res., 2016, 119(1), 83-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308357] [PMID: 27114438]
[67]
Ronsein, G.E.; Vaisar, T. Inflammation, remodeling, and other factors affecting HDL cholesterol efflux. Curr. Opin. Lipidol., 2017, 28(1), 52-59.
[PMID: 27906712]
[68]
Vaughan, A.M.; Oram, J.F. ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions. J. Lipid Res., 2003, 44(7), 1373-1380.
[http://dx.doi.org/10.1194/jlr.M300078-JLR200] [PMID: 12700343]
[69]
Vaughan, A.M.; Oram, J.F. ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J. Biol. Chem., 2005, 280(34), 30150-30157.
[http://dx.doi.org/10.1074/jbc.M505368200] [PMID: 15994327]
[70]
Sankaranarayanan, S.; Kellner-Weibel, G.; de la Llera-Moya, M.; Phillips, M.C.; Asztalos, B.F.; Bittman, R.; Rothblat, G.H. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J. Lipid Res., 2011, 52(12), 2332-2340.
[http://dx.doi.org/10.1194/jlr.D018051] [PMID: 21957199]
[71]
Horiuchi, Y.; Lai, S.J.; Yamazaki, A.; Nakamura, A.; Ohkawa, R.; Yano, K.; Kameda, T.; Okubo, S.; Shimano, S.; Hagihara, M.; Tohda, S.; Tozuka, M. Validation and application of a novel cholesterol efflux assay using immobilized liposomes as a substitute for cultured cells. Biosci. Rep., 2018, 38(2), BSR20180144.
[http://dx.doi.org/10.1042/BSR20180144] [PMID: 29545317]
[72]
Fitzgerald, M.L.; Morris, A.L.; Chroni, A.; Mendez, A.J.; Zannis, V.I.; Freeman, M.W. ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux. J. Lipid Res., 2004, 45(2), 287-294.
[http://dx.doi.org/10.1194/jlr.M300355-JLR200] [PMID: 14617740]
[73]
Toh, R. Assessment of HDL cholesterol removal capacity: Toward clinical application. J. Atheroscler. Thromb., 2019, 26(2), 111-120.
[http://dx.doi.org/10.5551/jat.RV17028] [PMID: 30542002]
[74]
Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med., 1977, 62(5), 707-714.
[http://dx.doi.org/10.1016/0002-9343(77)90874-9] [PMID: 193398]
[75]
Soran, H.; Schofield, J.D.; Durrington, P.N. Antioxidant properties of HDL. Front. Pharmacol., 2015, 6, 222.
[http://dx.doi.org/10.3389/fphar.2015.00222] [PMID: 26528181]
[76]
Bardagjy, A.S.; Steinberg, F.M. Relationship between HDL functional characteristics and cardiovascular health and potential impact of dietary patterns: a narrative review. Nutrients, 2019, 11(6), 1231.
[http://dx.doi.org/10.3390/nu11061231] [PMID: 31151202]
[77]
Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; Mohler, E.R.; Rothblat, G.H.; Rader, D.J. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med., 2011, 364(2), 127-135.
[http://dx.doi.org/10.1056/NEJMoa1001689] [PMID: 21226578]
[78]
Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; Shaul, P.W. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med., 2014, 371(25), 2383-2393.
[http://dx.doi.org/10.1056/NEJMoa1409065] [PMID: 25404125]
[79]
Fernández-Castillejo, S.; Rubió, L.; Hernáez, Á.; Catalán, Ú.; Pedret, A.; Valls, R.M.; Mosele, J.I.; Covas, M.I.; Remaley, A.T.; Castañer, O.; Motilva, M.J.; Solá, R. Determinants of HDL cholesterol efflux capacity after virgin olive oil ingestion: Interrelationships with fluidity of HDL monolayer. Mol. Nutr. Food Res., 2017, 61(12), 1700445.
[http://dx.doi.org/10.1002/mnfr.201700445] [PMID: 28887843]
[80]
Wang, G.; Mathew, A.V.; Yu, H.; Li, L.; He, L.; Gao, W.; Liu, X.; Guo, Y.; Byun, J.; Zhang, J.; Chen, Y.E.; Pennathur, S. Myeloperoxidase mediated HDL oxidation and HDL proteome changes do not contribute to dysfunctional HDL in Chinese subjects with coronary artery disease. PLoS One, 2018, 13(3), e0193782.
[http://dx.doi.org/10.1371/journal.pone.0193782] [PMID: 29505607]
[81]
Shao, B.; Oda, M.N.; Oram, J.F.; Heinecke, J.W. Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein. Chem. Res. Toxicol., 2010, 23(3), 447-454.
[http://dx.doi.org/10.1021/tx9003775] [PMID: 20043647]
[82]
Shao, B.; Tang, C.; Sinha, A.; Mayer, P.S.; Davenport, G.D.; Brot, N.; Oda, M.N.; Zhao, X.Q.; Heinecke, J.W. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ. Res., 2014, 114(11), 1733-1742.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303454] [PMID: 24647144]
[83]
Ito, F.; Ito, T.; Suzuki, C.; Yahata, T.; Ikeda, K.; Hamaoka, K. The application of a modified d-ROMs test for measurement of oxidative stress and oxidized high-density lipoprotein. Int. J. Mol. Sci., 2017, 18(2), 454.
[http://dx.doi.org/10.3390/ijms18020454] [PMID: 28230785]
[84]
Shao, B. Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL. Biochim. Biophys. Acta, 2012, 1821(3), 490-501.
[http://dx.doi.org/10.1016/j.bbalip.2011.11.011] [PMID: 22178192]
[85]
Asztalos, B.F.; de la Llera-Moya, M.; Dallal, G.E.; Horvath, K.V.; Schaefer, E.J.; Rothblat, G.H. Differential effects of HDL subpopulations on cellular ABCA1- and SR-BI-mediated cholesterol efflux. J. Lipid Res., 2005, 46(10), 2246-2253.
[http://dx.doi.org/10.1194/jlr.M500187-JLR200] [PMID: 16061948]
[86]
Arts, I.C.; Hollman, P.C.; Feskens, E.J.; Bueno de Mesquita, H.B.; Kromhout, D. Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am. J. Clin. Nutr., 2001, 74(2), 227-232.
[http://dx.doi.org/10.1093/ajcn/74.2.227] [PMID: 11470725]
[87]
Buijsse, B.; Feskens, E.J.; Kok, F.J.; Kromhout, D. Cocoa intake, blood pressure, and cardiovascular mortality: the Zutphen Elderly Study. Arch. Intern. Med., 2006, 166(4), 411-417.
[http://dx.doi.org/10.1001/archinte.166.4.411] [PMID: 16505260]
[88]
Buijsse, B.; Weikert, C.; Drogan, D.; Bergmann, M.; Boeing, H. Chocolate consumption in relation to blood pressure and risk of cardiovascular disease in German adults. Eur. Heart J., 2010, 31(13), 1616-1623.
[http://dx.doi.org/10.1093/eurheartj/ehq068] [PMID: 20354055]
[89]
Kim, H.S.; Quon, M.J.; Kim, J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[90]
Kishimoto, Y.; Tani, M.; Kondo, K. Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases. Eur. J. Clin. Nutr., 2013, 67(5), 532-535.
[http://dx.doi.org/10.1038/ejcn.2013.29] [PMID: 23403879]
[91]
Grinberg, L.N.; Newmark, H.; Kitrossky, N.; Rahamim, E.; Chevion, M.; Rachmilewitz, E.A. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem. Pharmacol., 1997, 54(9), 973-978.
[http://dx.doi.org/10.1016/S0006-2952(97)00155-X] [PMID: 9374417]
[92]
Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys., 2009, 53(2), 75-100.
[http://dx.doi.org/10.1007/s12013-009-9043-x] [PMID: 19184542]
[93]
Scapagnini, G.; Vasto, S.; Abraham, N.G.; Caruso, C.; Zella, D.; Fabio, G. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol. Neurobiol., 2011, 44(2), 192-201.
[http://dx.doi.org/10.1007/s12035-011-8181-5] [PMID: 21499987]
[94]
Boo, Y.C. Can plant phenolic compounds protect the skin from airborne particulate matter? Antioxidants, 2019, 8(9), 379.
[http://dx.doi.org/10.3390/antiox8090379] [PMID: 31500121]
[95]
Picchi, A.; Gao, X.; Belmadani, S.; Potter, B.J.; Focardi, M.; Chilian, W.M.; Zhang, C. Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ. Res., 2006, 99(1), 69-77.
[http://dx.doi.org/10.1161/01.RES.0000229685.37402.80] [PMID: 16741160]
[96]
Kiokias, S.; Proestos, C.; Oreopoulou, V. Effect of natural food antioxidants against LDL and DNA oxidative changes. Antioxidants, 2018, 7(10), 133.
[http://dx.doi.org/10.3390/antiox7100133] [PMID: 30282925]
[97]
Berrougui, H.; Ikhlef, S.; Khalil, A. Extra virgin olive oil polyphenols promote cholesterol efflux and improve HDL functionality. Evid. Based Complement. Alternat. Med., 2015, 2015, 208062.
[http://dx.doi.org/10.1155/2015/208062] [PMID: 26495005]
[98]
Covas, M.I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Bäumler, H.; Nascetti, S.; Salonen, J.T.; Fitó, M.; Virtanen, J.; Marrugat, J. EUROLIVE Study Group. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann. Intern. Med., 2006, 145(5), 333-341.
[http://dx.doi.org/10.7326/0003-4819-145-5-200609050-00006] [PMID: 16954359]
[99]
Ding, E.L.; Hutfless, S.M.; Ding, X.; Girotra, S. Chocolate and prevention of cardiovascular disease: a systematic review. Nutr. Metab. (Lond.), 2006, 3, 2.
[http://dx.doi.org/10.1186/1743-7075-3-2] [PMID: 16390538]
[100]
Loffredo, L.; Carnevale, R.; Perri, L.; Catasca, E.; Augelletti, T.; Cangemi, R.; Albanese, F.; Piccheri, C.; Nocella, C.; Pignatelli, P.; Violi, F. NOX2-mediated arterial dysfunction in smokers: acute effect of dark chocolate. Heart, 2011, 97(21), 1776-1781.
[http://dx.doi.org/10.1136/heartjnl-2011-300304] [PMID: 21807659]
[101]
Khan, N.; Monagas, M.; Andres-Lacueva, C.; Casas, R.; Urpí-Sardà, M.; Lamuela-Raventós, R.M.; Estruch, R. Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutr. Metab. Cardiovasc. Dis., 2012, 22(12), 1046-1053.
[http://dx.doi.org/10.1016/j.numecd.2011.02.001] [PMID: 21550218]
[102]
Corti, R.; Flammer, A.J.; Hollenberg, N.K.; Lüscher, T.F. Cocoa and cardiovascular health. Circulation, 2009, 119(10), 1433-1441.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.827022] [PMID: 19289648]
[103]
Castilla, P.; Echarri, R.; Dávalos, A.; Cerrato, F.; Ortega, H.; Teruel, J.L.; Lucas, M.F.; Gómez-Coronado, D.; Ortuño, J.; Lasunción, M.A. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am. J. Clin. Nutr., 2006, 84(1), 252-262.
[http://dx.doi.org/10.1093/ajcn/84.1.252] [PMID: 16825703]
[104]
Viana, M.; Barbas, C.; Bonet, B.; Bonet, M.V.; Castro, M.; Fraile, M.V.; Herrera, E. In vitro effects of a flavonoid-rich extract on LDL oxidation. Atherosclerosis, 1996, 123(1-2), 83-91.
[http://dx.doi.org/10.1016/0021-9150(95)05763-3] [PMID: 8782839]
[105]
Dietrich, C. Antioxidant functions of the aryl hydrocarbon receptor. Stem Cells Int., 2016, 2016, 7943495.
[http://dx.doi.org/10.1155/2016/7943495] [PMID: 27829840]
[106]
Gouédard, C.; Barouki, R.; Morel, Y. Dietary polyphenols increase paraoxonase 1 gene expression by an aryl hydrocarbon receptor-dependent mechanism. Mol. Cell. Biol., 2004, 24(12), 5209-5222.
[http://dx.doi.org/10.1128/MCB.24.12.5209-5222.2004] [PMID: 15169886]
[107]
Khateeb, J.; Gantman, A.; Kreitenberg, A.J.; Aviram, M.; Fuhrman, B. Paraoxonase 1 (PON1) expression in hepatocytes is upregulated by pomegranate polyphenols: a role for PPAR-gamma pathway. Atherosclerosis, 2010, 208(1), 119-125.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.08.051] [PMID: 19783251]
[108]
Martini, D.; Del Bo’, C.; Porrini, M.; Ciappellano, S.; Riso, P. Role of polyphenols and polyphenol-rich foods in the modulation of PON1 activity and expression. J. Nutr. Biochem., 2017, 48, 1-8.
[http://dx.doi.org/10.1016/j.jnutbio.2017.06.002] [PMID: 28623808]
[109]
Ciolino, H.P.; Daschner, P.J.; Yeh, G.C. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem. J., 1999, 340(Pt 3), 715-722.
[http://dx.doi.org/10.1042/bj3400715] [PMID: 10359656]
[110]
Ashida, H.; Fukuda, I.; Yamashita, T.; Kanazawa, K. Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. FEBS Lett., 2000, 476(3), 213-217.
[http://dx.doi.org/10.1016/S0014-5793(00)01730-0] [PMID: 10913616]
[111]
Hernáez, Á.; Fernández-Castillejo, S.; Farràs, M.; Catalán, Ú.; Subirana, I.; Montes, R.; Solà, R.; Muñoz-Aguayo, D.; Gelabert-Gorgues, A.; Díaz-Gil, Ó.; Nyyssönen, K.; Zunft, H.J.; de la Torre, R.; Martín-Peláez, S.; Pedret, A.; Remaley, A.T.; Covas, M.I.; Fitó, M. Olive oil polyphenols enhance high-density lipoprotein function in humans: a randomized controlled trial. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 2115-2119.
[http://dx.doi.org/10.1161/ATVBAHA.114.303374] [PMID: 25060792]
[112]
Lam, C.K.; Zhang, Z.; Yu, H.; Tsang, S.Y.; Huang, Y.; Chen, Z.Y. Apple polyphenols inhibit plasma CETP activity and reduce the ratio of non-HDL to HDL cholesterol. Mol. Nutr. Food Res., 2008, 52(8), 950-958.
[http://dx.doi.org/10.1002/mnfr.200700319] [PMID: 18496813]
[113]
Izem, L.; Morton, R.E. Cholesteryl ester transfer protein biosynthesis and cellular cholesterol homeostasis are tightly interconnected. J. Biol. Chem., 2001, 276(28), 26534-26541.
[http://dx.doi.org/10.1074/jbc.M103624200] [PMID: 11352921]
[114]
Kotani, K.; Tsuzaki, K.; Taniguchi, N.; Sakane, N. LDL particle size and reactive oxygen metabolites in dyslipidemic patients. Int. J. Prev. Med., 2012, 3(3), 160-166.
[PMID: 22448308]
[115]
Otarod, J.K.; Goldberg, I.J. Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr. Atheroscler. Rep., 2004, 6(5), 335-342.
[http://dx.doi.org/10.1007/s11883-004-0043-4] [PMID: 15296698]
[116]
Zhao, J.F.; Ching, L.C.; Huang, Y.C.; Chen, C.Y.; Chiang, A.N.; Kou, Y.R.; Shyue, S.K.; Lee, T.S. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol. Nutr. Food Res., 2012, 56(5), 691-701.
[http://dx.doi.org/10.1002/mnfr.201100735] [PMID: 22648616]
[117]
Kim, A.N.; Jeon, W.K.; Lee, J.J.; Kim, B.C. Up-regulation of heme oxygenase-1 expression through CaMKII-ERK1/2-Nrf2 signaling mediates the anti-inflammatory effect of bisdemethoxycurcumin in LPS-stimulated macrophages. Free Radic. Biol. Med., 2010, 49(3), 323-331.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.04.015] [PMID: 20430097]
[118]
Tsai, J.Y.; Su, K.H.; Shyue, S.K.; Kou, Y.R.; Yu, Y.B.; Hsiao, S.H.; Chiang, A.N.; Wu, Y.L.; Ching, L.C.; Lee, T.S. EGb761 ameliorates the formation of foam cells by regulating the expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc. Res., 2010, 88(3), 415-423.
[http://dx.doi.org/10.1093/cvr/cvq226] [PMID: 20615914]
[119]
Zhong, Y.; Feng, J.; Fan, Z.; Li, J. Curcumin increases cholesterol efflux via heme oxygenase‑1‑mediated ABCA1 and SR‑BI expression in macrophages. Mol. Med. Rep., 2018, 17(4), 6138-6143.
[http://dx.doi.org/10.3892/mmr.2018.8577] [PMID: 29436680]
[120]
Sevov, M.; Elfineh, L.; Cavelier, L.B. Resveratrol regulates the expression of LXR-α in human macrophages. Biochem. Biophys. Res. Commun., 2006, 348(3), 1047-1054.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.155] [PMID: 16901463]
[121]
Uto-Kondo, H.; Ayaori, M.; Ogura, M.; Nakaya, K.; Ito, M.; Suzuki, A.; Takiguchi, S.; Yakushiji, E.; Terao, Y.; Ozasa, H.; Hisada, T.; Sasaki, M.; Ohsuzu, F.; Ikewaki, K. Coffee consumption enhances high-density lipoprotein-mediated cholesterol efflux in macrophages. Circ. Res., 2010, 106(4), 779-787.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.206615] [PMID: 20075335]
[122]
Helal, O.; Berrougui, H.; Loued, S.; Khalil, A. Extra-virgin olive oil consumption improves the capacity of HDL to mediate cholesterol efflux and increases ABCA1 and ABCG1 expression in human macrophages. Br. J. Nutr., 2013, 109(10), 1844-1855.
[http://dx.doi.org/10.1017/S0007114512003856] [PMID: 23051557]
[123]
Wang, L.; Wesemann, S.; Krenn, L.; Ladurner, A.; Heiss, E.H.; Dirsch, V.M.; Atanasov, A.G. Erythrodiol, an olive oil constituent, increases the half-life of ABCA1 and enhances cholesterol efflux from THP-1-derived macrophages. Front. Pharmacol., 2017, 8, 375.
[http://dx.doi.org/10.3389/fphar.2017.00375] [PMID: 28659806]
[124]
Ruta, L.L.; Farcasanu, I.C. Anthocyanins and anthocyanin-derived products in yeast-fermented beverages. Antioxidants, 2019, 8(6), 182.
[http://dx.doi.org/10.3390/antiox8060182] [PMID: 31216780]
[125]
Xia, M.; Hou, M.; Zhu, H.; Ma, J.; Tang, Z.; Wang, Q.; Li, Y.; Chi, D.; Yu, X.; Zhao, T.; Han, P.; Xia, X.; Ling, W. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor γ-liver X receptor α-ABCA1 pathway. J. Biol. Chem., 2005, 280(44), 36792-36801.
[http://dx.doi.org/10.1074/jbc.M505047200] [PMID: 16107338]
[126]
Liu, S.; Sui, Q.; Zhao, Y.; Chang, X. Lonicera caerulea berry polyphenols activate SIRT1, enhancing inhibition of Raw264.7 macrophage foam cell formation and promoting cholesterol efflux. J. Agric. Food Chem., 2019, 67(25), 7157-7166.
[http://dx.doi.org/10.1021/acs.jafc.9b02045] [PMID: 31146527]
[127]
Li, X.; Zhang, S.; Blander, G.; Tse, J.G.; Krieger, M.; Guarente, L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell, 2007, 28(1), 91-106.
[http://dx.doi.org/10.1016/j.molcel.2007.07.032] [PMID: 17936707]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2021
Published on: 20 March, 2020
Page: [175 - 190]
Pages: 16
DOI: 10.2174/1874467213666200320153410
Price: $65

Article Metrics

PDF: 49
HTML: 3