Apigenin Alleviates Renal Fibroblast Activation through AMPK and ERK Signaling Pathways In Vitro

Author(s): Ningning Li, Zhan Wang, Tao Sun, Yanfei Lei, Xianghua Liu, Zhenzhen Li*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 11 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Objective: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown.

Materials and Methods: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-β1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 μM), followed by the stimulation of TGF-β1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-β1.

Results: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-β1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts.

Conclusion: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.

Keywords: Apigenin, renal fibroblast, TGF-β1, AMP-activated protein kinase, phosphorylation, ERK.

Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol., 2011, 7(12), 684-696.
[http://dx.doi.org/10.1038/nrneph.2011.149] [PMID: 22009250]
Darby, I.A.; Zakuan, N.; Billet, F.; Desmoulière, A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell. Mol. Life Sci., 2016, 73(6), 1145-1157.
[http://dx.doi.org/10.1007/s00018-015-2110-0] [PMID: 26681260]
Duffield, J.S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest., 2014, 124(6), 2299-2306.
[http://dx.doi.org/10.1172/JCI72267] [PMID: 24892703]
Strutz, F.; Zeisberg, M. Renal fibroblasts and myofibroblasts in chronic kidney disease. J. Am. Soc. Nephrol., 2006, 17(11), 2992-2998.
[http://dx.doi.org/10.1681/ASN.2006050420] [PMID: 17035610]
Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The master regulator of fibrosis. Nat. Rev. Nephrol., 2016, 12(6), 325-338.
[http://dx.doi.org/10.1038/nrneph.2016.48] [PMID: 27108839]
Loeffler, I.; Wolf, G. Transforming growth factor-β and the progression of renal disease. Nephrol. Dial. Transplant., 2014, 29(Suppl. 1), i37-i45.
[http://dx.doi.org/10.1093/ndt/gft267] [PMID: 24030832]
Kang, M.K.; Park, S.H.; Choi, Y.J.; Shin, D.; Kang, Y.H. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J. Mol. Med. (Berl.), 2015, 93(7), 759-772.
[http://dx.doi.org/10.1007/s00109-015-1301-3] [PMID: 26062793]
Ma, Y.; Yuan, H.; Jin, R.; Bao, X.; Wang, H.; Su, X.; Mu, M.G.S.L.; Liang, J.; Zhang, J.; Wu, X. Flavonoid-rich Scabiosa comosa inflorescence extract attenuates CCl4-induced hepatic fibrosis by modulating TGF-β-induced Smad3 phosphorylation. Biomed. Pharmacother., 2018, 106, 426-433.
[http://dx.doi.org/10.1016/j.biopha.2018.06.118] [PMID: 29990830]
Xiao, Y.; Ye, J.; Zhou, Y.; Huang, J.; Liu, X.; Huang, B.; Zhu, L.; Wu, B.; Zhang, G.; Cai, Y. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway. Arch. Biochem. Biophys., 2018, 640, 37-46.
[http://dx.doi.org/10.1016/j.abb.2018.01.006] [PMID: 29331689]
Zhang, J.; Chao, L.; Liu, X.; Shi, Y.; Zhang, C.; Kong, L.; Li, R. The potential application of strategic released apigenin from polymeric carrier in pulmonary fibrosis. Exp. Lung Res., 2017, 43(9-10), 359-369.
[http://dx.doi.org/10.1080/01902148.2017.1380086] [PMID: 29206498]
Hicks, D.F.; Goossens, N.; Blas-García, A.; Tsuchida, T.; Wooden, B.; Wallace, M.C.; Nieto, N.; Lade, A.; Redhead, B.; Cederbaum, A.I.; Dudley, J.T.; Fuchs, B.C.; Lee, Y.A.; Hoshida, Y.; Friedman, S.L. Transcriptome-based repurposing of apigenin as a potential anti-fibrotic agent targeting hepatic stellate cells. Sci. Rep., 2017, 7, 42563.
[http://dx.doi.org/10.1038/srep42563] [PMID: 28256512]
Zhang, Y.; Sun, Q.; Li, X.; Ma, X.; Li, Y.; Jiao, Z.; Yang, X.D. Apigenin suppresses mouse peritoneal fibrosis by down-regulating miR34a expression. Biomed. Pharmacother., 2018, 106, 373-380.
[http://dx.doi.org/10.1016/j.biopha.2018.06.138] [PMID: 29966983]
Chen, H.; Mrazek, A.A.; Wang, X.; Ding, C.; Ding, Y.; Porro, L.J.; Liu, H.; Chao, C.; Hellmich, M.R.; Zhou, J. Design, synthesis, and characterization of novel apigenin analogues that suppress pancreatic stellate cell proliferation in vitro and associated pancreatic fibrosis in vivo. Bioorg. Med. Chem., 2014, 22(13), 3393-3404.
[http://dx.doi.org/10.1016/j.bmc.2014.04.043] [PMID: 24837156]
Wei, X.; Gao, P.; Pu, Y.; Li, Q.; Yang, T.; Zhang, H.; Xiong, S.; Cui, Y.; Li, L.; Ma, X.; Liu, D.; Zhu, Z. Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in Deoxycorticosterone Acetate (DOCA)-salt-induced hypertension. Clin. Sci. (Lond.), 2017, 131(7), 567-581.
[http://dx.doi.org/10.1042/CS20160780] [PMID: 28143892]
Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol., 2017, 313(2), F414-F422.
[http://dx.doi.org/10.1152/ajprenal.00393.2016] [PMID: 28566504]
Wójcik, K.A.; Skoda, M.; Koczurkiewicz, P.; Sanak, M.; Czyż, J.; Michalik, M. Apigenin inhibits TGF-β1 induced fibroblast-to-myofibroblast transition in human lung fibroblast populations. Pharmacol. Rep., 2013, 65(1), 164-172.
[http://dx.doi.org/10.1016/S1734-1140(13)70974-5] [PMID: 23563034]
Tong, X.; Smith, K.A.; Pelling, J.C. Apigenin, a chemopreventive bioflavonoid, induces AMP-activated protein kinase activation in human keratinocytes. Mol. Carcinog., 2012, 51(3), 268-279.
[http://dx.doi.org/10.1002/mc.20793] [PMID: 21538580]
Wang, Y.; Jia, L.; Hu, Z.; Entman, M.L.; Mitch, W.E.; Wang, Y. AMP-activated protein kinase/myocardin-related transcription factor-A signaling regulates fibroblast activation and renal fibrosis. Kidney Int., 2018, 93(1), 81-94.
[http://dx.doi.org/10.1016/j.kint.2017.04.033] [PMID: 28739141]
Chen, K.H.; Hsu, H.H.; Lee, C.C.; Yen, T.H.; Ko, Y.C.; Yang, C.W.; Hung, C.C. The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts. PLoS One, 2014, 9(9), e106554.
[http://dx.doi.org/10.1371/journal.pone.0106554] [PMID: 25188319]
Thakur, S.; Viswanadhapalli, S.; Kopp, J.B.; Shi, Q.; Barnes, J.L.; Block, K.; Gorin, Y.; Abboud, H.E. Activation of AMP-activated protein kinase prevents TGF-β1-induced epithelial-mesenchymal transition and myofibroblast activation. Am. J. Pathol., 2015, 185(8), 2168-2180.
[http://dx.doi.org/10.1016/j.ajpath.2015.04.014] [PMID: 26071397]
Li, Z.; Liu, X.; Tian, F.; Li, J.; Wang, Q.; Gu, C. MKP2 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells through a JNK-dependent pathway. Clin. Sci. (Lond.), 2018, 132(21), 2339-2355.
[http://dx.doi.org/10.1042/CS20180602] [PMID: 30322849]
Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett., 2018, 413, 11-22.
[http://dx.doi.org/10.1016/j.canlet.2017.10.041] [PMID: 29097249]
Strutz, F.; Zeisberg, M.; Renziehausen, A.; Raschke, B.; Becker, V.; van Kooten, C.; Müller, G. TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int., 2001, 59(2), 579-592.
[http://dx.doi.org/10.1046/j.1523-1755.2001.059002579.x] [PMID: 11168939]
Biernacka, A.; Dobaczewski, M.; Frangogiannis, N.G. TGF-β signaling in fibrosis. Growth Factors, 2011, 29(5), 196-202.
[http://dx.doi.org/10.3109/08977194.2011.595714] [PMID: 21740331]
Luo, X.; Deng, L.; Lamsal, L.P.; Xu, W.; Xiang, C.; Cheng, L. AMP-activated protein kinase alleviates extracellular matrix accumulation in high glucose-induced renal fibroblasts through mTOR signaling pathway. Cell. Physiol. Biochem., 2015, 35(1), 191-200.
[http://dx.doi.org/10.1159/000369687] [PMID: 25591762]
Kim, H.; Moon, S.Y.; Kim, J.S.; Baek, C.H.; Kim, M.; Min, J.Y.; Lee, S.K. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis. Am. J. Physiol. Renal Physiol., 2015, 308(3), F226-F236.
[http://dx.doi.org/10.1152/ajprenal.00495.2014] [PMID: 25428127]
Lempiäinen, J.; Finckenberg, P.; Levijoki, J.; Mervaala, E. AMPK activator AICAR ameliorates ischaemia reperfusion injury in the rat kidney. Br. J. Pharmacol., 2012, 166(6), 1905-1915.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01895.x] [PMID: 22324445]
Vucicevic, L.; Misirkic, M.; Janjetovic, K.; Vilimanovich, U.; Sudar, E.; Isenovic, E.; Prica, M.; Harhaji-Trajkovic, L.; Kravic-Stevovic, T.; Bumbasirevic, V.; Trajkovic, V. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy, 2011, 7(1), 40-50.
[http://dx.doi.org/10.4161/auto.7.1.13883] [PMID: 20980833]
Declèves, A.E.; Zolkipli, Z.; Satriano, J.; Wang, L.; Nakayama, T.; Rogac, M.; Le, T.P.; Nortier, J.L.; Farquhar, M.G.; Naviaux, R.K.; Sharma, K. Regulation of lipid accumulation by AMP-activated kinase in high fat diet-induced kidney injury. Kidney Int., 2014, 85(3), 611-623.
[http://dx.doi.org/10.1038/ki.2013.462] [PMID: 24304883]
Dugan, L.L.; You, Y.H.; Ali, S.S.; Diamond-Stanic, M.; Miyamoto, S.; DeCleves, A.E.; Andreyev, A.; Quach, T.; Ly, S.; Shekhtman, G.; Nguyen, W.; Chepetan, A.; Le, T.P.; Wang, L.; Xu, M.; Paik, K.P.; Fogo, A.; Viollet, B.; Murphy, A.; Brosius, F.; Naviaux, R.K.; Sharma, K. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest., 2013, 123(11), 4888-4899.
[http://dx.doi.org/10.1172/JCI66218] [PMID: 24135141]
Kim, H.R.; Kim, S.Y. Perilla frutescens sprout extract protect renal mesangial cell dysfunction against high glucose by modulating AMPK and NADPH oxidase signaling. Nutrients, 2019, 11(2), E356.
[http://dx.doi.org/10.3390/nu11020356] [PMID: 30744045]
Mishra, R.; Cool, B.L.; Laderoute, K.R.; Foretz, M.; Viollet, B.; Simonson, M.S. AMP-activated protein kinase inhibits transforming growth factor-beta-induced Smad3-dependent transcription and myofibroblast transdifferentiation. J. Biol. Chem., 2008, 283(16), 10461-10469.
[http://dx.doi.org/10.1074/jbc.M800902200] [PMID: 18250161]
Zhao, J.; Miyamoto, S.; You, Y.H.; Sharma, K. AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys. Am. J. Physiol. Renal Physiol., 2015, 308(10), F1167-F1177.
[http://dx.doi.org/10.1152/ajprenal.00234.2014] [PMID: 25428125]
Kim, S.G.; Kim, J.R.; Choi, H.C. Quercetin-induced AMP-activated protein kinase activation attenuates vasoconstriction through LKB1-AMPK signaling pathway. J. Med. Food, 2018, 21(2), 146-153.
[http://dx.doi.org/10.1089/jmf.2017.4052] [PMID: 29035613]
You, J.; Cheng, J.; Yu, B.; Duan, C.; Peng, J. Baicalin, a Chinese herbal medicine, inhibits the proliferation and migration of human Non-Small Cell Lung Carcinoma (NSCLC) cells, A549 and H1299, by Activating the SIRT1/AMPK signaling pathway. Med. Sci. Monit., 2018, 24, 2126-2133.
[http://dx.doi.org/10.12659/MSM.909627] [PMID: 29632297]
Ono, M.; Fujimori, K. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J. Agric. Food Chem., 2011, 59(24), 13346-13352.
[http://dx.doi.org/10.1021/jf203490a] [PMID: 22098587]
Sung, B.; Chung, H.Y.; Kim, N.D. role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J. Cancer Prev., 2016, 21(4), 216-226.
[http://dx.doi.org/10.15430/JCP.2016.21.4.216] [PMID: 28053955]
Zhang, Y.; Cao, Y.; Zhang, L.; Feng, C.; Zhou, G.; Wen, G. Apigenin inhibits C5a-induced proliferation of human nasopharyngeal carcinoma cells through down-regulation of C5aR. Biosci. Rep., 2018, 38(3), BSR20180456.
[http://dx.doi.org/10.1042/BSR20180456] [PMID: 29685955]
Park, S.; Lim, W.; Bazer, F.W.; Song, G. Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells. J. Cell. Physiol., 2018, 233(4), 3055-3065.
[http://dx.doi.org/10.1002/jcp.26054] [PMID: 28617956]
Gómez-Zorita, S.; Lasa, A.; Abendaño, N.; Fernández-Quintela, A.; Mosqueda-Solís, A.; Garcia-Sobreviela, M.P.; Arbonés-Mainar, J.M.; Portillo, M.P. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes. J. Transl. Med., 2017, 15(1), 237.
[http://dx.doi.org/10.1186/s12967-017-1343-0] [PMID: 29162103]
Li, L.H.; Lu, B.; Wu, H.K.; Zhang, H.; Yao, F.F. Apigenin inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12557-12563.
[PMID: 26722444]
Choi, M.E. Mechanism of transforming growth factor-beta1 signaling. Kidney Int. Suppl., 2000, 77, S53-S58.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07709.x] [PMID: 10997691]
Chen, K.H.; Hsu, H.H.; Yang, H.Y.; Tian, Y.C.; Ko, Y.C.; Yang, C.W.; Hung, C.C. Inhibition of Spleen Tyrosine Kinase (SYK) suppresses renal fibrosis through anti-inflammatory effects and down regulation of the MAPK-p38 pathway. Int. J. Biochem. Cell Biol., 2016, 74, 135-144.
[http://dx.doi.org/10.1016/j.biocel.2016.03.001] [PMID: 26948651]
Huang, C.; Shen, S.; Ma, Q.; Gill, A.; Pollock, C.A.; Chen, X.M. KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis. Nephrol. Dial. Transplant., 2014, 29(2), 313-324.
[http://dx.doi.org/10.1093/ndt/gft431] [PMID: 24166472]
Ma, F.Y.; Flanc, R.S.; Tesch, G.H.; Han, Y.; Atkins, R.C.; Bennett, B.L.; Friedman, G.C.; Fan, J.H.; Nikolic-Paterson, D.J. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J. Am. Soc. Nephrol., 2007, 18(2), 472-484.
[http://dx.doi.org/10.1681/ASN.2006060604] [PMID: 17202416]
Gradolatto, A.; Basly, J.P.; Berges, R.; Teyssier, C.; Chagnon, M.C.; Siess, M.H.; Canivenc-Lavier, M.C. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab. Dispos., 2005, 33(1), 49-54.
[http://dx.doi.org/10.1124/dmd.104.000893] [PMID: 15466493]
Ding, S.M.; Zhang, Z.H.; Song, J.; Cheng, X.D.; Jiang, J.; Jia, X.B.S.M. Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion. Int. J. Nanomedicine, 2014, 9, 2327-2333.
[http://dx.doi.org/10.2147/IJN.S60938] [PMID: 24872695]
Chen, Z.; Tu, M.; Sun, S.; Kong, S.; Wang, Y.; Ye, J.; Li, L.; Zeng, S.; Jiang, H. The exposure of luteolin is much lower than that of apigenin in oral administration of Flos chrysanthemi extract to rats. Drug Metab. Pharmacokinet., 2012, 27(1), 162-168.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-081] [PMID: 21931223]
Zhao, L.; Zhang, L.; Meng, L.; Wang, J.; Zhai, G. Design and evaluation of a self-microemulsifying drug delivery system for apigenin. Drug Dev. Ind. Pharm., 2013, 39(5), 662-669.
[http://dx.doi.org/10.3109/03639045.2012.687378] [PMID: 22607130]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 20 September, 2020
Page: [1107 - 1118]
Pages: 12
DOI: 10.2174/1389201021666200320140908
Price: $65

Article Metrics

PDF: 18