Computer-Aided Design of a Novel Poly-Epitope Protein in Fusion with an Adjuvant as a Vaccine Candidate Against Leptospirosis

Author(s): Ehsan Rashidian*, Ali Forouharmehr, Narges Nazifi, Amin Jaydari, Nemat Shams

Journal Name: Current Proteomics

Volume 18 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Leptospirosis is a prevalent zoonotic disease caused by Leptospira interrogans bacterium. Despite the importance of this disease, traditional strategies including attenuated and inactivated vaccines have not been able to prevent leptospirosis.

Objective: Hence, this study was designed to develop a novel poly-epitope fusion protein vaccine against Leptospirosis.

Methods: To do so, the best epitopes of OmpA, LipL45, OmpL1, LipL41 and LipL21 proteins were predicted. Then, the best-predicted epitopes were applied to assemble IFN-γ, MHC I binding, B cell and MHC II binding fragments, and heparin-binding hemagglutinin adhesion was used as a molecular adjuvant. After designing the vaccine, the most important features of it, including physicochemical parameters, protein structures and protein-protein interaction, were evaluated. Finally, the nucleotide sequence of the designed vaccine was used for codon adaptation.

Results: The results showed that the designed vaccine was a stable protein with antigenicity of 0.913, which could dock to its receptor. The results also suggested that the nucleotide sequence of the designed vaccine could be expressed in the prokaryotic system.

Conclusion: Based on the results of this study, it can be concluded that the vaccine can be a promising candidate to control Leptospirosis.

Keywords: Immunogenic protein, leptospirosis, epitope prediction, bioinformatics, vaccine, poly-Epitope protein.

[1]
De Brito, T.; Silva, A.M.G.D.; Abreu, P.A.E. Pathology and pathogenesis of human leptospirosis: A commented review. Rev. Inst. Med. Trop. São Paulo, 2018, 60, e23.
[http://dx.doi.org/10.1590/s1678-9946201860023] [PMID: 29846473]
[2]
Terpstra, W. Human leptospirosis: Guidance for diagnosis, surveillance and control; World Health Organization, 2003.
[3]
Cameron, C.E. Leptospiral structure, physiology, and metabolism. Leptospira and Leptospirosis; Springer, 2015, pp. 21-41.
[4]
Victoriano, A.F.B.; Smythe, L.D.; Gloriani-Barzaga, N.; Cavinta, L.L.; Kasai, T.; Limpakarnjanarat, K.; Ong, B.L.; Gongal, G.; Hall, J.; Coulombe, C.A.; Yanagihara, Y.; Yoshida, S.; Adler, B. Leptospirosis in the Asia Pacific region. BMC Infect. Dis., 2009, 9(1), 147.
[http://dx.doi.org/10.1186/1471-2334-9-147] [PMID: 19732423]
[5]
Faine, S. Leptospirosis. Bacterial Infecti. Humans, 1994, pp. 395-420.
[6]
Lilenbaum, W.; Morais, Z.M.; Gonçales, A.P.; Souza, G.O.; Richtzenhain, L.; Vasconcellos, S.A. First isolation of leptospires from dairy goats in Brazil. Braz. J. Microbiol., 2007, 38(3), 507-510.
[http://dx.doi.org/10.1590/S1517-83822007000300023]
[7]
Dorjee, S.; Heuer, C.; Jackson, R.; West, D.M.; Collins-Emerson, J.M.; Midwinter, A.C.; Ridler, A.L. Assessment of occupational exposure to leptospirosis in a sheep-only abattoir. Epidemiol. Infect., 2011, 139(5), 797-806.
[http://dx.doi.org/10.1017/S0950268810002049] [PMID: 20843385]
[8]
Kmety, E.; Dikken, H. Classification of the species Leptospira interrogans and history of its serovars. University Press Groningen, 1993, p. 104.
[9]
Plank, R.; Dean, D. Overview of the epidemiology, microbiology, and pathogenesis of Leptospira spp. in humans. Microbes Infect., 2000, 2(10), 1265-1276.
[http://dx.doi.org/10.1016/S1286-4579(00)01280-6] [PMID: 11008116]
[10]
Vincent, A.T.; Schiettekatte, O.; Goarant, C.; Neela, V.K.; Bernet, E.; Thibeaux, R.; Ismail, N.; Mohd Khalid, M.K.N.; Amran, F.; Masuzawa, T.; Nakao, R.; Amara Korba, A.; Bourhy, P.; Veyrier, F.J.; Picardeau, M. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl. Trop. Dis., 2019, 13(5), e0007270.
[http://dx.doi.org/10.1371/journal.pntd.0007270] [PMID: 31120895]
[11]
Luo, D.; Xue, F.; Ojcius, D.M.; Zhao, J.; Mao, Y.; Li, L.; Lin, X.; Yan, J. Protein typing of major outer membrane lipoproteins from Chinese pathogenic Leptospira spp. and characterization of their immunogenicity. Vaccine, 2009, 28(1), 243-255.
[http://dx.doi.org/10.1016/j.vaccine.2009.09.089] [PMID: 19796723]
[12]
Dolhnikoff, M.; Mauad, T.; Bethlem, E.P.; Carvalho, C.R. Leptospiral pneumonias. Curr. Opin. Pulm. Med., 2007, 13(3), 230-235.
[http://dx.doi.org/10.1097/MCP.0b013e3280f9df74] [PMID: 17414132]
[13]
Meites, E.; Jay, M.T.; Deresinski, S.; Shieh, W.J.; Zaki, S.R.; Tompkins, L.; Smith, D.S. Reemerging leptospirosis, California. Emerg. Infect. Dis., 2004, 10(3), 406-412.
[http://dx.doi.org/10.3201/eid1003.030431] [PMID: 15109405]
[14]
Eshghi, A.; Pinne, M.; Haake, D.A.; Zuerner, R.L.; Frank, A.; Cameron, C.E. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32. Microbiology, 2012, 158(Pt 3), 622-635.
[http://dx.doi.org/10.1099/mic.0.054767-0] [PMID: 22174381]
[15]
Haake, D.A. Spirochaetal lipoproteins and pathogenesis. Microbiology, 2000, 146(Pt 7), 1491-1504.
[http://dx.doi.org/10.1099/00221287-146-7-1491] [PMID: 10878114]
[16]
Pinne, M.; Matsunaga, J.; Haake, D.A. Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins. J. Bacteriol., 2012, 194(22), 6074-6087.
[http://dx.doi.org/10.1128/JB.01119-12] [PMID: 22961849]
[17]
Malmström, J.; Beck, M.; Schmidt, A.; Lange, V.; Deutsch, E.W.; Aebersold, R. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature, 2009, 460(7256), 762-765.
[http://dx.doi.org/10.1038/nature08184] [PMID: 19606093]
[18]
Victor, A. A. R.; Abraham, S.; Tennyson, J.; Pradhan, N. In silico prediction and threading based epitope mapping of OmpA-like outer membrane leptospiral lipoprotein Loa22.
[19]
Vieira, M.L.; Teixeira, A.F.; Pidde, G.; Ching, A.T.C.; Tambourgi, D.V.; Nascimento, A.L.T.O.; Herwald, H. Leptospira interrogans outer membrane protein LipL21 is a potent inhibitor of neutrophil myeloperoxidase. Virulence, 2018, 9(1), 414-425.
[http://dx.doi.org/10.1080/21505594.2017.1407484] [PMID: 29235397]
[20]
Klebanoff, S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol., 2005, 77(5), 598-625.
[http://dx.doi.org/10.1189/jlb.1204697] [PMID: 15689384]
[21]
Arnhold, J.; Flemmig, J. Human myeloperoxidase in innate and acquired immunity. Arch. Biochem. Biophys., 2010, 500(1), 92-106.
[http://dx.doi.org/10.1016/j.abb.2010.04.008] [PMID: 20399194]
[22]
Matsunaga, J.; Young, T.A.; Barnett, J.K.; Barnett, D.; Bolin, C.A.; Haake, D.A. Novel 45-kilodalton leptospiral protein that is processed to a 31-kilodalton growth-phase-regulated peripheral membrane protein. Infect. Immun., 2002, 70(1), 323-334.
[http://dx.doi.org/10.1128/IAI.70.1.323-334.2002] [PMID: 11748198]
[23]
Haake, D.A.; Champion, C.I.; Martinich, C.; Shang, E.S.; Blanco, D.R.; Miller, J.N.; Lovett, M.A. Molecular cloning and sequence analysis of the gene encoding OmpL1, a transmembrane outer membrane protein of pathogenic Leptospira spp. J. Bacteriol., 1993, 175(13), 4225-4234.
[http://dx.doi.org/10.1128/JB.175.13.4225-4234.1993] [PMID: 8320237]
[24]
Shang, E.S.; Summers, T.A.; Haake, D.A. Molecular cloning and sequence analysis of the gene encoding LipL41, a surface-exposed lipoprotein of pathogenic Leptospira species. Infect. Immun., 1996, 64(6), 2322-2330.
[http://dx.doi.org/10.1128/IAI.64.6.2322-2330.1996] [PMID: 8675344]
[25]
Jorge, S.; Dellagostin, O.A. The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches. Biotech. Res. Innovat., 2017, 1(1), 6-13.
[http://dx.doi.org/10.1016/j.biori.2017.10.001]
[26]
Patronov, A.; Doytchinova, I. T-cell epitope vaccine design by immunoinformatics. Open Biol., 2013, 3(1), 120139-120139.
[http://dx.doi.org/10.1098/rsob.120139] [PMID: 23303307]
[27]
Nazifi, N.; Mousavi, S.M.; Moradi, S.; Jaydari, A.; Jahandar, M.H.; Forouharmehr, A. In silico B cell and T cell epitopes evaluation of lipL32 and OmpL1 proteins for designing a recombinant multi-epitope vaccine against leptospirosis. Int. J. Infect., 2018, 5(2), 44.
[http://dx.doi.org/10.5812/iji.63255]
[28]
Jaydari, A.; Forouharmehr, A.; Nazifi, N. Determination of immunodominant scaffolds of Com1 and OmpH antigens of Coxiella burnetii . Microb. Pathog., 2019, 126, 298-309.
[http://dx.doi.org/10.1016/j.micpath.2018.11.012] [PMID: 30447420]
[29]
Tahmoorespur, M.; Nazifi, N.; Pirkhezranian, Z. In silico prediction of B-cell and T-cell epitopes of protective antigen of Bacillus anthracis in development of vaccines against anthrax. Iran. J. Appl. Anim. Sci., 2017, 7(3), 429-436.
[30]
Vijayachari, P.; Vedhagiri, K.; Mallilankaraman, K.; Mathur, P.P.; Sardesai, N.Y.; Weiner, D.B.; Ugen, K.E.; Muthumani, K. Immunogenicity of a novel enhanced consensus DNA vaccine encoding the leptospiral protein LipL45. Hum. Vaccin. Immunother., 2015, 11(8), 1945-1953.
[http://dx.doi.org/10.1080/21645515.2015.1047117] [PMID: 26020621]
[31]
Haake, D.A.; Mazel, M.K.; McCoy, A.M.; Milward, F.; Chao, G.; Matsunaga, J.; Wagar, E.A. Leptospiral outer membrane proteins OmpL1 and LipL41 exhibit synergistic immunoprotection. Infect. Immun., 1999, 67(12), 6572-6582.
[PMID: 10569777]
[32]
Seenichamy, A.; Bahaman, A.R.; Mutalib, A.R.; Khairani-Bejo, S. Production and characterization of a polyclonal antibody of anti-rLipL21-IgG against Leptospira for early detection of acute leptospirosis. BioMed Res. Int., 2014, 2014, 221.
[33]
Lata, K.S.; Kumar, S.; Vaghasia, V.; Sharma, P.; Bhairappanvar, S.B.; Soni, S.; Das, J. Exploring Leptospiral proteomes to identify potential candidates for vaccine design against leptospirosis using an immunoinformatics approach. Sci. Rep., 2018, 8(1), 6935.
[http://dx.doi.org/10.1038/s41598-018-25281-3] [PMID: 29720698]
[34]
Kim, Y.; Ponomarenko, J.; Zhu, Z.; Tamang, D.; Wang, P.; Greenbaum, J.; Lundegaard, C.; Sette, A.; Lund, O.; Bourne, P.E.; Nielsen, M.; Peters, B. Immune epitope database analysis resource. Nucleic Acids Res., 2012, 40(Web Server issue), W525-530.
[PMID: 22610854]
[35]
Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Brunak, S.; Lund, O.; Nielsen, M. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. Immunol., 2005, 35(8), 2295-2303.
[http://dx.doi.org/10.1002/eji.200425811] [PMID: 15997466]
[36]
Rammensee, H.; Bachmann, J.; Emmerich, N.P.N.; Bachor, O.A.; Stevanović, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics, 1999, 50(3-4), 213-219.
[http://dx.doi.org/10.1007/s002510050595] [PMID: 10602881]
[37]
Singh, H.; Raghava, G.P. ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics, 2003, 19(8), 1009-1014.
[http://dx.doi.org/10.1093/bioinformatics/btg108] [PMID: 12761064]
[38]
Chen, P.; Rayner, S.; Hu, K.H. Advances of bioinformatics tools applied in virus epitopes prediction. Virol. Sin., 2011, 26(1), 1-7.
[http://dx.doi.org/10.1007/s12250-011-3159-4] [PMID: 21331885]
[39]
Saha, S.; Raghava, G. In BcePred: prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Int. Conf. Artificial Immune Syst., 2004, pp. 197-204.
[http://dx.doi.org/10.1007/978-3-540-30220-9_16]
[40]
Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res., 2017, 45(W1), W24-W29.
[http://dx.doi.org/10.1093/nar/gkx346] [PMID: 28472356]
[41]
Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006, 65(1), 40-48.
[http://dx.doi.org/10.1002/prot.21078] [PMID: 16894596]
[42]
Plotkin, S.L.; Plotkin, S.A. A short history of vaccination. Vaccines (Basel), 2004, 5, 1-16.
[43]
Rappuoli, R. Reverse vaccinology. Curr. Opin. Microbiol., 2000, 3(5), 445-450.
[http://dx.doi.org/10.1016/S1369-5274(00)00119-3] [PMID: 11050440]
[44]
Validi, M.; Karkhah, A.; Prajapati, V.K.; Nouri, H.R. Immuno-informatics based approaches to design a novel multi epitope-based vaccine for immune response reinforcement against Leptospirosis. Mol. Immunol., 2018, 104, 128-138.
[http://dx.doi.org/10.1016/j.molimm.2018.11.005] [PMID: 30448609]
[45]
Wang, Z.; Jin, L.; Węgrzyn, A. Leptospirosis vaccines. Microb. Cell Fact., 2007, 6(1), 39.
[http://dx.doi.org/10.1186/1475-2859-6-39] [PMID: 18072968]
[46]
Zhang, L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell. Mol. Immunol., 2018, 15(2), 182-184.
[http://dx.doi.org/10.1038/cmi.2017.92] [PMID: 28890542]
[47]
Vakili, B.; Eslami, M.; Hatam, G.R.; Zare, B.; Erfani, N.; Nezafat, N.; Ghasemi, Y. Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. Int. J. Biol. Macromol., 2018, 120(A), 1127-1139.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.125] [PMID: 30172806]
[48]
Alspach, E.; Lussier, D.M.; Schreiber, R.D. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb. Perspect. Biol., 2019, 11(3), a028480.
[http://dx.doi.org/10.1101/cshperspect.a028480] [PMID: 29661791]
[49]
Chen, X.; Zaro, J.L.; Shen, W.C. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev., 2013, 65(10), 1357-1369.
[http://dx.doi.org/10.1016/j.addr.2012.09.039] [PMID: 23026637]
[50]
Arai, R.; Ueda, H.; Kitayama, A.; Kamiya, N.; Nagamune, T. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng., 2001, 14(8), 529-532.
[http://dx.doi.org/10.1093/protein/14.8.529] [PMID: 11579220]
[51]
Arai, R.; Wriggers, W.; Nishikawa, Y.; Nagamune, T.; Fujisawa, T. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins, 2004, 57(4), 829-838.
[http://dx.doi.org/10.1002/prot.20244] [PMID: 15390267]
[52]
George, R.A.; Heringa, J. An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng., 2002, 15(11), 871-879.
[http://dx.doi.org/10.1093/protein/15.11.871] [PMID: 12538906]
[53]
Forouharmehr, A.; Nassiri, M.; Ghovvati, S.; Javadmanesh, A. Evaluation of different signal peptides for secretory production of recombinant bovine pancreatic ribonuclease A in gram negative bacterial system: an in silico study. Curr. Proteomics, 2018, 15(1), 24-33.
[http://dx.doi.org/10.2174/1570164614666170725144424]
[54]
Jahandar, M.H.; Forouharmehr, A. Optimization of human serum albumin periplasmic localization in Escherichia coli using in silico evaluation of different signal peptides. Int. J. Pept. Res. Ther., 2019, 25(2), 635-643.
[http://dx.doi.org/10.1007/s10989-018-9709-6]
[55]
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88(6), 1895-1898.
[PMID: 7462208]
[56]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[57]
Felzmann, T.; Gadner, H.; Holter, W. Dendritic cells as adjuvants in antitumor immune therapy. Onkologie, 2002, 25(5), 456-464.
[PMID: 12415201]
[58]
Jung, I.D.; Jeong, S.K.; Lee, C.M.; Noh, K.T.; Heo, D.R.; Shin, Y.K.; Yun, C.H.; Koh, W.J.; Akira, S.; Whang, J.; Kim, H.J.; Park, W.S.; Shin, S.J.; Park, Y.M. Enhanced efficacy of therapeutic cancer vaccines produced by co-treatment with Mycobacterium tuberculosis heparin-binding hemagglutinin, a novel TLR4 agonist. Cancer Res., 2011, 71(8), 2858-2870.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3487] [PMID: 21368092]
[59]
Naiman, B.M.; Alt, D.; Bolin, C.A.; Zuerner, R.; Baldwin, C.L. Protective killed Leptospira borgpetersenii vaccine induces potent Th1 immunity comprising responses by CD4 and gammadelta T lymphocytes. Infect. Immun., 2001, 69(12), 7550-7558.
[http://dx.doi.org/10.1128/IAI.69.12.7550-7558.2001] [PMID: 11705932]
[60]
Matijevic, T.; Pavelic, J. Toll-like receptors: cost or benefit for cancer? Curr. Pharm. Des., 2010, 16(9), 1081-1090.
[http://dx.doi.org/10.2174/138161210790963779] [PMID: 20030618]
[61]
Rashidian, E.; Gandabeh, Z. S.; Forouharmehr, A.; Nazifi, N.; Shams, N.; Jaydari, A. Immunoinformatics approach to engineer a potent poly-epitope fusion protein vaccine against Coxiella burnetii. Int. J. Peptide Res. Therapeut., 2009, 1-11.
[http://dx.doi.org/10.1007/s10989-019-10013-6]
[62]
Rana, A.; Akhter, Y. A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure based approach. Immunobiology, 2016, 221(4), 544-557.
[http://dx.doi.org/10.1016/j.imbio.2015.12.004] [PMID: 26707618]
[63]
Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D. C.; Jahn, D. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res., 2005, 33(suppl_2), W526-531.
[http://dx.doi.org/10.1093/nar/gki376]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 2
Year: 2021
Published on: 19 March, 2020
Page: [113 - 123]
Pages: 11
DOI: 10.2174/1570164617666200319144331
Price: $25

Article Metrics

PDF: 102
HTML: 3