Analysis of the Non-Specific Binding Proteins in the RNA Pull-Down Experiment

Author(s): Baicai Yang, Yali Zhang, Kaiwen Hei, Mingming Xiao, Ruibing Chen*, Yongmei Li*

Journal Name: Current Proteomics

Volume 18 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: To investigate the interactions between RNA and proteins is essential to understand how these macromolecule complexes exert their functions. RNA pull-down is a classic technique to enrich RNA binding proteins, however, a large number of non-specific binding proteins may be enriched during sample preparation, interfering with the downstream mass spectrometric analyses and also causing false positives.

Objective: In this study, we examined the background contaminates in RNA pull-down experiment using mass spectrometric analysis.

Methods: Antisense MALAT1 was first synthesized using in vitro transcription and incubated with cellular proteins extracted from HepG2 cells. The non-specific binding proteins were isolated using streptavidin conjugated magnetic beads and separated on SDS-PAGE. Each gel lane was divided into nine bands and digested with trypsin for the downstream LC-MS/MS analyses.

Results: 191 protein groups were identified as non-specific binding proteins in RNA pull-down samples. In addition, a comparison between different sample preparation conditions showed that the level of background contaminates was mostly induced by the solid phase support rather than the studied RNA. In addition, using more stringent detergent and streptavidin magnetic beads with smaller size could reduce the amount of background interfering proteins.

Conclusion: This study provides a reference to distinguish bona fide RNA interacting proteins from the background contaminants. The results also demonstrate that different sample preparation conditions have great impacts on the level of enriched background contaminates, shedding new light on the optimization of RNA pull-down experiments.

Keywords: LC-MS/MS, RNA pull-down, RNA-protein interaction, SDS-PAGE, contaminates, binding proteins, spectrum.

[1]
Wickramasinghe, V.O.; Laskey, R.A. Control of mammalian gene expression by selective mRNA export. Nat. Rev. Mol. Cell Biol., 2015, 16(7), 431-442.
[http://dx.doi.org/10.1038/nrm4010] [PMID: 26081607]
[2]
Janga, S.C.; Mittal, N. Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins. Adv. Exp. Med. Biol., 2011, 722, 103-117.
[http://dx.doi.org/10.1007/978-1-4614-0332-6_7] [PMID: 21915785]
[3]
ENCODE project consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414), 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[4]
Ponting, C.P.; Belgard, T.G. Transcribed dark matter: meaning or myth? Hum. Mol. Genet., 2010, 19(R2), R162-R168.
[http://dx.doi.org/10.1093/hmg/ddq362] [PMID: 20798109]
[5]
Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigó, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Thurman, R.E.; Kuehn, M.S.; Taylor, C.M.; Neph, S.; Koch, C.M.; Asthana, S.; Malhotra, A.; Adzhubei, I.; Greenbaum, J.A.; Andrews, R.M.; Flicek, P.; Boyle, P.J.; Cao, H.; Carter, N.P.; Clelland, G.K.; Davis, S.; Day, N.; Dhami, P.; Dillon, S.C.; Dorschner, M.O.; Fiegler, H.; Giresi, P.G.; Goldy, J.; Hawrylycz, M.; Haydock, A.; Humbert, R.; James, K.D.; Johnson, B.E.; Johnson, E.M.; Frum, T.T.; Rosenzweig, E.R.; Karnani, N.; Lee, K.; Lefebvre, G.C.; Navas, P.A.; Neri, F.; Parker, S.C.; Sabo, P.J.; Sandstrom, R.; Shafer, A.; Vetrie, D.; Weaver, M.; Wilcox, S.; Yu, M.; Collins, F.S.; Dekker, J.; Lieb, J.D.; Tullius, T.D.; Crawford, G.E.; Sunyaev, S.; Noble, W.S.; Dunham, I.; Denoeud, F.; Reymond, A.; Kapranov, P.; Rozowsky, J.; Zheng, D.; Castelo, R.; Frankish, A.; Harrow, J.; Ghosh, S.; Sandelin, A.; Hofacker, I.L.; Baertsch, R.; Keefe, D.; Dike, S.; Cheng, J.; Hirsch, H.A.; Sekinger, E.A.; Lagarde, J.; Abril, J.F.; Shahab, A.; Flamm, C.; Fried, C.; Hackermüller, J.; Hertel, J.; Lindemeyer, M.; Missal, K.; Tanzer, A.; Washietl, S.; Korbel, J.; Emanuelsson, O.; Pedersen, J.S.; Holroyd, N.; Taylor, R.; Swarbreck, D.; Matthews, N.; Dickson, M.C.; Thomas, D.J.; Weirauch, M.T.; Gilbert, J.; Drenkow, J.; Bell, I.; Zhao, X.; Srinivasan, K.G.; Sung, W.K.; Ooi, H.S.; Chiu, K.P.; Foissac, S.; Alioto, T.; Brent, M.; Pachter, L.; Tress, M.L.; Valencia, A.; Choo, S.W.; Choo, C.Y.; Ucla, C.; Manzano, C.; Wyss, C.; Cheung, E.; Clark, T.G.; Brown, J.B.; Ganesh, M.; Patel, S.; Tammana, H.; Chrast, J.; Henrichsen, C.N.; Kai, C.; Kawai, J.; Nagalakshmi, U.; Wu, J.; Lian, Z.; Lian, J.; Newburger, P.; Zhang, X.; Bickel, P.; Mattick, J.S.; Carninci, P.; Hayashizaki, Y.; Weissman, S.; Hubbard, T.; Myers, R.M.; Rogers, J.; Stadler, P.F.; Lowe, T.M.; Wei, C.L.; Ruan, Y.; Struhl, K.; Gerstein, M.; Antonarakis, S.E.; Fu, Y.; Green, E.D.; Karaöz, U.; Siepel, A.; Taylor, J.; Liefer, L.A.; Wetterstrand, K.A.; Good, P.J.; Feingold, E.A.; Guyer, M.S.; Cooper, G.M.; Asimenos, G.; Dewey, C.N.; Hou, M.; Nikolaev, S.; Montoya-Burgos, J.I.; Löytynoja, A.; Whelan, S.; Pardi, F.; Massingham, T.; Huang, H.; Zhang, N.R.; Holmes, I.; Mullikin, J.C.; Ureta-Vidal, A.; Paten, B.; Seringhaus, M.; Church, D.; Rosenbloom, K.; Kent, W.J.; Stone, E.A.; Batzoglou, S.; Goldman, N.; Hardison, R.C.; Haussler, D.; Miller, W.; Sidow, A.; Trinklein, N.D.; Zhang, Z.D.; Barrera, L.; Stuart, R.; King, D.C.; Ameur, A.; Enroth, S.; Bieda, M.C.; Kim, J.; Bhinge, A.A.; Jiang, N.; Liu, J.; Yao, F.; Vega, V.B.; Lee, C.W.; Ng, P.; Shahab, A.; Yang, A.; Moqtaderi, Z.; Zhu, Z.; Xu, X.; Squazzo, S.; Oberley, M.J.; Inman, D.; Singer, M.A.; Richmond, T.A.; Munn, K.J.; Rada-Iglesias, A.; Wallerman, O.; Komorowski, J.; Fowler, J.C.; Couttet, P.; Bruce, A.W.; Dovey, O.M.; Ellis, P.D.; Langford, C.F.; Nix, D.A.; Euskirchen, G.; Hartman, S.; Urban, A.E.; Kraus, P.; Van Calcar, S.; Heintzman, N.; Kim, T.H.; Wang, K.; Qu, C.; Hon, G.; Luna, R.; Glass, C.K.; Rosenfeld, M.G.; Aldred, S.F.; Cooper, S.J.; Halees, A.; Lin, J.M.; Shulha, H.P.; Zhang, X.; Xu, M.; Haidar, J.N.; Yu, Y.; Ruan, Y.; Iyer, V.R.; Green, R.D.; Wadelius, C.; Farnham, P.J.; Ren, B.; Harte, R.A.; Hinrichs, A.S.; Trumbower, H.; Clawson, H.; Hillman-Jackson, J.; Zweig, A.S.; Smith, K.; Thakkapallayil, A.; Barber, G.; Kuhn, R.M.; Karolchik, D.; Armengol, L.; Bird, C.P.; de Bakker, P.I.; Kern, A.D.; Lopez-Bigas, N.; Martin, J.D.; Stranger, B.E.; Woodroffe, A.; Davydov, E.; Dimas, A.; Eyras, E.; Hallgrímsdóttir, I.B.; Huppert, J.; Zody, M.C.; Abecasis, G.R.; Estivill, X.; Bouffard, G.G.; Guan, X.; Hansen, N.F.; Idol, J.R.; Maduro, V.V.; Maskeri, B.; McDowell, J.C.; Park, M.; Thomas, P.J.; Young, A.C.; Blakesley, R.W.; Muzny, D.M.; Sodergren, E.; Wheeler, D.A.; Worley, K.C.; Jiang, H.; Weinstock, G.M.; Gibbs, R.A.; Graves, T.; Fulton, R.; Mardis, E.R.; Wilson, R.K.; Clamp, M.; Cuff, J.; Gnerre, S.; Jaffe, D.B.; Chang, J.L.; Lindblad-Toh, K.; Lander, E.S.; Koriabine, M.; Nefedov, M.; Osoegawa, K.; Yoshinaga, Y.; Zhu, B.; de Jong, P.J. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146), 799-816.
[http://dx.doi.org/10.1038/nature05874] [PMID: 17571346]
[6]
Guttman, M.; Rinn, J.L. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385), 339-346.
[http://dx.doi.org/10.1038/nature10887] [PMID: 22337053]
[7]
An, S.; Song, J.J. The coded functions of noncoding RNAs for gene regulation. Mol. Cells, 2011, 31(6), 491-496.
[http://dx.doi.org/10.1007/s10059-011-1004-8] [PMID: 30513887]
[8]
Shang, D.; Yang, H.; Xu, Y.; Yao, Q.; Zhou, W.; Shi, X.; Han, J.; Su, F.; Su, B.; Zhang, C.; Li, C.; Li, X. A global view of network of lncRNAs and their binding proteins. Mol. Biosyst., 2015, 11(2), 656-663.
[http://dx.doi.org/10.1039/C4MB00409D] [PMID: 25483728]
[9]
Marín-Béjar, O.; Huarte, M. RNA pulldown protocol for in vitro detection and identification of RNA-associated proteins. Methods Mol. Biol., 2015, 1206, 87-95.
[http://dx.doi.org/10.1007/978-1-4939-1369-5_8] [PMID: 25240889]
[10]
Feng, Y.; Hu, X.; Zhang, Y.; Zhang, D.; Li, C.; Zhang, L. Methods for the study of long noncoding RNA in cancer cell signaling. Methods Mol. Biol., 2014, 1165, 115-143.
[http://dx.doi.org/10.1007/978-1-4939-0856-1_10] [PMID: 24839023]
[11]
Yang, F.; Huo, X.S.; Yuan, S.X.; Zhang, L.; Zhou, W.P.; Wang, F.; Sun, S.H. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol. Cell, 2013, 49(6), 1083-1096.
[http://dx.doi.org/10.1016/j.molcel.2013.01.010] [PMID: 23395002]
[12]
Yang, F.; Zhang, H.; Mei, Y.; Wu, M. Reciprocal regulation of HIF-1α and lincRNA-p21 modulates the Warburg effect. Mol. Cell, 2014, 53(1), 88-100.
[http://dx.doi.org/10.1016/j.molcel.2013.11.004] [PMID: 24316222]
[13]
Mellacheruvu, D.; Wright, Z.; Couzens, A.L.; Lambert, J.P.; St- Denis, N.A.; Li, T.; Miteva, Y.V.; Hauri, S.; Sardiu, M.E.; Low, T.Y.; Halim, V.A.; Bagshaw, R.D.; Hubner, N.C.; Al-Hakim, A.; Bouchard, A.; Faubert, D.; Fermin, D.; Dunham, W.H.; Goudreault, M.; Lin, Z.Y.; Badillo, B.G.; Pawson, T.; Durocher, D.; Coulombe, B.; Aebersold, R.; Superti-Furga, G.; Colinge, J.; Heck, A.J.; Choi, H.; Gstaiger, M.; Mohammed, S.; Cristea, I.M.; Bennett, K.L.; Washburn, M.P.; Raught, B.; Ewing, R.M.; Gingras, A.C.; Nesvizhskii, A.I. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods, 2013, 10(8), 730-736.
[http://dx.doi.org/10.1038/nmeth.2557] [PMID: 23921808]
[14]
Chen, R.; Liu, Y.; Zhuang, H.; Yang, B.; Hei, K.; Xiao, M.; Hou, C.; Gao, H.; Zhang, X.; Jia, C.; Li, L.; Li, Y.; Zhang, N. Quantitative proteomics reveals that long non-coding RNA MALAT1 interacts with DBC1 to regulate p53 acetylation. Nucleic Acids Res., 2017, 45(17), 9947-9959.
[http://dx.doi.org/10.1093/nar/gkx600] [PMID: 28973437]
[15]
Wang, Y.; Yue, D.; Xiao, M.; Qi, C.; Chen, Y.; Sun, D.; Zhang, N.; Chen, R. C1QBP negatively regulates the activation of oncoprotein YBX1 in the renal cell carcinoma as revealed by interactomics analysis. J. Proteome Res., 2015, 14(2), 804-813.
[http://dx.doi.org/10.1021/pr500847p] [PMID: 25497084]
[16]
Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; Thomas, M.; Berdel, W.E.; Serve, H.; Müller-Tidow, C. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22(39), 8031-8041.
[http://dx.doi.org/10.1038/sj.onc.1206928] [PMID: 12970751]
[17]
Yoshimoto, R.; Mayeda, A.; Yoshida, M.; Nakagawa, S. MALAT1 long non-coding RNA in cancer. RNA Biol., 2019, 16(6), 860-886.
[18]
Janke, C. The tubulin code: molecular components, readout mechanisms, and functions. J. Cell Biol., 2014, 206(4), 461-472.
[http://dx.doi.org/10.1083/jcb.201406055] [PMID: 25135932]
[19]
Dominguez, R.; Holmes, K.C. Actin structure and function. Annu. Rev. Biophys., 2011, 40, 169-186.
[http://dx.doi.org/10.1146/annurev-biophys-042910-155359] [PMID: 21314430]
[20]
Seidler, N.W. Basic biology of GAPDH. Adv. Exp. Med. Biol., 2013, 985, 1-36.
[http://dx.doi.org/10.1007/978-94-007-4716-6_1] [PMID: 22851445]
[21]
Pancholi, V. Multifunctional alpha-enolase: its role in diseases. Cell. Mol. Life Sci., 2001, 58(7), 902-920.
[http://dx.doi.org/10.1007/PL00000910] [PMID: 11497239]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 2
Year: 2021
Published on: 19 March, 2020
Page: [224 - 230]
Pages: 7
DOI: 10.2174/1570164617666200319143539
Price: $25

Article Metrics

PDF: 98
HTML: 2