Nanomedicines in Diagnosis and Treatment of Cancer: An Update

Author(s): Nafis Haider, Sana Fatima, Murtada Taha, Md. Rizwanullah, Jamia Firdous, Rafeeque Ahmad, Faizan Mazhar, Mohammad A. Khan*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Nanomedicine has revolutionized the field of cancer detection and treatment by enabling the delivery of imaging agents and therapeutics into cancer cells. Cancer diagnostic and therapeutic agents can be either encapsulated or conjugated to nanosystems and accessed to the tumor environment through the passive targeting approach (EPR effect) of the designed nanomedicine. It may also actively target the tumor exploiting conjugation of targeting moiety (like antibody, peptides, vitamins, and hormones) to the surface of the nanoparticulate system. Different diagnostic agents (like contrast agents, radionuclide probes and fluorescent dyes) are conjugated with the multifunctional nanoparticulate system to achieve simultaneous cancer detection along with targeted therapy. Nowadays targeted drug delivery, as well as the early cancer diagnosis is a key research area where nanomedicine is playing a crucial role. This review encompasses the significant recent advancements in drug delivery as well as molecular imaging and diagnosis of cancer exploiting polymer-based, lipid-based and inorganic nanoparticulate systems.

Keywords: Nanomedicine, EPR effect, passive targeting, active targeting, cancer diagnosis, multidrug resistance.

[1]
World Health Organization. Cancer. Available at: http://www.who.int/mediacentre/factsheets/fs297/en/
[2]
Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov Today 2019; 24(11): 2181-91.
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[3]
Reichert JM, Wenger JB. Development trends for new cancer therapeutics and vaccines. Drug Discov Today 2008; 13(1-2): 30-7.
[http://dx.doi.org/10.1016/j.drudis.2007.09.003] [PMID: 18190861]
[4]
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 2006; 7(8): 657-67.
[http://dx.doi.org/10.1016/S1470-2045(06)70793-8] [PMID: 16887483]
[5]
Akhter MH, Rizwanullah M, Ahmad J, Ahsan MJ, Mujtaba MA, Amin S. Nanocarriers in advanced drug targeting: setting novel paradigm in cancer therapeutics. Artif Cells Nanomed Biotechnol 2018; 46(5): 873-84.
[http://dx.doi.org/10.1080/21691401.2017.1366333] [PMID: 28830262]
[6]
Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 2013; 24(6): 1159-66.
[http://dx.doi.org/10.1016/j.copbio.2013.02.020] [PMID: 23578464]
[7]
Akhter S, Ahmad I, Ahmad MZ, et al. Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets 2013; 13(4): 362-78.
[http://dx.doi.org/10.2174/1568009611313040002] [PMID: 23517593]
[8]
Ahmad J, Akhter S, Greig NH, Kamal MA, Midoux P, Pichon C. Engineered nanoparticles against MDR in cancer: the state of the art and its prospective. Curr Pharm Des 2016; 22(28): 4360-73.
[http://dx.doi.org/10.2174/1381612822666160617112111] [PMID: 27319945]
[9]
Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004; 303(5665): 1818-22.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[10]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[11]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl 2015; 8: 55-66.
[PMID: 26640374]
[12]
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[13]
Bhosle J, Hall G. Principles of cancer treatment by chemotherapy. Surgery 2009; 27(4): 173-7.
[14]
Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS PharmSciTech 2019; 20(2)
[15]
Soni K, Rizwanullah M, Kohli K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box- Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 15-31.
[http://dx.doi.org/10.1080/21691401.2017.1408124]
[16]
Takeda M, Tada H, Higuchi H, et al. In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 2008; 15(2): 145-52.
[http://dx.doi.org/10.1007/s12282-008-0037-0] [PMID: 18317884]
[17]
Singhal S, Nie S, Wang MD. Nanotechnology applications in surgical oncology. Annu Rev Med 2010; 61: 359-73.
[http://dx.doi.org/10.1146/annurev.med.60.052907.094936] [PMID: 20059343]
[18]
Jain RK. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 2001; 74(1-3): 7-25.
[http://dx.doi.org/10.1016/S0168-3659(01)00306-6] [PMID: 11489479]
[19]
Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release 2012; 162(1): 45-55.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.051] [PMID: 22698943]
[20]
Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv 2012; 9(6): 671-86.
[http://dx.doi.org/10.1517/17425247.2012.682726] [PMID: 22607535]
[21]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[22]
Dhanasekaran SM, Barrette TR, Ghosh D, et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412(6849): 822-6.
[http://dx.doi.org/10.1038/35090585] [PMID: 11518967]
[23]
Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91(3): 1071-121.
[http://dx.doi.org/10.1152/physrev.00038.2010] [PMID: 21742796]
[24]
Davis FF. The origin of pegnology. Adv Drug Deliv Rev 2002; 54(4): 457-8.
[http://dx.doi.org/10.1016/S0169-409X(02)00021-2] [PMID: 12052708]
[25]
Rizwanullah M, Ahmad J, Amin S. Nanostructured lipid carriers: a novel platform for chemotherapeutics. Curr Drug Deliv 2016; 13(1): 4-26.
[http://dx.doi.org/10.2174/1567201812666150817124133] [PMID: 26279117]
[26]
Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 2005; 26(9): 1053-61.
[http://dx.doi.org/10.1016/j.biomaterials.2004.04.008] [PMID: 15369694]
[27]
Akhter S, Amin S, Ahmad J, et al. Efferth T, Ed. Resistance to targeted anti-cancer therapeutics. Springer International Publishing Switzerland 2015; 4: 245-72.
[28]
Links M, Brown R. Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev Mol Med 1999; 1999(15): 1-21.
[PMID: 14585120]
[29]
Ahmad J, Kohli K, Mir SR, Amin S. Lipid based nanocarriers for oral delivery of cancer chemotherapeutics: an insight in the intestinal lymphatic transport. Drug Deliv Lett 2013; 3(1): 38-46.
[http://dx.doi.org/10.2174/2210304x11303010006]
[30]
de Verdière AC, Dubernet C, Némati F, et al. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer 1997; 76(2): 198-205.
[http://dx.doi.org/10.1038/bjc.1997.362] [PMID: 9231919]
[31]
Blagosklonny MV. Targeting cancer cells by exploiting their resistance. Trends Mol Med 2003; 9(7): 307-12.
[http://dx.doi.org/10.1016/S1471-4914(03)00111-4] [PMID: 12900218]
[32]
Freitas RA Jr. What is nanomedicine? Nanomedicine 2005; 1(1): 2-9.
[http://dx.doi.org/10.1016/j.nano.2004.11.003] [PMID: 17292052]
[33]
Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 2015; 115(19): 10907-37.
[http://dx.doi.org/10.1021/cr500314d] [PMID: 26166537]
[34]
Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 2018; 26(9): 731-52.
[http://dx.doi.org/10.1080/1061186X.2017.1408115] [PMID: 29157022]
[35]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[36]
Oku N, Yamashita M, Katayama Y, et al. PET imaging of brain cancer with positron emitter-labeled liposomes. Int J Pharm 2011; 403(1-2): 170-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.001] [PMID: 20934495]
[37]
Hansen AE, Petersen AL, Henriksen JR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 2015; 9(7): 6985-95.
[http://dx.doi.org/10.1021/acsnano.5b01324] [PMID: 26022907]
[38]
Ren L, Chen S, Li H, et al. MRI-guided liposomes for targeted tandem chemotherapy and therapeutic response prediction. Acta Biomater 2016; 35: 260-8.
[http://dx.doi.org/10.1016/j.actbio.2016.02.011] [PMID: 26873364]
[39]
Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech 2014; 15(3): 694-708.
[http://dx.doi.org/10.1208/s12249-014-0088-9] [PMID: 24510526]
[40]
Jarzyna PA, Skajaa T, Gianella A, et al. Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials 2009; 30(36): 6947-54.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.004] [PMID: 19783295]
[41]
Gianella A, Jarzyna PA, Mani V, et al. Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano 2011; 5(6): 4422-33.
[http://dx.doi.org/10.1021/nn103336a] [PMID: 21557611]
[42]
Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[43]
Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles. Int J Nanomedicine 2007; 2(4): 595-607.
[PMID: 18203427]
[44]
Peira E, Marzola P, Podio V, Aime S, Sbarbati A, Gasco MR. In vitro and in vivo study of solid lipid nanoparticles loaded with superparamagnetic iron oxide. J Drug Target 2003; 11(1): 19-24.
[http://dx.doi.org/10.1080/1061186031000086108] [PMID: 12852437]
[45]
Andreozzi E, Seo JW, Ferrara K, Louie A. Novel method to label solid lipid nanoparticles with 64cu for positron emission tomography imaging. Bioconjug Chem 2011; 22(4): 808-18.
[http://dx.doi.org/10.1021/bc100478k] [PMID: 21388194]
[46]
Kakkar V, Mishra AK, Chuttani K, Kaur IP. Proof of concept studies to confirm the delivery of curcumin loaded solid lipid nanoparticles (C-SLNs) to brain. Int J Pharm 2013; 448(2): 354-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.046] [PMID: 23558314]
[47]
Rizwanullah M, Amin S, Ahmad J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J Drug Target 2017; 25(1): 58-74.
[http://dx.doi.org/10.1080/1061186X.2016.1191080] [PMID: 27186665]
[48]
Goutayer M, Dufort S, Josserand V, et al. Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm 2010; 75(2): 137-47.
[http://dx.doi.org/10.1016/j.ejpb.2010.02.007] [PMID: 20149869]
[49]
Han C, Li Y, Sun M, et al. Small peptide-modified nanostructured lipid carriers distribution and targeting to EGFR-overexpressing tumor in vivo. Artif Cells Nanomed Biotechnol 2014; 42(3): 161-6.
[http://dx.doi.org/10.3109/21691401.2013.801848] [PMID: 23731383]
[50]
Papadimitriou SA, Salinas Y, Resmini M. Smart polymeric nanoparticles as emerging tools for imaging - The parallel evolution of materials. Chemistry 2016; 22(11): 3612-20.
[http://dx.doi.org/10.1002/chem.201502610] [PMID: 26563829]
[51]
Mi P, Wang F, Nishiyama N, Cabral H. Molecular cancer imaging with polymeric nanoassemblies: From tumor detection to theranostics. Macromol Biosci 2017; 17(1): 1-12.
[http://dx.doi.org/10.1002/mabi.201600305] [PMID: 27739631]
[52]
Ozgur A, Lambrecht FY, Ocakoglu K, Gunduz C, Yucebas M. Synthesis and biological evaluation of radiolabeled photosensitizer linked bovine serum albumin nanoparticles as a tumor imaging agent. Int J Pharm 2012; 422(1-2): 472-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.013] [PMID: 22101288]
[53]
Capolla S, Garrovo C, Zorzet S, et al. Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies. Int J Nanomedicine 2015; 10: 4099-109.
[PMID: 26124662]
[54]
Hill TK, Kelkar SS, Wojtynek NE, et al. Near infrared fluorescent nanoparticles derived from hyaluronic acid improve tumor contrast for image-guided surgery. Theranostics 2016; 6(13): 2314-28.
[http://dx.doi.org/10.7150/thno.16514] [PMID: 27877237]
[55]
Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(5): 691-707.
[http://dx.doi.org/10.1002/wnan.1332] [PMID: 25683687]
[56]
Guo Q, Kuang L, Cao H, Li W, Wei J. Self-assembled mPEG-PCL-g-PEI micelles for multifunctional nanoprobes of doxorubicin delivery and magnetic resonance imaging and optical imaging. Colloids Surf B Biointerfaces 2015; 136: 687-93.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.013] [PMID: 26513751]
[57]
Zhang Z, Sun Q, Zhong J, et al. Magnetic resonance imaging-visible and pH-sensitive polymeric micelles for tumor targeted drug delivery. J Biomed Nanotechnol 2014; 10(2): 216-26.
[http://dx.doi.org/10.1166/jbn.2014.1729] [PMID: 24738330]
[58]
Cho H, Cho CS, Indig GL, Lavasanifar A, Vakili MR, Kwon GS. Polymeric micelles for apoptosis-targeted optical imaging of cancer and intraoperative surgical guidance. PLoS One 2014; 9(2)e89968
[http://dx.doi.org/10.1371/journal.pone.0089968] [PMID: 24587157]
[59]
Cai X, Hu J, Xiao J, Cheng Y. Dendrimer and cancer: a patent review (2006-present). Expert Opin Ther Pat 2013; 23(4): 515-29.
[http://dx.doi.org/10.1517/13543776.2013.761207] [PMID: 23339480]
[60]
Chen Q, Li K, Wen S, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2013; 34(21): 5200-9.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.009] [PMID: 23583039]
[61]
Yang J, Luo Y, Xu Y, et al. Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Appl Mater Interfaces 2015; 7(9): 5420-8.
[http://dx.doi.org/10.1021/am508983n] [PMID: 25695661]
[62]
Xiong Z, Wang Y, Zhu J, et al. Gd-Chelated poly(propylene imine) dendrimers with densely organized maltose shells for enhanced MR imaging applications. Biomater Sci 2016; 4(11): 1622-9.
[http://dx.doi.org/10.1039/C6BM00532B] [PMID: 27722500]
[63]
Akhter S, Ramazani F, Ahmad MZ, et al. Atta-Ur-Rahman, Choudhary MI, Eds. Frontiers in anti-cancer drug discovery. Bentham Science Publishers 2014; 3: 262-91.
[64]
Hu Y, Li J, Yang J, et al. Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomater Sci 2015; 3(5): 721-32.
[http://dx.doi.org/10.1039/C5BM00037H] [PMID: 26222591]
[65]
Luo Y, Yang J, Yan Y, et al. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale 2015; 7(34): 14538-46.
[http://dx.doi.org/10.1039/C5NR04003E] [PMID: 26260703]
[66]
Zhang Y, Huang Z, Wu Z, Yin G, Wang L, Gao F. Functionalized magnetic nanochains with enhanced MR imaging: A novel nanosystem for targeting and inhibition of early glioma. Colloids Surf B Biointerfaces 2016; 140: 437-45.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.006] [PMID: 26803007]
[67]
Cabuzu D, Cirja A, Puiu R, Grumezescu AM. Biomedical applications of gold nanoparticles. Curr Top Med Chem 2015; 15(16): 1605-13.
[http://dx.doi.org/10.2174/1568026615666150414144750] [PMID: 25877087]
[68]
Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 2008; 1: 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[69]
Chen F, Wang Y, Ma J, Yang G. A biocompatible synthesis of gold nanoparticles by Tris(hydroxymethyl)aminomethane. Nanoscale Res Lett 2014; 9(1): 220.
[http://dx.doi.org/10.1186/1556-276X-9-220] [PMID: 25006333]
[70]
Chen Q, Wang H, Liu H, et al. Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 2015; 87(7): 3949-56.
[http://dx.doi.org/10.1021/acs.analchem.5b00135] [PMID: 25768040]
[71]
Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 2011; 6: 2859-64.
[PMID: 22131831]
[72]
Kamila S, McEwan C, Costley D, et al. Diagnostic and therapeutic applications of quantum dots in nanomedicine. Top Curr Chem (Cham) 2016; 370: 203-24.
[http://dx.doi.org/10.1007/978-3-319-22942-3_7] [PMID: 26589510]
[73]
Lin G, Wang X, Yin F, Yong KT. Passive tumor targeting and imaging by using mercaptosuccinic acid-coated near-infrared quantum dots. Int J Nanomedicine 2015; 10: 335-45.
[http://dx.doi.org/10.2147/IJN.S74805] [PMID: 25609948]
[74]
Zheng M, Ruan S, Liu S, et al. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015; 9(11): 11455-61.
[http://dx.doi.org/10.1021/acsnano.5b05575] [PMID: 26458137]
[75]
Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 2015; 20(6): 750-9.
[http://dx.doi.org/10.1016/j.drudis.2015.01.006] [PMID: 25601411]
[76]
Al Faraj A, Shaik AS, Al Sayed B. Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model. Nanomedicine (Lond) 2015; 10(6): 931-48.
[http://dx.doi.org/10.2217/nnm.14.145] [PMID: 25867858]
[77]
Robinson JT, Hong G, Liang Y, Zhang B, Yaghi OK, Dai H. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 2012; 134(25): 10664-9.
[http://dx.doi.org/10.1021/ja303737a] [PMID: 22667448]
[78]
Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer 2007; 96(9): 1315-9.
[http://dx.doi.org/10.1038/sj.bjc.6603707] [PMID: 17406364]
[79]
LaRocque J, Bharali DJ, Mousa SA. Cancer detection and treatment: the role of nanomedicines. Mol Biotechnol 2009; 42(3): 358-66.
[http://dx.doi.org/10.1007/s12033-009-9161-0] [PMID: 19291428]
[80]
Jain A, Jain SK. Advances in tumor targeted liposomes. Curr Mol Med 2018; 18(1): 44-57.
[http://dx.doi.org/10.2174/1566524018666180416101522] [PMID: 29663884]
[81]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[82]
Eloy JO, Petrilli R, Topan JF, et al. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf B Biointerfaces 2016; 141: 74-82.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.032] [PMID: 26836480]
[83]
Han NK, Shin DH, Kim JS, Weon KY, Jang CY, Kim JS. Hyaluronan-conjugated liposomes encapsulating gemcitabine for breast cancer stem cells. Int J Nanomedicine 2016; 11: 1413-25.
[http://dx.doi.org/10.2147/IJN.S95850] [PMID: 27103799]
[84]
Ravar F, Saadat E, Gholami M, et al. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release 2016; 229: 10-22.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.012] [PMID: 26968799]
[85]
Bu H, He X, Zhang Z, Yin Q, Yu H, Li Y. A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer. Int J Pharm 2014; 471(1-2): 206-13.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.039] [PMID: 24866272]
[86]
Zhao H, Lu H, Gong T, Zhang Z. Nanoemulsion loaded with lycobetaine-oleic acid ionic complex: physicochemical characteristics, in vitro, in vivo evaluation, and antitumor activity. Int J Nanomedicine 2013; 8: 1959-73.
[http://dx.doi.org/10.2147/IJN.S43892] [PMID: 23723698]
[87]
Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[88]
Banerjee I, De K, Mukherjee D, et al. Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomater 2016; 38: 69-81.
[http://dx.doi.org/10.1016/j.actbio.2016.04.026] [PMID: 27109765]
[89]
Garanti T, Stasik A, Burrow AJ, Alhnan MA, Wan KW. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int J Pharm 2016; 500(1-2): 305-15.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.018] [PMID: 26775062]
[90]
Silva EL, Lima FA, Carneiro G, Gomes DA, de Souza-Fagundes EM, Ferreira LA. Improved in vitro antileukemic activity of all-trans retinoic acid loaded in cholesteryl butyrate solid lipid nanoparticles. J Nanosci Nanotechnol 2016; 16(2): 1291-300.
[http://dx.doi.org/10.1166/jnn.2016.11677] [PMID: 27433579]
[91]
Zhang T, Chen J, Zhang Y, Shen Q, Pan W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur J Pharm Sci 2011; 43(3): 174-9.
[http://dx.doi.org/10.1016/j.ejps.2011.04.005] [PMID: 21530654]
[92]
Chinsriwongkul A, Chareanputtakhun P, Ngawhirunpat T, et al. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech 2012; 13(1): 150-8.
[http://dx.doi.org/10.1208/s12249-011-9733-8] [PMID: 22167418]
[93]
Yang XY, Li YX, Li M, Zhang L, Feng LX, Zhang N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett 2013; 334(2): 338-45.
[http://dx.doi.org/10.1016/j.canlet.2012.07.002] [PMID: 22776563]
[94]
Prabhu RH, Patravale VB, Joshi MD. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine 2015; 10: 1001-18.
[PMID: 25678788]
[95]
Chittasupho C, Xie SX, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci 2009; 37(2): 141-50.
[http://dx.doi.org/10.1016/j.ejps.2009.02.008] [PMID: 19429421]
[96]
Melguizo C, Cabeza L, Prados J, et al. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate) nanoparticles. Drug Des Devel Ther 2015; 9: 6433-44.
[PMID: 26715840]
[97]
Zhang L, Li G, Gao M, et al. RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin. Colloids Surf B Biointerfaces 2016; 144: 81-9.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.077] [PMID: 27070055]
[98]
Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 2007; 24(6): 1029-46.
[http://dx.doi.org/10.1007/s11095-006-9223-y] [PMID: 17385025]
[99]
Jin X, Mo R, Ding Y, Zheng W, Zhang C. Paclitaxel-loaded N-octyl-O-sulfate chitosan micelles for superior cancer therapeutic efficacy and overcoming drug resistance. Mol Pharm 2014; 11(1): 145-57.
[http://dx.doi.org/10.1021/mp400340k] [PMID: 24261922]
[100]
Jeong YI, Kim DH, Chung CW, et al. Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer. Int J Nanomedicine 2011; 6: 1415-27.
[http://dx.doi.org/10.2147/IJN.S19491] [PMID: 21796244]
[101]
Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004; 96(2): 273-83.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.003] [PMID: 15081218]
[102]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[103]
Kesharwani P, Xie L, Banerjee S, et al. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces 2015; 136: 413-23.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[104]
Qi X, Fan Y, He H, Wu Z. Hyaluronic acid-grafted polyamidoamine dendrimers enable long circulation and active tumor targeting simultaneously. Carbohydr Polym 2015; 126: 231-9.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.019] [PMID: 25933544]
[105]
Wang F, Li C, Cheng J, Yuan Z. Recent advances on inorganic nanoparticle based cancer therapeutic agents. Int J Environ Res Public Health 2016; 13(12)E1182
[http://dx.doi.org/10.3390/ijerph13121182] [PMID: 27898016]
[106]
Ren X, Chen H, Yang V, Sun D. Iron oxide nanoparticle-based theranostics for cancer imaging and therapy. Front Chem Sci Eng 2014; 8: 253-64.
[http://dx.doi.org/10.1007/s11705-014-1425-y]
[107]
Augustin E, Czubek B, Nowicka AM, Kowalczyk A, Stojek Z, Mazerska Z. Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol In Vitro 2016; 33: 45-53.
[http://dx.doi.org/10.1016/j.tiv.2016.02.009] [PMID: 26911730]
[108]
Hauser AK, Anderson KW, Hilt JZ. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells. Nanomedicine (Lond) 2016; 11(14): 1769-85.
[http://dx.doi.org/10.2217/nnm-2016-0050] [PMID: 27388639]
[109]
Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur J Pharmacol 2016; 784: 121-8.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.016] [PMID: 27181067]
[110]
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012; 41(7): 2740-79.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[111]
Morshed RA, Muroski ME, Dai Q, et al. Cell penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharm 2016; 13(6): 1843-54.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00004] [PMID: 27169484]
[112]
Safwat MA, Soliman GM, Sayed D, Attia MA. Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. Int J Pharm 2016; 513(1-2): 648-58.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.076] [PMID: 27693737]
[113]
Spadavecchia J, Movia D, Moore C, et al. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. Int J Nanomedicine 2016; 11: 791-822.
[http://dx.doi.org/10.2147/IJN.S97476] [PMID: 27013874]
[114]
Zhao MX, Zhu BJ. The research and applications of quantum dots as nanocarriers for targeted drug delivery and cancer therapy. Nanoscale Res Lett 2016; 11(1): 207.
[http://dx.doi.org/10.1186/s11671-016-1394-9] [PMID: 27090658]
[115]
Bajwa N, Kumar Mehra N, Jain K, Kumar Jain N. Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif Cells Nanomed Biotechnol 2016; 44(7): 1774-82.
[http://dx.doi.org/10.3109/21691401.2015.1102740] [PMID: 26508412]
[116]
Xu P, Li J, Shi L, Selke M, Chen B, Wang X. Synergetic effect of functional cadmium-tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition. Int J Nanomedicine 2013; 8: 3729-36.
[http://dx.doi.org/10.2147/IJN.S51622] [PMID: 24109183]
[117]
Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine 2016; 11: 5163-85.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[118]
Qi X, Rui Y, Fan Y, Chen H, Ma N, Wu Z. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo. Colloids Surf B Biointerfaces 2015; 133: 314-22.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.003] [PMID: 26123852]
[119]
Singh RP, Sharma G, Sonali , et al. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater Sci Eng C 2016; 67: 313-25.
[http://dx.doi.org/10.1016/j.msec.2016.05.013] [PMID: 27287127]
[120]
Rihova B, Riha I. Immunological problems of polymer-bound drugs. Crit Rev Ther Drug Carrier Syst 1985; 1(4): 311-74.
[PMID: 2420476]
[121]
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2(5): 347-60.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[122]
Wang B, Feng WY, Wang TC, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 2006; 161(2): 115-23.
[http://dx.doi.org/10.1016/j.toxlet.2005.08.007] [PMID: 16165331]
[123]
Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev 2011; 14(8): 593-632.
[http://dx.doi.org/10.1080/10937404.2011.615113] [PMID: 22008094]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 11
Year: 2020
Published on: 23 April, 2020
Page: [1216 - 1231]
Pages: 16
DOI: 10.2174/1381612826666200318170716
Price: $65

Article Metrics

PDF: 27
HTML: 3