The Importance of Understanding Amylin Signaling Mechanisms for Therapeutic Development in the Treatment of Alzheimer’s Disease

Author(s): Spencer Servizi, Rachel R. Corrigan, Gemma Casadesus*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 12 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Type II Diabetes (T2D) is a major risk factor for Alzheimer’s Disease (AD). These two diseases share several pathological features, including amyloid accumulation, inflammation, oxidative stress, cell death and cognitive decline. The metabolic hormone amylin and amyloid-beta are both amyloids known to self-aggregate in T2D and AD, respectively, and are thought to be the main pathogenic entities in their respective diseases. Furthermore, studies suggest amylin’s ability to seed amyloid-beta aggregation, the activation of common signaling cascades in the pancreas and the brain, and the ability of amyloid beta to signal through amylin receptors (AMYR), at least in vitro. However, paradoxically, non-aggregating forms of amylin such as pramlintide are given to treat T2D and functional and neuroprotective benefits of amylin and pramlintide administration have been reported in AD transgenic mice. These paradoxical results beget a deeper study of the complex nature of amylin’s signaling through the several AMYR subtypes and other receptors associated with amylin effects to be able to fully understand its potential role in mediating AD development and/or prevention. The goal of this review is to provide such critical insight to begin to elucidate how the complex nature of this hormone’s signaling may explain its equally complex relationship with T2D and mechanisms of AD pathogenesis.

Keywords: Alzheimer's disease (AD), type II diabetes (T2D), amyloid, amyloid beta, amylin, calcitonin receptor, receptor activity modifying protein (RAMP).

[1]
Alzheimer’s Association Report 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018; 14(3): 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[2]
Barnes J, Dickerson BC, Frost C, Jiskoot LC, Wolk D, van der Flier WM. Alzheimer’s disease first symptoms are age dependent: Evidence from the NACC dataset. Alzheimers Dement 2015; 11(11): 1349-57.
[http://dx.doi.org/10.1016/j.jalz.2014.12.007] [PMID: 25916562]
[3]
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015; 1: 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[4]
Wu L, Rosa-Neto P, Hsiung GY, et al. Early-onset familial Alzheimer’s disease (EOFAD). The Canadian J Neurol Sci 2012; 39(4): 436-5.
[5]
van der Flier WM, Pijnenburg YA, Fox NC, Scheltens P. Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE ɛ4 allele. Lancet Neurol 2011; 10(3): 280-8.
[http://dx.doi.org/10.1016/S1474-4422(10)70306-9] [PMID: 21185234]
[6]
Golde TE, Eckman CB, Younkin SG. Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochim Biophys Acta 2000; 1502(1): 172-87.
[http://dx.doi.org/10.1016/S0925-4439(00)00043-0] [PMID: 10899442]
[7]
LaFerla FM, Oddo S. Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 2005; 11(4): 170-6.
[http://dx.doi.org/10.1016/j.molmed.2005.02.009] [PMID: 15823755]
[8]
Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 2000; 1502(1): 139-44.
[http://dx.doi.org/10.1016/S0925-4439(00)00040-5] [PMID: 10899439]
[9]
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[10]
Hoyer S, Nitsch R, Oesterreich K. Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm Park Dis Dement Sect 1991; 3(1): 1-14.
[http://dx.doi.org/10.1007/BF02251132] [PMID: 1905936]
[11]
Niikura T, Tajima H, Kita Y. Neuronal cell death in Alzheimer’s disease and a neuroprotective factor, humanin. Curr Neuropharmacol 2006; 4(2): 139-47.
[http://dx.doi.org/10.2174/157015906776359577] [PMID: 18615127]
[12]
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83(13): 4913-7.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[13]
Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007; 8(9): 663-72.
[http://dx.doi.org/10.1038/nrn2194] [PMID: 17684513]
[14]
Mandelkow EM, Mandelkow E. Tau in Alzheimer’s disease. Trends Cell Biol 1998; 8(11): 425-7.
[http://dx.doi.org/10.1016/S0962-8924(98)01368-3] [PMID: 9854307]
[15]
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2012; 2(5) a006270
[http://dx.doi.org/10.1101/cshperspect.a006270] [PMID: 22553493]
[16]
Nhan HS, Chiang K, Koo EH. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol 2015; 129(1): 1-19.
[http://dx.doi.org/10.1007/s00401-014-1347-2] [PMID: 25287911]
[17]
Steinerman JR, Irizarry M, Scarmeas N, et al. Distinct pools of beta-amyloid in Alzheimer disease-affected brain: a clinicopathologic study. Arch Neurol 2008; 65(7): 906-12.
[http://dx.doi.org/10.1001/archneur.65.7.906] [PMID: 18625856]
[18]
Scheuner D, Eckman C, Jensen M, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 1996; 2(8): 864-70.
[http://dx.doi.org/10.1038/nm0896-864] [PMID: 8705854]
[19]
De Strooper B, Saftig P, Craessaerts K, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 1998; 391(6665): 387-90.
[http://dx.doi.org/10.1038/34910] [PMID: 9450754]
[20]
Citron M, Westaway D, Xia W, et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 1997; 3(1): 67-72.
[http://dx.doi.org/10.1038/nm0197-67] [PMID: 8986743]
[21]
Duff K, Eckman C, Zehr C, et al. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 1996; 383(6602): 710-3.
[http://dx.doi.org/10.1038/383710a0] [PMID: 8878479]
[22]
Tomita T, Maruyama K, Saido TC, et al. The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid beta protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 1997; 94(5): 2025-30.
[http://dx.doi.org/10.1073/pnas.94.5.2025] [PMID: 9050898]
[23]
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8(2): 101-12.
[http://dx.doi.org/10.1038/nrm2101] [PMID: 17245412]
[24]
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: beginning of the third decade. J Alzheimers Dis 2018; 64(s1): S567-610.
[http://dx.doi.org/10.3233/JAD-179941] [PMID: 29843241]
[25]
Viola KL, Klein WL. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129(2): 183-206.
[http://dx.doi.org/10.1007/s00401-015-1386-3] [PMID: 25604547]
[26]
de la Monte SM. Type 3 diabetes is sporadic Alzheimers disease: mini-review European Neuropsychopharm 2014; 24(12): 1954.60
[27]
Stozická Z, Zilka N, Novák M. Risk and protective factors for sporadic Alzheimer’s disease. Acta Virol 2007; 51(4): 205-22.
[PMID: 18197729]
[28]
Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 2012; 42(5): 484-91.
[http://dx.doi.org/10.1111/j.1445-5994.2012.02758.x] [PMID: 22372522]
[29]
Garcia-Lara JM, Aguilar-Navarro S, Gutierrez-Robledo LM, Avila-Funes JA. The metabolic syndrome, diabetes, and Alzheimer's disease.Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion 2010; 62(4): 343-9.
[30]
Folch J, Pedrós I, Patraca I, Martínez N, Sureda F, Camins A. Metabolic basis of sporadic Alzeimer’s disease. role of hormones related to energy metabolism. Curr Pharm Des 2013; 19(38): 6739-48.
[http://dx.doi.org/10.2174/13816128113199990612] [PMID: 23530509]
[31]
Leibson CL, Rocca WA, Hanson VA, et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 1997; 145(4): 301-8.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009106] [PMID: 9054233]
[32]
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1078-89.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[33]
Kautzky-Willer A, Harreiter J, Pacini G. Sex and Gender Differences in Risk, Pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 2016; 37(3): 278-316.
[http://dx.doi.org/10.1210/er.2015-1137] [PMID: 27159875]
[34]
Palermo A, Maggi D, Maurizi AR, Pozzilli P, Buzzetti R. Prevention of type 2 diabetes mellitus: is it feasible? Diabetes Metab Res Rev 2014; 30(Suppl. 1): 4-12.
[http://dx.doi.org/10.1002/dmrr.2513] [PMID: 24353270]
[35]
DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 1992; 15(3): 318-68.
[http://dx.doi.org/10.2337/diacare.15.3.318] [PMID: 1532777]
[36]
U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 1995; 44(11): 1249-58.
[http://dx.doi.org/10.2337/diab.44.11.1249] [PMID: 7589820]
[37]
Grizzanti J, Corrigan R, Servizi S, Casadesus G. Amylin signaling in diabetes and alzheimer’s disease: therapy or pathology? J Neurol Neuromedicine 2019; 4(1): 12-6.
[38]
Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 2004; 26(8): 1044-80.
[http://dx.doi.org/10.1080/13803390490514875] [PMID: 15590460]
[39]
Schwartz MW, Figlewicz DF, Kahn SE, Baskin DG, Greenwood MR, Porte D Jr. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats. Peptides 1990; 11(3): 467-72.
[http://dx.doi.org/10.1016/0196-9781(90)90044-6] [PMID: 2199946]
[40]
Wallum BJ, Taborsky GJ Jr, Porte D Jr, et al. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab 1987; 64(1): 190-4.
[http://dx.doi.org/10.1210/jcem-64-1-190] [PMID: 3536982]
[41]
Gil-Bea FJ, Solas M, Solomon A, et al. Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimer’s disease. J Alzheimers Dis 2010; 22(2): 405-13.
[http://dx.doi.org/10.3233/JAD-2010-100795] [PMID: 20847404]
[42]
Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 2013; 47(1): 145-71.
[http://dx.doi.org/10.1007/s12035-012-8339-9] [PMID: 22956272]
[43]
Berent S, Giordani B, Foster N, et al. Neuropsychological function and cerebral glucose utilization in isolated memory impairment and Alzheimer’s disease. J Psychiatr Res 1999; 33(1): 7-16.
[http://dx.doi.org/10.1016/S0022-3956(98)90048-6] [PMID: 10094234]
[44]
Willette AA, Bendlin BB, Starks EJ, et al. Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer disease. JAMA Neurol 2015; 72(9): 1013-20.
[http://dx.doi.org/10.1001/jamaneurol.2015.0613] [PMID: 26214150]
[45]
de la Monte SM, Longato L, Tong M, Wands JR. Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis.Curr Opinion Investig Drugs (London, England : 2000) 2009; 10(10): 1049-60.
[46]
de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 2005; 7(1): 45-61.
[http://dx.doi.org/10.3233/JAD-2005-7106] [PMID: 15750214]
[47]
Grillo CA, Piroli GG, Lawrence RC, et al. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes 2015; 64(11): 3927-36.
[http://dx.doi.org/10.2337/db15-0596] [PMID: 26216852]
[48]
Skeberdis VA, Lan J, Zheng X, Zukin RS, Bennett MV. Insulin promotes rapid delivery of N-methyl-D- aspartate receptors to the cell surface by exocytosis. Proc Natl Acad Sci USA 2001; 98(6): 3561-6.
[http://dx.doi.org/10.1073/pnas.051634698] [PMID: 11248117]
[49]
Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 2001; 177(1-2): 125-34.
[http://dx.doi.org/10.1016/S0303-7207(01)00455-5] [PMID: 11377828]
[50]
Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs 2003; 17(1): 27-45.
[http://dx.doi.org/10.2165/00023210-200317010-00003] [PMID: 12467491]
[51]
Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology 2004; 63(7): 1187-92.
[http://dx.doi.org/10.1212/01.WNL.0000140292.04932.87] [PMID: 15477536]
[52]
Medina M, Garrido JJ, Wandosell FG. Modulation of GSK-3 as a therapeutic strategy on tau pathologies. Front Mol Neurosci 2011; 4: 24.
[http://dx.doi.org/10.3389/fnmol.2011.00024] [PMID: 22007157]
[53]
Zhao WQ, Lacor PN, Chen H, et al. Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric abeta. J Biol Chem 2009; 284(28): 18742-53.
[http://dx.doi.org/10.1074/jbc.M109.011015] [PMID: 19406747]
[54]
Pearson-Leary J, McNay EC. Intrahippocampal administration of amyloid-β(1-42) oligomers acutely impairs spatial working memory, insulin signaling, and hippocampal metabolism. J Alzheimers Dis 2012; 30(2): 413-22.
[http://dx.doi.org/10.3233/JAD-2012-112192] [PMID: 22430529]
[55]
Zhang Y, Zhou B, Zhang F, et al. Amyloid-β induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway. Diabetes 2012; 61(6): 1434-43.
[http://dx.doi.org/10.2337/db11-0499] [PMID: 22522613]
[56]
Shiiki T, Ohtsuki S, Kurihara A, et al. Brain insulin impairs amyloid-β(1-40) clearance from the brain. J Neurosci 2004; 24(43): 9632-7.
[http://dx.doi.org/10.1523/JNEUROSCI.2236-04.2004] [PMID: 15509750]
[57]
Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast 2005; 12(4): 311-28.
[http://dx.doi.org/10.1155/NP.2005.311] [PMID: 16444902]
[58]
Qiu WQ, Walsh DM, Ye Z, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by degradation. J Biol Chem 1998; 273(49): 32730-8.
[http://dx.doi.org/10.1074/jbc.273.49.32730] [PMID: 9830016]
[59]
Bennett RG, Hamel FG, Duckworth WC. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes 2003; 52(9): 2315-20.
[http://dx.doi.org/10.2337/diabetes.52.9.2315] [PMID: 12941771]
[60]
Hwang JJ, Chan JL, Ntali G, Malkova D, Mantzoros CS. Leptin does not directly regulate the pancreatic hormones amylin and pancreatic polypeptide: interventional studies in humans. Diabetes Care 2008; 31(5): 945-51.
[http://dx.doi.org/10.2337/dc07-2433] [PMID: 18252898]
[61]
Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: pharmacology, physiology, and clinical potential. Pharmacol Rev 2015; 67(3): 564-600.
[http://dx.doi.org/10.1124/pr.115.010629] [PMID: 26071095]
[62]
Christopoulos G, Perry KJ, Morfis M, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 1999; 56(1): 235-42.
[http://dx.doi.org/10.1124/mol.56.1.235] [PMID: 10385705]
[63]
Flahaut M, Rossier BC, Firsov D. Respective roles of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMP) in cell surface expression of CRLR/RAMP heterodimeric receptors. J Biol Chem 2002; 277(17): 14731-7.
[http://dx.doi.org/10.1074/jbc.M112084200] [PMID: 11854283]
[64]
Gorn AH, Lin HY, Yamin M, et al. Cloning, characterization, and expression of a human calcitonin receptor from an ovarian carcinoma cell line. J Clin Invest 1992; 90(5): 1726-35.
[http://dx.doi.org/10.1172/JCI116046] [PMID: 1331173]
[65]
Masi L, Brandi ML. Calcitonin and calcitonin receptors. Clin Cases Miner Bone Metab 2007; 4(2): 117-22.
[PMID: 22461211]
[66]
Becskei C, Riediger T, Zünd D, Wookey P, Lutz TA. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res 2004; 1030(2): 221-33.
[http://dx.doi.org/10.1016/j.brainres.2004.10.012] [PMID: 15571671]
[67]
Bower RL, Eftekhari S, Waldvogel HJ, et al. Mapping the calcitonin receptor in human brain stem. Am J Physiol Regul Integr Comp Physiol 2016; 310(9): R788-93.
[http://dx.doi.org/10.1152/ajpregu.00539.2015] [PMID: 26911465]
[68]
Sexton PM, Findlay DM, Martin TJ. Calcitonin. Curr Med Chem 1999; 6(11): 1067-93.
[PMID: 10519914]
[69]
Poyner DR, Sexton PM, Marshall I, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 2002; 54(2): 233-46.
[http://dx.doi.org/10.1124/pr.54.2.233] [PMID: 12037140]
[70]
Tilakaratne N, Christopoulos G, Zumpe ET, Foord SM, Sexton PM. Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J Pharmacol Exp Ther 2000; 294(1): 61-72.
[PMID: 10871296]
[71]
Fraser NJ, Wise A, Brown J, McLatchie LM, Main MJ, Foord SM. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 1999; 55(6): 1054-9.
[http://dx.doi.org/10.1124/mol.55.6.1054] [PMID: 10347248]
[72]
Sexton PM, Albiston A, Morfis M, Tilakaratne N. Receptor activity modifying proteins. Cell Signal 2001; 13(2): 73-83.
[http://dx.doi.org/10.1016/S0898-6568(00)00143-1] [PMID: 11257451]
[73]
Ueda T, Ugawa S, Saishin Y, Shimada S. Expression of receptor-activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Res Mol Brain Res 2001; 93(1): 36-45.
[http://dx.doi.org/10.1016/S0169-328X(01)00179-6] [PMID: 11532336]
[74]
Jhamandas JH, Li Z, Westaway D, Yang J, Jassar S, MacTavish D. Actions of β-amyloid protein on human neurons are expressed through the amylin receptor. Am J Pathol 2011; 178(1): 140-9.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.022] [PMID: 21224052]
[75]
Mietlicki-Baase EG, Rupprecht LE, Olivos DR, et al. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology 2013; 38(9): 1685-97.
[http://dx.doi.org/10.1038/npp.2013.66] [PMID: 23474592]
[76]
Stachniak TJ, Krukoff TL. Receptor activity modifying protein 2 distribution in the rat central nervous system and regulation by changes in blood pressure. J Neuroendocrinol 2003; 15(9): 840-50.
[http://dx.doi.org/10.1046/j.1365-2826.2003.01064.x] [PMID: 12899678]
[77]
J Gingell J, Simms J, Barwell J, et al. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discov 2016; 2: 16012.
[http://dx.doi.org/10.1038/celldisc.2016.12] [PMID: 27462459]
[78]
Muff R, Bühlmann N, Fischer JA, Born W. An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology 1999; 140(6): 2924-7.
[http://dx.doi.org/10.1210/endo.140.6.6930] [PMID: 10342886]
[79]
Lee S-M, Hay DL, Pioszak AA. Calcitonin and amylin receptor peptide interaction mechanisms: insights into peptide-binding modes and allosteric modulation of the calcitonin receptor by receptor activity-modifying proteins. J Biol Chem 2016; 291(16): 8686-700.
[http://dx.doi.org/10.1074/jbc.M115.713628] [PMID: 26895962]
[80]
Morfis M, Tilakaratne N, Furness SG, et al. Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 2008; 149(11): 5423-31.
[http://dx.doi.org/10.1210/en.2007-1735] [PMID: 18599553]
[81]
Woolley MJ, Conner AC. Comparing the molecular pharmacology of CGRP and adrenomedullin. Curr Protein Pept Sci 2013; 14(5): 358-74.
[http://dx.doi.org/10.2174/13892037113149990053] [PMID: 23745700]
[82]
Casas S, Novials A, Reimann F, Gomis R, Gribble FM. Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 2008; 51(12): 2252-62.
[http://dx.doi.org/10.1007/s00125-008-1111-z] [PMID: 18751967]
[83]
Zhang N, Yang S, Wang C, et al. Multiple target of hAmylin on rat primary hippocampal neuronsNeuropharmacology 2017; 113(Pt A): 241-51.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.008 ] [PMID: 27743934]
[84]
Kauer JA, Gibson HE. Hot flash: TRPV channels in the brain. Trends Neurosci 2009; 32(4): 215-24.
[http://dx.doi.org/10.1016/j.tins.2008.12.006] [PMID: 19285736]
[85]
Bhogal R, Smith DM, Bloom SR. Investigation and characterization of binding sites for islet amyloid polypeptide in rat membranes. Endocrinology 1992; 130(2): 906-13.
[PMID: 1310282]
[86]
Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 1994; 62(2): 553-67.
[http://dx.doi.org/10.1016/0306-4522(94)90388-3] [PMID: 7830897]
[87]
Soudy R, Patel A, Fu W, Kaur K, et al. Cyclic AC253, a novel amylin receptor antagonist, improves cognitive deficits in a mouse model of Alzheimer's diseaseAlzheimer's & dementia (New York, N Y) 2017; 3(1): 44-56.
[http://dx.doi.org/10.1016/j.trci.2016.11.005]
[88]
Kimura R, MacTavish D, Yang J, Westaway D, Jhamandas JH. Pramlintide Antagonizes beta amyloid (Aβ)- and human amylin-induced depression of hippocampal long-term potentiation. Mol Neurobiol 2017; 54(1): 748-54.
[http://dx.doi.org/10.1007/s12035-016-9684-x] [PMID: 26768593]
[89]
Kimura R, MacTavish D, Yang J, Westaway D, Jhamandas JH. Beta amyloid-induced depression of hippocampal long-term potentiation is mediated through the amylin receptor. J Neurosci 2012; 32(48): 17401-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3028-12.2012] [PMID: 23197731]
[90]
Szabó ÉR, Cservenák M, Dobolyi A. Amylin is a novel neuropeptide with potential maternal functions in the rat. FASEB J 2012; 26(1): 272-81.
[http://dx.doi.org/10.1096/fj.11-191841] [PMID: 21965599]
[91]
Dobolyi A. Central amylin expression and its induction in rat dams. J Neurochem 2009; 111(6): 1490-500.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06422.x] [PMID: 19811608]
[92]
D’Este L, Casini A, Wimalawansa SJ, Renda TG. Immunohistochemical localization of amylin in rat brainstem. Peptides 2000; 21(11): 1743-9.
[http://dx.doi.org/10.1016/S0196-9781(00)00325-9] [PMID: 11090930]
[93]
D’Este L, Wimalawansa SJ, Renda TG. Distribution of amylin-immunoreactive neurons in the monkey hypothalamus and their relationships with the histaminergic system. Arch Histol Cytol 2001; 64(3): 295-303.
[http://dx.doi.org/10.1679/aohc.64.295] [PMID: 11575425]
[94]
Jaikaran ET, Clark A. Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta 2001; 1537(3): 179-203.
[http://dx.doi.org/10.1016/S0925-4439(01)00078-3] [PMID: 11731221]
[95]
Hull RL, Andrikopoulos S, Verchere CB, et al. Increased dietary fat promotes islet amyloid formation and β-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes 2003; 52(2): 372-9.
[http://dx.doi.org/10.2337/diabetes.52.2.372] [PMID: 12540610]
[96]
Westermark P, Wilander E. The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia 1978; 15(5): 417-21.
[http://dx.doi.org/10.1007/BF01219652] [PMID: 367856]
[97]
Banks WA, Kastin AJ. Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides 1998; 19(5): 883-9.
[http://dx.doi.org/10.1016/S0196-9781(98)00018-7] [PMID: 9663454]
[98]
Srodulski S, Sharma S, Bachstetter AB, et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegener 2014; 9(1): 30.
[http://dx.doi.org/10.1186/1750-1326-9-30] [PMID: 25149184]
[99]
Verma N, Ly H, Liu M, et al. Intraneuronal amylin deposition, peroxidative membrane injury and increased il-1β synthesis in brains of alzheimer’s disease patients with type-2 diabetes and in diabetic HIP rats. J Alzheimers Dis 2016; 53(1): 259-72.
[http://dx.doi.org/10.3233/JAD-160047] [PMID: 27163815]
[100]
Qiu WQ, Zhu H. Amylin and its analogs: a friend or foe for the treatment of Alzheimer’s disease? Front Aging Neurosci 2014; 6: 186.
[http://dx.doi.org/10.3389/fnagi.2014.00186] [PMID: 25120481]
[101]
Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014; 6(4): 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[102]
Hyde C, Peters J, Bond M, et al. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: systematic review and economic model. Age Ageing 2013; 42(1): 14-20.
[http://dx.doi.org/10.1093/ageing/afs165] [PMID: 23179169]
[103]
Westermark P, Engström U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 1990; 87(13): 5036-40.
[http://dx.doi.org/10.1073/pnas.87.13.5036] [PMID: 2195544]
[104]
Wang H, Ridgway Z, Cao P, Ruzsicska B, Raleigh DP. Analysis of the ability of pramlintide to inhibit amyloid formation by human islet amyloid polypeptide reveals a balance between optimal recognition and reduced amyloidogenicity. Biochemistry 2015; 54(44): 6704-11.
[http://dx.doi.org/10.1021/acs.biochem.5b00567] [PMID: 26407043]
[105]
Qiu WQ, Au R, Zhu H, et al. Positive association between plasma amylin and cognition in a homebound elderly population. J Alzheimers Dis 2014; 42(2): 555-63.
[http://dx.doi.org/10.3233/JAD-140210] [PMID: 24898659]
[106]
Qiu WQ, Wallack M, Dean M, Liebson E, Mwamburi M, Zhu H. Association between amylin and amyloid-β peptides in plasma in the context of apolipoprotein E4 allele. PLoS One 2014; 9(2) e88063
[http://dx.doi.org/10.1371/journal.pone.0088063] [PMID: 24520345]
[107]
Adler BL, Yarchoan M, Hwang HM, et al. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol Aging 2014; 35(4): 793-801.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.10.076] [PMID: 24239383]
[108]
Patrick S, Corrigan R, Grizzani J, et al. Neuroprotective effects of the amylin analog, pramlintide, on alzheimer’s disease are associated with oxidative stress regulation mechanisms. J Alzheimer's Disease 2019. (Preprint): 1-12
[109]
Zhu H, Wang X, Wallack M, et al. Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer’s disease. Mol Psychiatry 2015; 20(2): 252-62.
[http://dx.doi.org/10.1038/mp.2014.17] [PMID: 24614496]
[110]
Zhu H, Xue X, Wang E, et al. Amylin receptor ligands reduce the pathological cascade of Alzheimer’s disease. Neuropharmacology 2017; 119: 170-81.
[http://dx.doi.org/10.1016/j.neuropharm.2017.03.030] [PMID: 28363773]
[111]
Lim Y-A, Ittner LM, Lim YL, Götz J. Human but not rat amylin shares neurotoxic properties with Abeta42 in long-term hippocampal and cortical cultures. FEBS Lett 2008; 582(15): 2188-94.
[http://dx.doi.org/10.1016/j.febslet.2008.05.006] [PMID: 18486611]
[112]
Jhamandas JH, MacTavish D. Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons. J Neurosci 2004; 24(24): 5579-84.
[http://dx.doi.org/10.1523/JNEUROSCI.1051-04.2004] [PMID: 15201330]
[113]
Fu W, Ruangkittisakul A, MacTavish D, Shi JY, Ballanyi K, Jhamandas JH. Amyloid β (Aβ) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. J Biol Chem 2012; 287(22): 18820-30.
[http://dx.doi.org/10.1074/jbc.M111.331181] [PMID: 22500019]
[114]
Jhamandas JH, Mactavish D. beta-Amyloid protein (Abeta) and human amylin regulation of apoptotic genes occurs through the amylin receptor. Apoptosis 2012; 17(1): 37-47.
[115]
Gingell JJ, Burns ER, Hay DL. Activity of pramlintide, rat and human amylin but not Aβ1-42 at human amylin receptors. Endocrinology 2014; 155(1): 21-6.
[http://dx.doi.org/10.1210/en.2013-1658] [PMID: 24169554]
[116]
Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003; 34(4-5): 325-37.
[http://dx.doi.org/10.1016/S0143-4160(03)00141-6] [PMID: 12909079]
[117]
Sama DM, Norris CM. Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 2013; 12(4): 982-95.
[http://dx.doi.org/10.1016/j.arr.2013.05.008] [PMID: 23751484]
[118]
Magi S, Castaldo P, Macrì ML, et al. Intracellular calcium dysregulation: implications for Alzheimer’s disease. BioMed Res Int 2016; 2016 6701324
[http://dx.doi.org/10.1155/2016/6701324] [PMID: 27340665]
[119]
Arruda AP, Hotamisligil GS. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab 2015; 22(3): 381-97.
[http://dx.doi.org/10.1016/j.cmet.2015.06.010] [PMID: 26190652]
[120]
Westwell-Roper C, Dai DL, Soukhatcheva G, et al. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol 2011; 187(5): 2755-65.
[http://dx.doi.org/10.4049/jimmunol.1002854] [PMID: 21813778]
[121]
Wang E, Zhu H, Wang X, et al. Amylin treatment reduces neuroinflammation and ameliorates abnormal patterns of gene expression in the cerebral cortex of an Alzheimer’s disease mouse model. J Alzheimers Dis 2017; 56(1): 47-61.
[http://dx.doi.org/10.3233/JAD-160677] [PMID: 27911303]
[122]
Fu W, Vukojevic V, Patel A, et al. Role of microglial amylin receptors in mediating beta amyloid (Aβ)-induced inflammation. J Neuroinflammation 2017; 14(1): 199.
[http://dx.doi.org/10.1186/s12974-017-0972-9] [PMID: 28985759]
[123]
Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 2010; 11(10): 897-904.
[http://dx.doi.org/10.1038/ni.1935] [PMID: 20835230]
[124]
Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013; 14(8): 812-20.
[http://dx.doi.org/10.1038/ni.2639] [PMID: 23812099]
[125]
Yates SL, Burgess LH, Kocsis-Angle J, et al. Amyloid β and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 2000; 74(3): 1017-25.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0741017.x] [PMID: 10693932]
[126]
Hou X, Sun L, Li Z, et al. Associations of amylin with inflammatory markers and metabolic syndrome in apparently healthy Chinese. PLoS One 2011; 6(9) e24815
[http://dx.doi.org/10.1371/journal.pone.0024815] [PMID: 21935471]
[127]
Mulder H, Zhang Y, Danielsen N, Sundler F. Islet amyloid polypeptide and calcitonin gene-related peptide expression are down-regulated in dorsal root ganglia upon sciatic nerve transection. Brain Res Mol Brain Res 1997; 47(1-2): 322-30.
[http://dx.doi.org/10.1016/S0169-328X(97)00060-0] [PMID: 9221931]
[128]
Gitter BD, Cox LM, Carlson CD, May PC. Human amylin stimulates inflammatory cytokine secretion from human glioma cells. Neuroimmunomodulation 2000; 7(3): 147-52.
[http://dx.doi.org/10.1159/000026432] [PMID: 10754402]
[129]
Tsujikawa K, Yayama K, Hayashi T, et al. Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc Natl Acad Sci USA 2007; 104(42): 16702-7.
[http://dx.doi.org/10.1073/pnas.0705974104] [PMID: 17923674]
[130]
Clementi G, Busa L, de Bernardis E, Prato A, Drago F. Effects of centrally injected amylin on sexually behavior of male rats. Peptides 1999; 20(3): 379-82.
[http://dx.doi.org/10.1016/S0196-9781(98)00166-1] [PMID: 10447097]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 12
Year: 2020
Page: [1345 - 1355]
Pages: 11
DOI: 10.2174/1381612826666200318151146
Price: $65

Article Metrics

PDF: 24
HTML: 16