Trends in Nanomedicines for Cancer Treatment

Author(s): Tatielle do Nascimento, Adriane R. Todeschini, Ralph Santos-Oliveira, Mariana S. de Souza de Bustamante Monteiro, Vilênia T. de Souza, Eduardo Ricci-Júnior*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 29 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Cancer is characterized by abnormal cell growth and considered one of the leading causes of death around the world. Pharmaceutical Nanotechnology has been extensively studied for the optimization of cancer treatment.

Objective: Comprehend the panorama of Pharmaceutical Nanotechnology in cancer treatment, through a survey about nanomedicines applied in clinical studies, approved for use and patented.

Methods: Acknowledged products under clinical study and nanomedicines commercialized found in scientific articles through research on the following databases: Pubmed, Science Direct, Scielo and Lilacs. Derwent tool was used for patent research.

Results: Nanomedicines based on nanoparticles, polymer micelles, liposomes, dendrimers and nanoemulsions were studied, along with cancer therapies such as Photodynamic Therapy, Infrared Phototherapy Hyperthermia, Magnetic Hyperthermia, Radiotherapy, Gene Therapy and Nanoimmunotherapy. Great advancement has been observed over nanotechnology applied to cancer treatment, mainly for nanoparticles and liposomes.

Conclusion: The combination of drugs in nanosystems helps to increase efficacy and decrease toxicity. Based on the results encountered, nanoparticles and liposomes were the most commonly used nanocarriers for drug encapsulation. In addition, although few nanomedicines are commercially available, this specific research field is continuously growing.

Keywords: Cancer, nanocarrier, nanomedicines, nanosystems, nanotechnology, therapy.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65(1): 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[3]
Wellstein A. General principles in the pharmacotherapy of cancer Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 13th ed. McGraw-Hill Education 2018; pp. 1161-6.
[4]
Bukhtoyarov OV, Samarin DM. Pathogenesis of cancer: Cancer reparative trap. J Cancer Ther 2015; 6(5): 399-412.
[http://dx.doi.org/10.4236/jct.2015.65043]
[5]
Parsa Y, Mirmalek SA, Kani FE, et al. A review of the clinical implications of breast cancer biology. Electron Physician 2016; 8(5): 2416-24.
[http://dx.doi.org/10.19082/2416] [PMID: 27382453]
[6]
Antoni MH, Lutgendorf SK, Cole SW, et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 2006; 6(3): 240-8.
[http://dx.doi.org/10.1038/nrc1820] [PMID: 16498446]
[7]
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 2005; 1(3): 193-212.
[http://dx.doi.org/10.1016/j.nano.2005.06.004] [PMID: 17292079]
[8]
Chen H, Roco MC, Son J, Jiang S, Larson CA, Gao Q. Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding. J Nanopart Res 2013; 15(15): 1-22.
[http://dx.doi.org/10.1007/s11051-013-1951-4]
[9]
Bawa R. Patents and nanomedicine. Nanomedicine (Lond) 2007; 2(3): 351-74.
[http://dx.doi.org/10.2217/17435889.2.3.351] [PMID: 17716180]
[10]
Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine (Lond) 2008; 4(4): 273-82.
[http://dx.doi.org/10.1016/j.nano.2008.06.002] [PMID: 18640076]
[11]
Surendiran A, Sandhiya S, Pradhan SC, Adithan C. Novel applications of nanotechnology in medicine. Indian J Med Res 2009; 130(6): 689-701.
[PMID: 20090129]
[12]
Arruebo M, Fernández-Pacheco R, Ibarra R, Santamaría J. Magnetic Nanoparticles for Drug Delivery. Nano Today 2007; 2(3): 22-32.
[http://dx.doi.org/10.1016/S1748-0132(07)70084-1]
[13]
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi 2017; 25(2): 219-34.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[14]
Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 2005; 100(1): 1-11.
[http://dx.doi.org/10.1263/jbb.100.1] [PMID: 16233845]
[15]
Varanda LC, Jafelicci Júnior M, Beck Júnior W. Magnetic and Multifunctional Magnetic Nanoparticles in Nanomedicine: Challenges and Trends in Synthesis and Surface Engineering for Diagnostic and Therapy Applications. Biomedical Engineering, Trends in Materials Science. IntechOpen 2011; pp. 397-424.
[16]
Mc Carthy DJ, Malhotra M, O’Mahony AM, Cryan JF, O’Driscoll CM. Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance. Pharm Res 2015; 32(4): 1161-85.
[http://dx.doi.org/10.1007/s11095-014-1545-6] [PMID: 25446769]
[17]
Dianzani C, Zara GP, Maina G, et al. Drug delivery nanoparticles in skin cancers. BioMed Res Int 2014; 2014895986
[http://dx.doi.org/10.1155/2014/895986] [PMID: 25101298]
[18]
Singh Malik D, Mital N, Kaur G. Topical drug delivery systems: a patent review. Expert Opin Ther Pat 2016; 26(2): 213-28.
[http://dx.doi.org/10.1517/13543776.2016.1131267] [PMID: 26651499]
[19]
Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 2010; 27(12): 2569-89.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[20]
Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 2017; 6(1): 44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[21]
Yu Y, Xu S, You H, et al. In vivo synergistic anti-tumor effect of paclitaxel nanoparticles combined with radiotherapy on human cervical carcinoma. Drug Deliv 2017; 24(1): 75-82.
[http://dx.doi.org/10.1080/10717544.2016.1230902] [PMID: 28155566]
[22]
Hida K, Hida Y, Shindoh M. Understanding tumor endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci 2008; 99(3): 459-66.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00704.x] [PMID: 18167133]
[23]
Pereira J, Pedroso-Meireles ALL, Godoy CRT, Chamone DAF. The role of endothelial cells in hematologic malignancies. Rev Bras Hematol Hemoter 2008; 30(3): 223-8.
[24]
Marçola M, Rodrigues CE. Endothelial progenitor cells in tumor angiogenesis: another brick in the wall. Stem Cells Int 2015; 2015832649
[http://dx.doi.org/10.1155/2015/832649] [PMID: 26000021]
[25]
Figarol A, Gibot L, Golzio M, Lonetti B, Mingotaud AF, Rols MP. A journey from the endothelium to the tumor tissue: distinct behavior between PEO-PCL micelles and polymersomes nanocarriers. Drug Deliv 2018; 25(1): 1766-78.
[http://dx.doi.org/10.1080/10717544.2018.1510064] [PMID: 30311803]
[26]
Feuser PE, Arévalo JMC, Junior EL, et al. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid. J Mater Sci Mater Med 2016; 27(12): 185.
[http://dx.doi.org/10.1007/s10856-016-5796-0] [PMID: 27787810]
[27]
Feuser PE, Gaspar PC, Jacques AV, et al. Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells. Mater Sci Eng C 2016; 60: 458-66.
[http://dx.doi.org/10.1016/j.msec.2015.11.063] [PMID: 26706552]
[28]
Feuser PE, Bubniak LS, Silva MCS, et al. Encapsulation of Magnetic Nanoparticles in Poly(Methyl Methacrylate) by Miniemulsion and Evaluation of Hyperthemia in U87MG Cells. Eur Polym J 2015; 68: 355-65.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.04.029]
[29]
FDA Food and Drug Administration Drug Approval Package Abraxane 2005.Available at:. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21660_AbraxaneTOC.cfm
[30]
Sartor O. Eligard 6: A New Form of Treatment for Prostate Cancer. Eur Urol Suppl 2006; 5(18): 905-10.
[http://dx.doi.org/10.1016/j.eursup.2006.08.006]
[31]
Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 2014; 9: 4357-73.
[http://dx.doi.org/10.2147/IJN.S46900] [PMID: 25258527]
[32]
Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad OC. Nanoparticles for targeted and temporally controled drug delivery Multifuncional nanoparticles for drug delivery applications, Imaging, targeted, and delivery. Boston: Springer 2012; pp. 9-29.
[http://dx.doi.org/10.1007/978-1-4614-2305-8_2]
[33]
Pillai G. Nanomedicines for Cancer Therapy: An Update of FDA Approved and Those under Various Stages of Development. SOJ Pharm Pharm Sci 2014; 1(2): 1-13.
[http://dx.doi.org/10.15226/2374-6866/1/1/00109]
[34]
Centerwatch Doxil (Doxorubicin HCl liposome injection) 1999.Available at:. https://www.centerwatch.com/drug-information/fda-approved-drugs/drug/541/doxil-doxorubicin-hcl-liposome-injection
[35]
FDA Food and Drug Administration Search Orphan Drug Designations and Approvals Daunoxome 2003.Available at:. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=073693
[36]
Patents J. Combination Liposomal Pharmaceutical Formulations 2016.Available at:. https://patents.justia.com/patent/9895313
[37]
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol Rev 2016; 68(3): 701-87.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[38]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017; 9(2): 1-33.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[39]
Obeid MA, Tate RJ, Mullen A, Ferro VA. Lipid-based nanoparticles for cancer treatmentLipid nanocarriers for drug targeting. Bucharest: Elsevier Inc 2018; pp. 313-59.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00008-6]
[40]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[41]
[46]
Nagpal S, Wakelee H, Padda S, et al. A Phase II Study of Etirinotecan Pegol (NKTR-102) in Patients with Refractory Brain Metastases and Advanced Lung Cancer. J Thorac Oncol 2017; 12(1S): 940.
[http://dx.doi.org/10.1016/j.jtho.2016.11.1293]
[48]
Voss MH, Hussain A, Vogelzang N, et al. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann Oncol 2017; 28(11): 2754-60.
[http://dx.doi.org/10.1093/annonc/mdx493] [PMID: 28950297]
[49]
[50]
NCI Drug Dictionary Nanoparticle albumin-bound docetaxel ABI- 008 2019. Available at:. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/nanoparticle-albumin-bound-docetaxel-abi-008
[51]
Lu C, Stewart DJ, Lee JJ, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One 2012; 7(4)e34833
[http://dx.doi.org/10.1371/journal.pone.0034833] [PMID: 22558101]
[52]
[53]
[54]
Aleku M, Schulz P, Keil O, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 2008; 68(23): 9788-98.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2428] [PMID: 19047158]
[55]
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13: 2921-42.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[56]
Nanocarrier NC-6004 NanoplatinTM 2013.Available at:. http://www.nanocarrier.co.jp/en/research/pipeline/02.html
[59]
Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26(6): 523-80.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[60]
Sankhala KK, Mita AC, Adinin R, et al. A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J Clin Oncol 2009; 27: 2535.
[61]
Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine (Lond) 2013; 9(1): 1-14.
[http://dx.doi.org/10.1016/j.nano.2012.05.013] [PMID: 22684017]
[62]
Matsumura Y, Gotoh M, Muro K, et al. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 2004; 15(3): 517-25.
[http://dx.doi.org/10.1093/annonc/mdh092] [PMID: 14998859]
[63]
Tandrup Schmidt S, Foged C, Korsholm KS, Rades T, Christensen D. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators. Pharmaceutics 2016; 8(1): 1-22.
[http://dx.doi.org/10.3390/pharmaceutics8010007] [PMID: 26978390]
[64]
Enhancing the efficacy of doxorubicin with heat-activated liposome technology 2016.Available at:. http://celsion.com/thermodox/
[66]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1(1): 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[67]
Starpharma DEP Docetaxel positive phase 1 results; phase 2 commences 2017. Available at:. https://starpharma.com/news/339
[68]
Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010; 16(24): 6139-49.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0978] [PMID: 20876255]
[69]
Cytimmune Aurimune: A Nanomedicine Platform 2018.Available at:. http://www.cytimmune.com/
[70]
Morigi V, Tocchio A, Bellavite Pellegrini C, Sakamoto JH, Arnone M, Tasciotti E. Nanotechnology in medicine: from inception to market domination. J Drug Deliv 2012; 2012389485
[http://dx.doi.org/10.1155/2012/389485] [PMID: 22506121]
[71]
Ventola CL. The nanomedicine revolution: part 2: current and future clinical applications. P&T 2012; 37(10): 582-91.
[PMID: 23115468]
[72]
Particle Sizing System Particle Size Measurement of Nanoparticles for Drug Delivery Applications 2014.Available at:. https://www.azonano.com/article.aspx?ArticleID=3928
[73]
Therapeutics B. Bind Therapeutics Determines Pfizer’s $40 Million Bid Is Highest and Best in 363 Auction for Substantially All of BIND’s Assets 2016.Available at:. https://www.businesswire.com/news/home/20160726006576/en/BIND-Therapeutics-Determines-Pfizer%E2%80%99s-40-Million-Bid
[74]
Nano U. Bind Doses First Patient in a Phase 2 Clinical Study of BIND-014 in Prostate Cancer 2017.Available at:. https://www.understandingnano.com/clinical-trial-accurin-cancer.html
[75]
Autio KA, Dreicer R, Anderson J, et al. Safety and Efficacy of BIND-014, a Docetaxel Nanoparticle Targeting Prostate-Specific Membrane Antigen for Patients With Metastatic Castration-Resistant Prostate Cancer: A Phase 2 Clinical Trial. JAMA Oncol 2018; 4(10): 1344-51.
[http://dx.doi.org/10.1001/jamaoncol.2018.2168] [PMID: 29978216]
[76]
Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci USA 2014; 111(31): 11449-54.
[http://dx.doi.org/10.1073/pnas.1411393111] [PMID: 25049380]
[77]
Calandopharma CALAA-01 2018.Available at:. https://www.calandopharma.com/technology/rondel/in-the-clinic/
[78]
Tang X, Wang G, Shi R, et al. Enhanced tolerance and antitumor efficacy by docetaxel-loaded albumin nanoparticles. Drug Deliv 2016; 23(8): 2686-96.
[PMID: 26004129]
[79]
Bhaskar S, Tian F, Stoeger T, et al. Multifuncional nanocarriers for diagnostic, drug delivery and targeted treatment across Blood-brain barrier. Part Fibre Toxicol 2010; 7(3): 1-25.
[80]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[81]
Kim DH, Rossi JJ. Overview of Gene Silencing by RNA Interference. Curr Protoc Nucleic Acid Chem 2009; Chapter 16: Unit16.1.
[http://dx.doi.org/10.1002/0471142700.nc1601s36]
[82]
Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 2001; 46(1-3): 149-68.
[http://dx.doi.org/10.1016/S0169-409X(00)00131-9] [PMID: 11259838]
[83]
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014; 5(77): 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[84]
Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014; 15(4): 862-71.
[http://dx.doi.org/10.1208/s12249-014-0113-z] [PMID: 24700296]
[85]
Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res 2018; 9(1): 2-8.
[http://dx.doi.org/10.4103/japtr.JAPTR_314_17] [PMID: 29441317]
[86]
Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G. Nanotechnology in cancer therapy. J Drug Target 2013; 21(10): 904-13.
[http://dx.doi.org/10.3109/1061186X.2013.837469] [PMID: 24079419]
[87]
Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 2016; 23(9): 3319-29.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[88]
Janssen Products LP. Delivered by Stealth Technology 2018.Available at:. https://www.doxil.com/
[89]
Lang JY, Hsu JL, Meric-Bernstam F, et al. BikDD eliminates breast cancer initiating cells and synergizes with lapatinib for breast cancer treatment. Cancer Cell 2011; 20(3): 341-56.
[http://dx.doi.org/10.1016/j.ccr.2011.07.017] [PMID: 21907925]
[90]
Sun Y, Ponz-Sarvise M, Chang SS, et al. Proteasome inhibition enhances the killing effect of BikDD gene therapy. Am J Transl Res 2015; 7(2): 319-27.
[PMID: 25901200]
[91]
Singh B, Singh D, Kaur D, Kaur R, Singh N. Dendrimers: A review on its pharmaceutical applications. World J Pharm Pharm Sci 2014; 6(3): 1281-301.
[92]
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as Nanocarriers for Nucleic Acid and Drug Delivery in Cancer Therapy. Molecules 2017; 22(9): 1-30.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[93]
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[94]
Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39(2): 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[95]
Ferenc M, Pedziwiatr-Werbicka E, Nowak KE, Klajnert B, Majoral JP, Bryszewska M. Phosphorus dendrimers as carriers of siRNA-characterisation of dendriplexes. Molecules 2013; 18(4): 4451-66.
[http://dx.doi.org/10.3390/molecules18044451] [PMID: 23591925]
[96]
Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 2015; 20(5): 536-47.
[http://dx.doi.org/10.1016/j.drudis.2014.12.012] [PMID: 25555748]
[97]
Kumar H, Venkatesh N, Bhowmik H, Kuila A. Metallic Nanoparticle: A Review. Biomed J Sci Tech Res 2018; 4(2): 1-11.
[PMID: 30370423]
[98]
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[99]
Bhatia S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery ApplicationsNatural Polymer Drug Delivery Systems Nanoparticles, Plants, and Algae. Switzerland: Springer 2016; pp. 33-93.
[http://dx.doi.org/10.1007/978-3-319-41129-3_2]
[100]
Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool? Nanomaterials (Basel) 2015; 5(4): 1853-79.
[http://dx.doi.org/10.3390/nano5041853] [PMID: 28347100]
[101]
Ventola CL. Progress in Nanomedicine: Approved and Investigational Nanodrugs. P&T 2017; 42(12): 742-55.
[PMID: 29234213]
[102]
Dahiya M, Pandey P. A review on nanoemulsions for anticancer drug delivery. Int J Pharm Integrated Life Sci 2016; 4(5): 43-61.
[103]
Khatri S, Lohani P, Gandhi S. Nanoemulsions in cancer therapy. Indo Global J Pharm Sci 2013; 3(2): 124-33.
[104]
Gulati N, Gupta H. Parenteral drug delivery: a review. Recent Pat Drug Deliv Formul 2011; 5(2): 133-45.
[http://dx.doi.org/10.2174/187221111795471391] [PMID: 21453250]
[105]
Sasikumar A, Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: A review. J Control Release 2017; 260: 111-23.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.001] [PMID: 28583444]
[106]
Cohen DK, Lee PK. Photodynamic therapy for non-melanoma skin cancers. Cancers (Basel) 2016; 8(10): 1-9.
[http://dx.doi.org/10.3390/cancers8100090] [PMID: 27782043]
[107]
FDA. Food and Drug Administration. Drug Appoval Package Levulan Kerastick (Aminolevulinic Acid HCl) Topical Solution 2002.Available at:. https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/20-965_Levulan.cfm
[108]
Wan MT, Lin JY. Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 2014; 7: 145-63.
[PMID: 24899818]
[109]
Issa MC, Manela-Azulay M. Photodynamic therapy: a review of the literature and image documentation. An Bras Dermatol 2010; 85(4): 501-11.
[http://dx.doi.org/10.1590/S0365-05962010000400011] [PMID: 20944910]
[110]
Sohail A, Ahmad Z, Bég OA, Arshad S, Sherin L. A review on hyperthermia via nanoparticle-mediated therapy. Bull Cancer 2017; 104(5): 452-61.
[http://dx.doi.org/10.1016/j.bulcan.2017.02.003] [PMID: 28385267]
[111]
Chang D, Lim M, Goos JACM, et al. Biologically Targeted Magnetic Hyperthermia: Potencial and Limitations. Front Pharmacol 2018; 9(831): 1-20.
[http://dx.doi.org/10.3389/fphar.2018.00831]
[112]
Chatterjee DK, Wolfe T, Lee J, et al. Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation. Transl Cancer Res 2013; 2(4): 256-68.
[PMID: 25279336]
[113]
Huth S, Lausier J, Gersting SW, et al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med 2004; 6(8): 923-36.
[http://dx.doi.org/10.1002/jgm.577] [PMID: 15293351]
[114]
McBain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 2008; 3(2): 169-80.
[PMID: 18686777]
[115]
Kruger CA, Abrahamse H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules 2018; 23(10): 1-21.
[http://dx.doi.org/10.3390/molecules23102628] [PMID: 30322132]
[116]
Huang YY, Sharma SK, Dai T, et al. Can nanotechnology potentiate photodynamic therapy? Nanotechnol Rev 2012; 1(2): 111-46.
[http://dx.doi.org/10.1515/ntrev-2011-0005] [PMID: 26361572]
[117]
Biofrontera Experts in photodynamic therapy Red light PDT with BF-RhodoLED 2019.Available at:. http://www.biofrontera.us.com/bf-rhodoled/
[118]
Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002; 3(8): 487-97.
[http://dx.doi.org/10.1016/S1470-2045(02)00818-5] [PMID: 12147435]
[119]
Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013; 10(3): 831-47.
[http://dx.doi.org/10.1021/mp3005885] [PMID: 23360440]
[120]
Yao C, Zhang L, Wang J, et al. Gold Nanoparticle Mediated Phototherapy for Cancer. J Nanomater 2016; 1-29.
[121]
Chen F, Cai W. Nanomedicine for targeted photothermal cancer therapy: where are we now? Nanomedicine (Lond) 2015; 10(1): 1-3.
[http://dx.doi.org/10.2217/nnm.14.186] [PMID: 25597770]
[122]
Nanospectra AuroShell 2018.Available at:. https://www.nanospectra.com
[123]
Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperthermia 1993; 9(1): 51-68.
[http://dx.doi.org/10.3109/02656739309061478] [PMID: 8433026]
[124]
van Landeghem FK, Maier-Hauff K, Jordan A, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2009; 30(1): 52-7.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.044] [PMID: 18848723]
[125]
Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011; 103(2): 317-24.
[http://dx.doi.org/10.1007/s11060-010-0389-0] [PMID: 20845061]
[126]
Magforce The NanoTherm therapy 2019.Available at:. https://www.magforce.com/en/produkte/nanotherm.html
[127]
Lévy R, Thanh NT, Doty RC, et al. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 2004; 126(32): 10076-84.
[http://dx.doi.org/10.1021/ja0487269] [PMID: 15303884]
[128]
Wong C, Stylianopoulos T, Cui J, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci USA 2011; 108(6): 2426-31.
[http://dx.doi.org/10.1073/pnas.1018382108] [PMID: 21245339]
[129]
Nanobiotix NanoXray Technology Current Limitations of Radiotherapy 2019.Available at:. https://www.nanobiotix.com/_en/nanoxray/
[130]
Nanobiotix Our Company 2019.Available at:. https://www.nanobiotix.com/about-us/
[131]
Ozbiosciences Magnetofection 2018.Available at:. https://www.ozbiosciences.com/content/13-Magnet-assisted_transfection
[133]
Lou J, Zhang L, Zheng G. Advancing Cancer Immunotherapies with Nanotechnology. Adv Ther 2019; 2(1800128): 1-31.
[134]
Li W, Wei H, Li H, Gao J, Feng S-S, Guo Y. Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology. Nanomedicine (Lond) 2014; 9(16): 2587-605.
[http://dx.doi.org/10.2217/nnm.14.127] [PMID: 25490427]
[135]
Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol In Press
[http://dx.doi.org/10.1016/j.semcancer.2019.11.010] [PMID: 31883449]
[136]
Gupta B, Torchilin VP. Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 2007; 56(8): 1215-23.
[http://dx.doi.org/10.1007/s00262-006-0273-0] [PMID: 17219149]
[137]
Ramishetti S, Kedmi R, Goldsmith M, et al. Systemic Gene Silencing in Primary T Lymphocytes Using Targeted Lipid Nanoparticles. ACS Nano 2015; 9(7): 6706-16.
[http://dx.doi.org/10.1021/acsnano.5b02796] [PMID: 26042619]
[138]
Sun B, Ranganathan B, Feng S-S. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 2008; 29(4): 475-86.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.038] [PMID: 17953985]
[139]
Bonvin D, Bastiaansen JAM, Stuber M, Hofmann H, Mionić Ebersold M. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer. Dalton Trans 2017; 46(37): 12692-704.
[http://dx.doi.org/10.1039/C7DT02139A] [PMID: 28914298]
[140]
Chen CH, Wu YJ, Chen JJ. Photo-thermal therapy of bladder cancer with Anti-EGFR antibody conjugated gold nanoparticles. Front Biosci 2016; 21: 1211-21.
[http://dx.doi.org/10.2741/4451] [PMID: 27100501]
[141]
Ning ST, Lee SY, Wei MF, et al. Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles. ACS Appl Mater Interfaces 2016; 8(28): 17793-804.
[http://dx.doi.org/10.1021/acsami.6b04403] [PMID: 27348241]
[142]
DeNardo SJ, DeNardo GL, Miers LA, et al. Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 2005; 11(19 Pt 2): 7087s-92s.
[http://dx.doi.org/10.1158/1078-0432.CCR-1004-0022] [PMID: 16203807]
[143]
Zhang X, Wu F, Men K, et al. Modified Fe3O4 Magnetic Nanoparticle Delivery of CpG Inhibits Tumor Growth and Spontaneous Pulmonary Metastases to Enhance Immunotherapy. Nanoscale Res Lett 2018; 13(1): 240.
[http://dx.doi.org/10.1186/s11671-018-2661-8] [PMID: 30120629]
[144]
Chen Q, Liu L, Lu Y. Tumor Microenvironment-Triggered Aggregated Magnetic Nanoparticles for Reinforced Image-Guided Immunogenic Chemotherapy. Adv Sci (Weinh) 2019; 6(6): 802134. 1.10
[http://dx.doi.org/10.1002/advs.201802134]
[145]
El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006; 239(1): 129-35.
[http://dx.doi.org/10.1016/j.canlet.2005.07.035] [PMID: 16198049]
[146]
Lu J, Liu X, Liao YP, et al. wang X, Wu AM, Meng H, Nel AE. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun 1811; 2017(8): 1-14.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 29
Year: 2020
Published on: 03 September, 2020
Page: [3579 - 3600]
Pages: 22
DOI: 10.2174/1381612826666200318145349
Price: $65

Article Metrics

PDF: 28
HTML: 4