A Comprehensive Insight Towards Pharmaceutical Aspects of Graphene Nanosheets

Author(s): Fatemeh Emadi, Arash Emadi, Ahmad Gholami*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Graphene Derivatives (GDs) have captured the interest and imagination of pharmaceutical scientists. This review exclusively provides pharmacokinetics and pharmacodynamics information with a particular focus on biopharmaceuticals. GDs can be used as multipurpose pharmaceutical delivery systems due to their ultra-high surface area, flexibility, and fast mobility of charge carriers. Improved effects, targeted delivery to tissues, controlled release profiles, visualization of biodistribution and clearance, and overcoming drug resistance are examples of the benefits of GDs. This review focuses on the application of GDs for the delivery of biopharmaceuticals. Also, the pharmacokinetic properties and the advantage of using GDs in pharmaceutics will be reviewed to achieve a comprehensive understanding about the GDs in pharmaceutical sciences.

Keywords: Graphene, pharmacokinetic, protein delivery, biopharmaceuticals, triggered release, biopharmaceutical targeting.

[1]
Novoselov, K. Nobel lecture: Graphene: Materials in the flatland. Rev. Mod. Phys., 2011, 83(3), 837.
[http://dx.doi.org/10.1103/RevModPhys.83.837] [PMID: 21732505]
[2]
Roscher, S.; Hoffmann, R.; Ambacher, O. Determination of the graphene-graphite ratio of graphene powder by Raman 2D band symmetry analysis. Anal. Methods, 2019, 9.
[http://dx.doi.org/10.1039/C8AY02619J]
[3]
Emadi, F.; Amini, A.; Ghasemi, Y.; Gholami, A. Graphene: Recent advances in engineering, medical and biological sciences, and future prospective. Trends. Pharmaceutic. Sci., 2018, 4(3), 131-138.
[4]
Dasari Shareena, T.P.; McShan, D.; Dasmahapatra, A.K.; Tchounwou, P.B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett., 2018, 10(3), 53.
[http://dx.doi.org/10.1007/s40820-018-0206-4] [PMID: 30079344]
[5]
Sahoo, N.G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H.K.F.; Li, L.; Tan, L.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chem. Commun. (Camb.), 2011, 47(18), 5235-5237.
[http://dx.doi.org/10.1039/c1cc00075f] [PMID: 21451845]
[6]
Liu, J-H.; Yang, S-T.; Wang, H.; Chang, Y.; Cao, A.; Liu, Y. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine (Lond.), 2012, 7(12), 1801-1812.
[http://dx.doi.org/10.2217/nnm.12.60] [PMID: 22830500]
[7]
Kavitha, T.; Kang, I-K.; Park, S-Y. Poly(N-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Colloids Surf. B Biointerfaces, 2014, 115, 37-45.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.022] [PMID: 24316754]
[8]
Chernozatonskii, L.A.; Sorokin, P.B.; Artukh, A. Novel graphene-based nanostructures: Physicochemical properties and applications. Russ. Chem. Rev., 2014, 83(3), 251.
[http://dx.doi.org/10.1070/RC2014v083n03ABEH004367]
[9]
Mao, H.Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.A.; Mahmoudi, M. Graphene: Promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev., 2013, 113(5), 3407-3424.
[http://dx.doi.org/10.1021/cr300335p] [PMID: 23452512]
[10]
Kato, H.; Itagaki, N. Im, H., Growth and Raman spectroscopy of thickness-controlled rotationally faulted multilayer graphene. Carbon, 2019, 141, 76-82.
[http://dx.doi.org/10.1016/j.carbon.2018.09.017]
[11]
Wick, P.; Louw-Gaume, A.E.; Kucki, M.; Krug, H.F.; Kostarelos, K.; Fadeel, B.; Dawson, K.A.; Salvati, A.; Vázquez, E.; Ballerini, L.; Tretiach, M.; Benfenati, F.; Flahaut, E.; Gauthier, L.; Prato, M.; Bianco, A. Classification framework for graphene-based materials. Angew. Chem. Int. Ed. Engl., 2014, 53(30), 7714-7718.
[http://dx.doi.org/10.1002/anie.201403335] [PMID: 24917379]
[12]
Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev., 2017, 46(15), 4400-4416.
[http://dx.doi.org/10.1039/C7CS00363C] [PMID: 28722038]
[13]
Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci., 2014, 430, 108-112.
[http://dx.doi.org/10.1016/j.jcis.2014.05.033] [PMID: 24998061]
[14]
Bottari, G.; Herranz, M.Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D.M.; Hirsch, A.; Martín, N.; D’Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev., 2017, 46(15), 4464-4500.
[http://dx.doi.org/10.1039/C7CS00229G] [PMID: 28702571]
[15]
Anju, S.; Ashtami, J.; Mohanan, P.V. Black phosphorus, a prospective graphene substitute for biomedical applications. Mater. Sci. Eng. C, 2019, 97, 978-993.
[http://dx.doi.org/10.1016/j.msec.2018.12.146] [PMID: 30678986]
[16]
Ma, X.; Tao, H.; Yang, K.; Feng, L.; Cheng, L.; Shi, X.; Li, Y.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res., 2012, 5(3), 199-212.
[http://dx.doi.org/10.1007/s12274-012-0200-y]
[17]
Hu, H.; Yu, J.; Li, Y.; Zhao, J.; Dong, H. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J. Biomed. Mater. Res. A, 2012, 100(1), 141-148.
[http://dx.doi.org/10.1002/jbm.a.33252] [PMID: 21997951]
[18]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[19]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[20]
Depan, D.; Shah, J.; Misra, R. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C, 2011, 31(7), 1305-1312.
[http://dx.doi.org/10.1016/j.msec.2011.04.010]
[21]
Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T.; Li, L.; Li, J.; Gan, L.H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11), 1569-1578.
[http://dx.doi.org/10.1002/smll.201100191] [PMID: 21538871]
[22]
Pan, Y.; Bao, H.; Sahoo, N.G.; Wu, T.; Li, L. Water‐soluble poly (N‐isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater., 2011, 21(14), 2754-2763.
[http://dx.doi.org/10.1002/adfm.201100078]
[23]
Zhou, T.; Zhou, X.; Xing, D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials, 2014, 35(13), 4185-4194.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.044] [PMID: 24513318]
[24]
Wang, H.; Sun, D.; Zhao, N.; Yang, X.; Shi, Y.; Li, J.; Su, Z.; Wei, G. Thermo-sensitive graphene oxide-polymer nanoparticle hybrids: Synthesis, characterization, biocompatibility and drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(10), 1362-1370.
[http://dx.doi.org/10.1039/c3tb21538e]
[25]
Xie, M.; Zhang, F.; Liu, L.; Zhang, Y.; Li, Y.; Li, H.; Xie, J. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci., 2018, 440, 853-860.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.175]
[26]
Kooti, M.; Sedeh, A.N.; Motamedi, H.; Rezatofighi, S.E. Magnetic graphene oxide inlaid with silver nanoparticles as antibacterial and drug delivery composite. Appl. Microbiol. Biotechnol., 2018, 102(8), 3607-3621.
[http://dx.doi.org/10.1007/s00253-018-8880-1] [PMID: 29511845]
[27]
Liu, K.; Zhang, J-J.; Cheng, F-F.; Zheng, T-T.; Wang, C.; Zhu, J-J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J. Mater. Chem., 2011, 21(32), 12034-12040.
[http://dx.doi.org/10.1039/c1jm10749f]
[28]
Fan, X.; Jiao, G.; Gao, L.; Jin, P.; Li, X. The preparation and drug delivery of a graphene-carbon nanotube-Fe3O4 nanoparticle hybrid. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(20), 2658-2664.
[http://dx.doi.org/10.1039/c3tb00493g]
[29]
Song, J.; Yang, X.; Jacobson, O.; Lin, L.; Huang, P.; Niu, G.; Ma, Q.; Chen, X. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano, 2015, 9(9), 9199-9209.
[http://dx.doi.org/10.1021/acsnano.5b03804] [PMID: 26308265]
[30]
Wu, H.; Shi, H.; Wang, Y.; Jia, X.; Tang, C.; Zhang, J.; Yang, S. Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon, 2014, 69, 379-389.
[http://dx.doi.org/10.1016/j.carbon.2013.12.039]
[31]
Dembereldorj, U.; Kim, M.; Kim, S.; Ganbold, E-O.; Lee, S.Y.; Joo, S-W. A spatiotemporal anticancer drug release platform of PEGylated graphene oxide triggered by glutathione in vitro and in vivo. J. Mater. Chem., 2012, 22(45), 23845-23851.
[http://dx.doi.org/10.1039/c2jm34853e]
[32]
Chen, K.; Ling, Y.; Cao, C.; Li, X.; Chen, X.; Wang, X. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Mater. Sci. Eng. C, 2016, 69, 1222-1228.
[http://dx.doi.org/10.1016/j.msec.2016.08.036] [PMID: 27612820]
[33]
Zhang, B.; Yan, Y.; Shen, Q.; Ma, D.; Huang, L.; Cai, X.; Tan, S. A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Mater. Sci. Eng. C, 2017, 79, 185-190.
[http://dx.doi.org/10.1016/j.msec.2017.05.054] [PMID: 28629006]
[34]
Wu, J.; Chen, A.; Qin, M.; Huang, R.; Zhang, G.; Xue, B.; Wei, J.; Li, Y.; Cao, Y.; Wang, W. Hierarchical construction of a mechanically stable peptide-graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. Nanoscale, 2015, 7(5), 1655-1660.
[http://dx.doi.org/10.1039/C4NR05798H] [PMID: 25559308]
[35]
Teodorescu, F.; Oz, Y.; Quéniat, G.; Abderrahmani, A.; Foulon, C.; Lecoeur, M.; Sanyal, R.; Sanyal, A.; Boukherroub, R.; Szunerits, S. Photothermally triggered on-demand insulin release from reduced graphene oxide modified hydrogels. J. Control. Release, 2017, 246, 164-173.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.028] [PMID: 27984105]
[36]
Teodorescu, F.; Quéniat, G.; Foulon, C.; Lecoeur, M.; Barras, A.; Boulahneche, S.; Medjram, M.S.; Hubert, T.; Abderrahmani, A.; Boukherroub, R.; Szunerits, S. Transdermal skin patch based on reduced graphene oxide: A new approach for photothermal triggered permeation of ondansetron across porcine skin. J. Control. Release, 2017, 245, 137-146.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.029] [PMID: 27914995]
[37]
Boulahneche, S.; Jijie, R.; Barras, A.; Chekin, F.; Singh, S.K.; Bouckaert, J.; Medjram, M.S.; Kurungot, S.; Boukherroub, R.; Szunerits, S. On demand electrochemical release of drugs from porous reduced graphene oxide modified flexible electrodes. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6557-6565.
[http://dx.doi.org/10.1039/C7TB00687J]
[38]
Kurapati, R.; Raichur, A.M. Near-infrared light-responsive graphene oxide composite multilayer capsules: A novel route for remote controlled drug delivery. Chem. Commun. (Camb.), 2013, 49(7), 734-736.
[http://dx.doi.org/10.1039/C2CC38417E] [PMID: 23232330]
[39]
Masoudipour, E.; Kashanian, S.; Maleki, N.; Karamyan, A.; Omidfar, K. A novel intracellular pH-responsive formulation for FTY720 based on PEGylated graphene oxide nano-sheets. Drug Dev. Ind. Pharm., 2018, 44(1), 99-108.
[http://dx.doi.org/10.1080/03639045.2017.1386194] [PMID: 28956455]
[40]
Zhao, X.; Liu, L.; Li, X.; Zeng, J.; Jia, X.; Liu, P. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir, 2014, 30(34), 10419-10429.
[http://dx.doi.org/10.1021/la502952f] [PMID: 25109617]
[41]
He, L.; Sarkar, S.; Barras, A.; Boukherroub, R.; Szunerits, S.; Mandler, D. Electrochemically stimulated drug release from flexible electrodes coated electrophoretically with doxorubicin loaded reduced graphene oxide. Chem. Commun. (Camb.), 2017, 53(28), 4022-4025.
[http://dx.doi.org/10.1039/C7CC00381A] [PMID: 28338701]
[42]
Teodorescu, F.; Rolland, L.; Ramarao, V.; Abderrahmani, A.; Mandler, D.; Boukherroub, R.; Szunerits, S. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode. Chem. Commun. (Camb.), 2015, 51(75), 14167-14170.
[http://dx.doi.org/10.1039/C5CC05539C] [PMID: 26257079]
[43]
Kim, H.; Lee, D.; Kim, J.; Kim, T.I.; Kim, W.J. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano, 2013, 7(8), 6735-6746.
[http://dx.doi.org/10.1021/nn403096s] [PMID: 23829596]
[44]
Zhang, B.; Wei, P.; Zhou, Z.; Wei, T. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv. Drug Deliv. Rev., 2016, 105(Pt B), 145-162.
[http://dx.doi.org/10.1016/j.addr.2016.08.009] [PMID: 27569910]
Campbell, E.; Hasan, M.T.; Pho, C.; Callaghan, K.; Akkaraju, G.R.; Naumov, A.V. Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci. Rep. 2019, 9(1), 416.
[http://dx.doi.org/10.1038/s41598-018-36617-4] [PMID: 30674914]
[45]
Li, Y.; Yuan, H.; von dem Bussche, A.; Creighton, M.; Hurt, R.H.; Kane, A.B.; Gao, H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12295-12300.
[http://dx.doi.org/10.1073/pnas.1222276110] [PMID: 23840061]
[46]
Saeed, L.M.; Mahmood, M.; Pyrek, S.J.; Fahmi, T.; Xu, Y.; Mustafa, T.; Nima, Z.A.; Bratton, S.M.; Casciano, D.; Dervishi, E.; Radominska-Pandya, A.; Biris, A.S. Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J. Appl. Toxicol., 2014, 34(11), 1188-1199.
[http://dx.doi.org/10.1002/jat.3018] [PMID: 25220893]
[47]
Chatterjee, N.; Eom, H-J.; Choi, J. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials, 2014, 35(4), 1109-1127.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.108] [PMID: 24211078]
[48]
Mu, Q.; Su, G.; Li, L.; Gilbertson, B.O.; Yu, L.H.; Zhang, Q.; Sun, Y-P.; Yan, B. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl. Mater. Interfaces, 2012, 4(4), 2259-2266.
[http://dx.doi.org/10.1021/am300253c] [PMID: 22409495]
[49]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S-T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[50]
Liu, Y.; Peng, J.; Wang, S.; Xu, M.; Gao, M.; Xia, T.; Weng, J.; Xu, A.; Liu, S. Molybdenum disulfide/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efficacy with improved biocompatibility. NPG Asia Mater., 2018, 10(1), e458.
[http://dx.doi.org/10.1038/am.2017.225]
[51]
Li, B.; Yang, J.; Huang, Q.; Zhang, Y.; Peng, C.; Zhang, Y.; He, Y.; Shi, J.; Li, W.; Hu, J. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater., 2013, 5(4), e44.
[http://dx.doi.org/10.1038/am.2013.7]
[52]
Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. (Camb.), 2011, 47(24), 6858-6860.
[http://dx.doi.org/10.1039/c1cc11122a] [PMID: 21584323]
[53]
Lu, Y-J.; Lin, C-W.; Yang, H-W.; Lin, K-J.; Wey, S-P.; Sun, C-L.; Wei, K-C.; Yen, T-C.; Lin, C-I.; Ma, C-C.M. Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon, 2014, 74, 83-95.
[http://dx.doi.org/10.1016/j.carbon.2014.03.007]
[54]
Sasidharan, A.; Swaroop, S.; Koduri, C.K.; Girish, C.M.; Chandran, P.; Panchakarla, L.; Somasundaram, V.H.; Gowd, G.S.; Nair, S.; Koyakutty, M. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylated and PEGylated few-layer graphene sheets in Swiss albino mice: A three month study. Carbon, 2015, 95, 511-524.
[http://dx.doi.org/10.1016/j.carbon.2015.08.074]
[55]
Akhavan, O.; Ghaderi, E.; Hashemi, E.; Akbari, E. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals. Carbon, 2015, 95, 309-317.
[http://dx.doi.org/10.1016/j.carbon.2015.08.017]
[56]
Yang, K.; Gong, H.; Shi, X.; Wan, J.; Zhang, Y.; Liu, Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials, 2013, 34(11), 2787-2795.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.001] [PMID: 23340196]
[57]
Kurantowicz, N.; Strojny, B.; Sawosz, E.; Jaworski, S.; Kutwin, M.; Grodzik, M.; Wierzbicki, M.; Lipińska, L.; Mitura, K.; Chwalibog, A. Biodistribution of a high dose of diamond, graphite, and graphene oxide nanoparticles after multiple intraperitoneal injections in rats. Nanoscale Res. Lett., 2015, 10(1), 398.
[http://dx.doi.org/10.1186/s11671-015-1107-9] [PMID: 26459428]
[58]
Kim, Y.H.; Jo, M.S.; Kim, J.K.; Shin, J.H.; Baek, J.E.; Park, H.S.; An, H.J.; Lee, J.S.; Kim, B.W.; Kim, H.P.; Ahn, K.H.; Jeon, K.; Oh, S.M.; Lee, J.H.; Workman, T.; Faustman, E.M.; Yu, I.J. Short-term inhalation study of graphene oxide nanoplates. Nanotoxicology, 2018, 12(3), 224-238.
[http://dx.doi.org/10.1080/17435390.2018.1431318] [PMID: 29385887]
[59]
Chong, Y.; Ma, Y.; Shen, H.; Tu, X.; Zhou, X.; Xu, J.; Dai, J.; Fan, S.; Zhang, Z. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials, 2014, 35(19), 5041-5048.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.021] [PMID: 24685264]
[60]
Jasim, D.A.; Ménard-Moyon, C.; Bégin, D.; Bianco, A.; Kostarelos, K. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem. Sci. (Camb.), 2015, 6(7), 3952-3964.
[http://dx.doi.org/10.1039/C5SC00114E] [PMID: 28717461]
[61]
Guo, X.; Mei, N. Assessment of the toxic potential of graphene family nanomaterials. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 105-115.
[http://dx.doi.org/10.1016/j.jfda.2014.01.009] [PMID: 24673908]
[62]
Syama, S.; Paul, W.; Sabareeswaran, A.; Mohanan, P.V. Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials, 2017, 131, 121-130.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.043] [PMID: 28388498]
[63]
Li, B.; Zhang, X-Y.; Yang, J-Z.; Zhang, Y-J.; Li, W-X.; Fan, C-H.; Huang, Q. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int. J. Nanomedicine, 2014, 9, 4697-4707.
[http://dx.doi.org/10.2147/IJN.S66591] [PMID: 25356071]
[64]
Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S-T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano, 2011, 5(1), 516-522.
[http://dx.doi.org/10.1021/nn1024303] [PMID: 21162527]
[65]
Daniyal, M.; Liu, B.; Wang, W. Comprehensive review on graphene oxide for use in drug delivery system. Curr. Med. Chem., 2020, 27(22), 3665-3685.
[http://dx.doi.org/10.2174/13816128256661902011296290] [PMID: 30706776]
[66]
Hazeem, L.J.; Bououdina, M.; Dewailly, E.; Slomianny, C.; Barras, A.; Coffinier, Y.; Szunerits, S.; Boukherroub, R. Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine alga Picochlorum sp. during different growth stages. Environ. Sci. Pollut. Res. Int. 2017, 24(4), 4144-4152.
[http://dx.doi.org/10.1007/s11356-016-8174-z] [PMID: 27933501]
Mittal, S.; Kumar, V.; Dhiman, N.; Chauhan, L.K.; Pasricha, R.; Pandey, A.K. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Sci. Rep. 2016, 6, 39548-39564.
[http://dx.doi.org/10.1038/srep39548] [PMID: 28000740]
[67]
Zhang, Y.; Ali, S. F.; Dervishi, E. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4. Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol., 2016, 13(1), 57.
[http://dx.doi.org/10.1186/s12989-016-0168-y] [PMID: 27799056]
Chang, Y.; Yang, S.T.; Liu, J.H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett., 2011, 200(3), 201-210.
[http://dx.doi.org/10.1016/j.toxlet.2010.11.016] [PMID: 21130147]
[68]
Schinwald, A.; Murphy, F.A.; Prina-Mello, A.; Poland, C.A.; Byrne, F.; Movia, D.; Glass, J.R.; Dickerson, J.C.; Schultz, D.A.; Jeffree, C.E.; Macnee, W.; Donaldson, K. The threshold length for fiber-induced acute pleural inflammation: Shedding light on the early events in asbestos-induced mesothelioma. Toxicol. Sci., 2012, 128(2), 461-470.
[http://dx.doi.org/10.1093/toxsci/kfs171] [PMID: 22584686]
[69]
Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Grácio, J.J.; Dash, D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 2012, 6(3), 2731-2740.
[http://dx.doi.org/10.1021/nn300172t] [PMID: 22376049]
[70]
Robinson, J.T.; Tabakman, S.M.; Liang, Y.; Wang, H.; Casalongue, H.S.; Vinh, D.; Dai, H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc., 2011, 133(17), 6825-6831.
[http://dx.doi.org/10.1021/ja2010175] [PMID: 21476500]
[71]
Lammel, T.; Boisseaux, P.; Fernández-Cruz, M-L.; Navas, J.M. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part. Fibre Toxicol., 2013, 10(1), 27.
[http://dx.doi.org/10.1186/1743-8977-10-27] [PMID: 23849434]
[72]
Ambrosi, A.; Chee, S.Y.; Khezri, B.; Webster, R.D.; Sofer, Z.; Pumera, M. Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. Engl., 2012, 51(2), 500-503.
[http://dx.doi.org/10.1002/anie.201106917] [PMID: 22114032]
[73]
Muthu, M.S.; Leong, D.T.; Mei, L.; Feng, S.S. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014, 4(6), 660-677.
[http://dx.doi.org/10.7150/thno.8698] [PMID: 24723986]
Muthu, M. S.; Leong, D. T.; Mei, L. A multi-functional nanoplatform for efficacy tumor theranostic applications. Asian. J. Pharm. Sci. 2017, 12(3), 235-249.
[74]
Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K-B. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev., 2015, 115(7), 2483-2531.
[http://dx.doi.org/10.1021/cr500537t] [PMID: 25692385]
[75]
Gollavelli, G.; Ling, Y-C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35(15), 4499-4507.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.011] [PMID: 24602568]
[76]
Chen, H.; Liu, Z.; Li, S.; Su, C.; Qiu, X.; Zhong, H.; Guo, Z. Fabrication of graphene and AuNP core polyaniline shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy. Theranostics, 2016, 6(8), 1096-1104.
[http://dx.doi.org/10.7150/thno.14361] [PMID: 27279904]
[77]
Liu, R.; Zhang, H.; Zhang, F.; Wang, X.; Liu, X.; Zhang, Y. Polydopamine doped reduced graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal therapy. Mater. Sci. Eng. C, 2019, 96, 138-145.
[http://dx.doi.org/10.1016/j.msec.2018.10.093] [PMID: 30606519]
[78]
Ramachandra, K.S.A.; Thomas, R.G.; Unnithan, A.R.; Saravanakumar, B.; Jeong, Y.Y.; Park, C.H.; Kim, C.S. Multifunctional nanocarpets for cancer theranostics: Remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. Sci. Rep., 2016, 6, 20543.
[http://dx.doi.org/10.1038/srep20543] [PMID: 26841709]
[79]
Du, B.; Liu, J.; Ding, G.; Han, X.; Li, D.; Wang, E.; Wang, J. Positively charged graphene/Fe3O4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnet-responsive cancer therapy. Nano Res., 2017, 10(7), 2280-2295.
[http://dx.doi.org/10.1007/s12274-016-1418-x]
[80]
Gholami, A.; Rasoul-Amini, S.; Ebrahiminezhad, A. Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnol., 2016, 28(4), 177-186. Abbaszadegan, A.; Gholami, A.; Abbaszadegan, S.; Aleyasin, Z.S.; Ghahramani, Y.; Dorostkar, S.; Hemmateenejad, B.; Ghasemi, Y.; Sharghi, H. The effects of different ionic liquid coatings and the length of alkyl chain on antimicrobial and cytotoxic properties of silver nanoparticles. Iran. Endod. J., 2017, 12(4), 481-487.
[PMID: 29225645]
[81]
Lu, B.; Li, T.; Zhao, H.; Li, X.; Gao, C.; Zhang, S.; Xie, E. Graphene-based composite materials beneficial to wound healing. Nanoscale, 2012, 4(9), 2978-2982.
[http://dx.doi.org/10.1039/c2nr11958g] [PMID: 22453925]
[82]
Wang, G.; Qian, F.; Saltikov, C.W.; Jiao, Y.; Li, Y. Microbial reduction of graphene oxide by Shewanella. Nano Res., 2011, 4(6), 563-570.
[http://dx.doi.org/10.1007/s12274-011-0112-2]
[83]
Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: 7 and oxidative stress. ACS Nano, 2011, 5(9), 6971-6980.
[http://dx.doi.org/10.1021/nn202451x] [PMID: 21851105]
[84]
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, 4(10), 5731-5736.
[http://dx.doi.org/10.1021/nn101390x] [PMID: 20925398]
[85]
Zhang, Y.; Wu, C.; Guo, S. Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev., 2013, 2(1), 27-45. Zhu, Y.; Guo, J.; Zhang, A.; Li, L.; Liu, X.; Liu, H.; Yao, X. How graphene affects the misfolding of human prion protein: A combined experimental and molecular dynamics simulation study. Environ. Res., 2019, 171, 1-10.
[http://dx.doi.org/10.1016/j.envres.2018.12.057] [PMID: 30641367]
[86]
La, W.G.; Park, S.; Yoon, H.H.; Jeong, G.J.; Lee, T.J.; Bhang, S.H.; Han, J.Y.; Char, K.; Kim, B.S. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small, 2013, 9(23), 4051-4060.
[http://dx.doi.org/10.1002/smll.201300571] [PMID: 23839958]
[87]
Zhong, C.; Feng, J.; Lin, X.; Bao, Q. Continuous release of bone morphogenetic protein-2 through nano-graphene oxide-based delivery influences the activation of the NF-κB signal transduction pathway. Int. J. Nanomedicine, 2017, 12, 1215-1226.
[http://dx.doi.org/10.2147/IJN.S124040] [PMID: 28243085]
[88]
Li, H.; Fierens, K.; Zhang, Z.; Vanparijs, N.; Schuijs, M.J.; Van Steendam, K.; Feiner Gracia, N.; De Rycke, R.; De Beer, T.; De Beuckelaer, A.; De Koker, S.; Deforce, D.; Albertazzi, L.; Grooten, J.; Lambrecht, B.N.; De Geest, B.G. Spontaneous protein adsorption on graphene oxide nanosheets allowing efficient intracellular vaccine protein delivery. ACS Appl. Mater. Interfaces, 2016, 8(2), 1147-1155.
[http://dx.doi.org/10.1021/acsami.5b08963] [PMID: 26694764]
[89]
Emadi, F.; Amini, A.; Gholami, A.; Ghasemi, Y. Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Sci. Rep., 2017, 7, 42258.
[http://dx.doi.org/10.1038/srep42258] [PMID: 28186169]
[90]
Shen, H.; Liu, M.; He, H.; Zhang, L.; Huang, J.; Chong, Y.; Dai, J.; Zhang, Z. PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl. Mater. Interfaces, 2012, 4(11), 6317-6323.
[http://dx.doi.org/10.1021/am3019367] [PMID: 23106794]
[91]
Jin, L.; Yang, K.; Yao, K.; Zhang, S.; Tao, H.; Lee, S.T.; Liu, Z.; Peng, R. Functionalized graphene oxide in enzyme engineering: A selective modulator for enzyme activity and thermostability. ACS Nano,, 2012, 6(6), 4864-4875.
[http://dx.doi.org/10.1021/nn300217z] [PMID: 22574614]
Gholami, A.; Abootalebi, N.; Nazem, M. A new cost-effective method to evaluate collagenase activity using nano-graphene oxide. Trends. Pharmaceutic. Sci. 2017, 3(4), 287-292.
[92]
Orecchioni, M.; Ménard-Moyon, C.; Delogu, L.G.; Bianco, A. Graphene and the immune system: Challenges and potentiality. Adv. Drug Deliv. Rev. 2016, 105(Pt B), 163-175.
[http://dx.doi.org/10.1016/j.addr.2016.05.014] [PMID: 27235665]
[93]
Orecchioni, M.; Bedognetti, D.; Sgarrella, F.; Marincola, F.M.; Bianco, A.; Delogu, L.G. Impact of carbon nanotubes and graphene on immune cells. J. Transl. Med., 2014, 12(1), 138.
[http://dx.doi.org/10.1186/1479-5876-12-138] [PMID: 24885781]
[94]
Kim, M-G.; Park, J.Y.; Shon, Y.; Kim, G.; Shim, G.; Oh, Y-K. Nanotechnology and vaccine development. Asian. J. Pharm. Sci., 2014, 9(5), 227-235.
[95]
Yan, T.; Zhang, H.; Huang, D.; Feng, S.; Fujita, M.; Gao, X-D. Chitosan-functionalized graphene oxide as a potential immunoadjuvant. Nanomaterials (Basel), 2017, 7(3), 59.
[http://dx.doi.org/10.3390/nano7030059] [PMID: 28336893]
[96]
Tkach, A.V.; Yanamala, N.; Stanley, S.; Shurin, M.R.; Shurin, G.V.; Kisin, E.R.; Murray, A.R.; Pareso, S.; Khaliullin, T.; Kotchey, G.P.; Castranova, V.; Mathur, S.; Fadeel, B.; Star, A.; Kagan, V.E.; Shvedova, A.A. Graphene oxide, but not fullerenes, targets immunoproteasomes and suppresses antigen presentation by dendritic cells. Small, 2013, 9(9-10), 1686-1690.
[http://dx.doi.org/10.1002/smll.201201546] [PMID: 22887961]
[97]
Wang, W.; Li, Z.; Duan, J.; Wang, C.; Fang, Y.; Yang, X-D. In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide. Nanoscale Res. Lett., 2014, 9(1), 311.
[http://dx.doi.org/10.1186/1556-276X-9-311] [PMID: 25024678]
[98]
Li, Y.; Lu, Q.; Liu, H.; Wang, J.; Zhang, P.; Liang, H.; Jiang, L.; Wang, S. Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv. Mater., 2015, 27(43), 6848-6854.
[http://dx.doi.org/10.1002/adma.201502615] [PMID: 26426823]
[99]
Mann, J.A.; Alava, T.; Craighead, H.G.; Dichtel, W.R. Preservation of antibody selectivity on graphene by conjugation to a tripod monolayer. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3177-3180.
[http://dx.doi.org/10.1002/anie.201209149] [PMID: 23386400]
[100]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[101]
Li, L.; Luo, C.; Song, Z.; Reyes-Vargas, E.; Clayton, F.; Huang, J.; Jensen, P.; Chen, X. Association of anti-HER2 antibody with graphene oxide for curative treatment of osteosarcoma. Nanomedicine (Lond.), 2018, 14(2), 581-593.
[http://dx.doi.org/10.1016/j.nano.2017.11.001] [PMID: 29170110]
[102]
Yang, H-W.; Lu, Y-J.; Lin, K-J.; Hsu, S-C.; Huang, C-Y.; She, S-H.; Liu, H-L.; Lin, C-W.; Xiao, M-C.; Wey, S-P.; Chen, P.Y.; Yen, T.C.; Wei, K.C.; Ma, C.C. EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy. Biomaterials, 2013, 34(29), 7204-7214.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.007] [PMID: 23800742]
[103]
Hong, H.; Yang, K.; Zhang, Y.; Engle, J.W.; Feng, L.; Yang, Y.; Nayak, T.R.; Goel, S.; Bean, J.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano, 2012, 6(3), 2361-2370.
[http://dx.doi.org/10.1021/nn204625e] [PMID: 22339280]
[104]
Geim, A.K. Graphene: Status and prospects. Science, 2009, 324(5934), 1530-1534.
[http://dx.doi.org/10.1126/science.1158877] [PMID: 19541989]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 11
Year: 2020
Published on: 20 September, 2020
Page: [1016 - 1027]
Pages: 12
DOI: 10.2174/1389201021666200318131422
Price: $65

Article Metrics

PDF: 16
HTML: 1