Inflammatory Markers in Cardiovascular Disease; Lessons Learned and Future Perspectives

Author(s): Dimitrios Patoulias, Konstantinos Stavropoulos, Konstantinos Imprialos, Vasilios Athyros, Haris Grassos, Michael Doumas, Charles Faselis*

Journal Name: Current Vascular Pharmacology

Volume 19 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Cardiovascular disease (CVD) still remains the leading cause of morbidity and mortality worldwide. It is now established that inflammation plays a crucial role in atherosclerosis and atherothrombosis, and thus, it is closely linked to cardiovascular disease.

Objective: The aim of the present review is to summarize and critically appraise the most relevant evidence regarding the potential use of inflammatory markers in the field of CVD.

Methods: We conducted a comprehensive research of the relevant literature, searching MEDLINE from its inception until November 2018, primarily for meta-analyses, randomized controlled trials and observational studies.

Results: Established markers of inflammation, mainly C-reactive protein, have yielded significant results both for primary and secondary prevention of CVD. Newer markers, such as lipoprotein-associated phospholipase A2, lectin-like oxidized low-density lipoprotein receptor-1, cytokines, myeloperoxidase, cell adhesion molecules, matrix metalloproteinases, and the CD40/CD40 ligand system, have been largely evaluated in human studies, enrolling both individuals from the general population and patients with established CVD. Some markers have yielded conflicting results; however, others are now recognized not only as promising biomarkers of CVD, but also as potential therapeutic targets, establishing the role of anti-inflammatory and pleiotropic drugs in CVD.

Conclusion: There is significant evidence regarding the role of consolidated and novel inflammatory markers in the field of diagnosis and prognosis of CVD. However, multimarker model assessment, validation of cut-off values and cost-effectiveness analyses are required in order for those markers to be integrated into daily clinical practice.

Keywords: Cardiovascular disease, inflammation, atherosclerosis, biomarker, acute ischemic events, therapeutic targets.

[1]
Joseph P, Leong D, McKee M, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res 2017; 121(6): 677-94.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.308903] [PMID: 28860318]
[2]
Bhatnagar P, Wickramasinghe K, Wilkins E, Townsend N. Trends in the epidemiology of cardiovascular disease in the UK. Heart 2016; 102(24): 1945-52.
[http://dx.doi.org/10.1136/heartjnl-2016-309573] [PMID: 27550425]
[3]
Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J 2016; 37(42): 3232-45.
[http://dx.doi.org/10.1093/eurheartj/ehw334] [PMID: 27523477]
[4]
Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation 2004; 109(21)(Suppl. 1): II2-II10.
[PMID: 15173056]
[5]
Golia E, Limongelli G, Natale F, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep 2014; 16(9): 435.
[http://dx.doi.org/10.1007/s11883-014-0435-z] [PMID: 25037581]
[6]
Volanakis JE. Human C-reactive protein: expression, structure, and function. Mol Immunol 2001; 38(2-3): 189-97.
[http://dx.doi.org/10.1016/S0161-5890(01)00042-6] [PMID: 11532280]
[7]
Ablij H, Meinders A. C-reactive protein: history and revival. Eur J Intern Med 2002; 13(7): 412.
[http://dx.doi.org/10.1016/S0953-6205(02)00132-2] [PMID: 12384129]
[8]
Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in ap-parently healthy men. N Engl J Med 1997; 336(14): 973-9.
[http://dx.doi.org/10.1056/NEJM199704033361401] [PMID: 9077376]
[9]
Koenig W, Sund M, Fröhlich M, et al. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring trends and determinants in cardiovascular disease) Augsburg cohort study, 1984 to 1992. Circulation 1999; 99(2): 237-42.
[http://dx.doi.org/10.1161/01.CIR.99.2.237] [PMID: 9892589]
[10]
Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000; 342(12): 836-43.
[http://dx.doi.org/10.1056/NEJM200003233421202] [PMID: 10733371]
[11]
Ridker PM, Rifai N, Clearfield M, et al. Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators.. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 2001; 344(26): 1959-65.
[http://dx.doi.org/10.1056/NEJM200106283442601] [PMID: 11430324]
[12]
Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347(20): 1557-65.
[http://dx.doi.org/10.1056/NEJMoa021993] [PMID: 12432042]
[13]
Rohde LE, Hennekens CH, Ridker PM. Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol 1999; 84(9): 1018-22.
[http://dx.doi.org/10.1016/S0002-9149(99)00491-9] [PMID: 10569656]
[14]
Ridker PM, Danielson E, Fonseca FA, et al. JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359(21): 2195-207.
[http://dx.doi.org/10.1056/NEJMoa0807646] [PMID: 18997196]
[15]
Ridker PM, Danielson E, Fonseca FAH, et al. JUPITER Trial Study Group. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 2009; 373(9670): 1175-82.
[http://dx.doi.org/10.1016/S0140-6736(09)60447-5] [PMID: 19329177]
[16]
Kaptoge S, Di Angelantonio E, Pennells L, et al. Emerging Risk Factors Collaboration. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med 2012; 367(14): 1310-20.
[http://dx.doi.org/10.1056/NEJMoa1107477] [PMID: 23034020]
[17]
Ray KK, Cannon CP, Cairns R, et al. PROVE IT-TIMI 22 Investigators. Relationship between uncontrolled risk factors and C-reactive protein levels in patients receiving standard or intensive statin therapy for acute coronary syndromes in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 2005; 46(8): 1417-24.
[http://dx.doi.org/10.1016/j.jacc.2005.08.024] [PMID: 16226164]
[18]
Toso A, Leoncini M, Maioli M, et al. Relationship between inflammation and benefits of early high-dose rosuvastatin on contrast-induced nephropathy in patients with acute coronary syndrome: the pathophysiological link in the PRATO-ACS study (protective effect of rosuvastatin and antiplatelet therapy on contrast-induced nephropathy and myocardial damage in patients with acute coronary syndrome undergoing coronary intervention). JACC Cardiovasc Interv 2014; 7(12): 1421-9.
[http://dx.doi.org/10.1016/j.jcin.2014.06.023] [PMID: 25523533]
[19]
Ray KK, Cannon CP, Cairns R, Morrow DA, Ridker PM, Braunwald E. Prognostic utility of apoB/AI, total cholesterol/HDL, non-HDL cholesterol, or hs-CRP as predictors of clinical risk in patients receiving statin therapy after acute coronary syndromes: results from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol 2009; 29(3): 424-30.
[http://dx.doi.org/10.1161/ATVBAHA.108.181735] [PMID: 19122170]
[20]
Nissen SE, Tuzcu EM, Schoenhagen P, et al. Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) Investigators. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005; 352(1): 29-38.
[http://dx.doi.org/10.1056/NEJMoa042000] [PMID: 15635110]
[21]
Albert MA, Danielson E, Rifai N, Ridker PM. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001; 286(1): 64-70.
[http://dx.doi.org/10.1001/jama.286.1.64] [PMID: 11434828]
[22]
Jonathan Emberson, Derrick Bennett, Emma Link, et al. Heart Protection Study Collaborative Group. C-reactive protein concentration and the vascular benefits of statin therapy: an analysis of 20,536 patients in the Heart Protection Study. Lancet 2011; 377(9764): 469-76.
[http://dx.doi.org/10.1016/S0140-6736(10)62174-5] [PMID: 21277016]
[23]
de Lemos JA, Blazing MA, Wiviott SD, et al. Investigators Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial. JAMA 2004; 292(11): 1307-16.
[http://dx.doi.org/10.1001/jama.292.11.1307] [PMID: 15337732]
[24]
Ridker PM, Everett BM, Thuren T, et al. CANTOS Trial Group Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[25]
Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ. CANTOS Trial Group Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 2018; 391(10118): 319-28.
[http://dx.doi.org/10.1016/S0140-6736(17)32814-3] [PMID: 29146124]
[26]
Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med 2018.Epub ahead of print.
[http://dx.doi.org/10.1056/NEJMoa1809798] [PMID: 30415610]
[27]
Li Y, Zhong X, Cheng G, et al. Hs-CRP and all-cause, cardiovascular, and cancer mortality risk: A meta-analysis. Atherosclerosis 2017; 259: 75-82.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.02.003] [PMID: 28327451]
[28]
Singh TP, Morris DR, Smith S, Moxon JV, Golledge J. Systematic review and meta-analysis of the association between c-reactive protein and major cardiovascular events in patients with peripheral artery disease. Eur J Vasc Endovasc Surg 2017; 54(2): 220-33.
[http://dx.doi.org/10.1016/j.ejvs.2017.05.009] [PMID: 28666785]
[29]
Zhou Y, Han W, Gong D, Man C, Fan Y. Hs-CRP in stroke: A meta-analysis. Clin Chim Acta 2016; 453: 21-7.
[http://dx.doi.org/10.1016/j.cca.2015.11.027] [PMID: 26633855]
[30]
Bibek SB, Xie Y, Gao JJ, Wang Z, Wang JF, Geng DF. Role of pre-procedural C-reactive protein level in the prediction of major adverse cardiac events in patients undergoing percutaneous coronary intervention: a meta-analysis of longitudinal studies. Inflammation 2015; 38(1): 159-69.
[http://dx.doi.org/10.1007/s10753-014-0018-8] [PMID: 25311976]
[31]
Mincu RI, Jánosi RA, Vinereanu D, Rassaf T, Totzeck M. Pre-procedural C-Reactive Protein Predicts Outcomes after Primary Percutaneous Coronary Intervention in Patients with ST-elevation Myocardial Infarction a systematic meta-analysis. Sci Rep 2017; 7: 41530.
[http://dx.doi.org/10.1038/srep41530] [PMID: 28128312]
[32]
Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 2017; 37(3): e13-21.
[http://dx.doi.org/10.1161/ATVBAHA.117.308564] [PMID: 28228446]
[33]
Gao XY, Zhou BY, Zhang MZ, et al. Association between fibrinogen level and the severity of coronary stenosis in 418 male patients with myocardial infarction younger than 35 years old. Oncotarget 2017; 8(46): 81361-8.
[http://dx.doi.org/10.18632/oncotarget.18578] [PMID: 29113395]
[34]
Handa K, Kono S, Saku K, et al. Plasma fibrinogen levels as an independent indicator of severity of coronary atherosclerosis. Atherosclerosis 1989; 77(2-3): 209-13.
[http://dx.doi.org/10.1016/0021-9150(89)90083-X] [PMID: 2751752]
[35]
Schreiner PJ, Appiah D, Folsom AR. Gamma prime (γ′) fibrinogen and carotid intima-media thickness: the Atherosclerosis Risk in Communities study. Blood Coagul Fibrinolysis 2017; 28(8): 665-9.
[http://dx.doi.org/10.1097/MBC.0000000000000659] [PMID: 28885318]
[36]
Willeit P, Thompson SG, Agewall S, et al. PROG-IMT study group. Inflammatory markers and extent and progression of early atherosclerosis: Meta-analysis of individual-participant-data from 20 prospective studies of the PROG-IMT collaboration. Eur J Prev Cardiol 2016; 23(2): 194-205.
[http://dx.doi.org/10.1177/2047487314560664] [PMID: 25416041]
[37]
Danesh J, Lewington S, Thompson SG, et al. Fibrinogen Studies Collaboration.. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 2005; 294(14): 1799-809.
[PMID: 16219884]
[38]
Kaptoge S, White IR, Thompson SG, et al. Fibrinogen Studies Collaboration.. Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: individual participant meta-analysis of 154,211 adults in 31 prospective studies: the fibrinogen studies collaboration. Am J Epidemiol 2007; 166(8): 867-79.
[http://dx.doi.org/10.1093/aje/kwm191] [PMID: 17785713]
[39]
van Holten TC, Waanders LF, de Groot PG, et al. Circulating biomarkers for predicting cardiovascular disease risk; a systematic review and comprehensive overview of meta-analyses. PLoS One 2013; 8(4)e62080
[http://dx.doi.org/10.1371/journal.pone.0062080] [PMID: 23630624]
[40]
de Lange M, Snieder H, Ariëns RA, Spector TD, Grant PJ. The genetics of haemostasis: a twin study. Lancet 2001; 357(9250): 101-5.
[http://dx.doi.org/10.1016/S0140-6736(00)03541-8] [PMID: 11197396]
[41]
Sabater-Lleal M, Huang J, Chasman D, et al. VTE Consortium; STROKE Consortium; Wellcome Trust Case Control Consortium 2 (WTCCC2); C4D Consortium; CARDIoGRAM Consortium. Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation 2013; 128(12): 1310-24.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002251] [PMID: 23969696]
[42]
Smith GD, Harbord R, Milton J, Ebrahim S, Sterne JA. Does elevated plasma fibrinogen increase the risk of coronary heart disease? Evidence from a meta-analysis of genetic association studies. Arterioscler Thromb Vasc Biol 2005; 25(10): 2228-33.
[http://dx.doi.org/10.1161/01.ATV.0000183937.65887.9c] [PMID: 16123313]
[43]
Danesh J, Collins R, Peto R, Lowe GD. Haematocrit, viscosity, erythrocyte sedimentation rate: meta-analyses of prospective studies of coronary heart disease. Eur Heart J 2000; 21(7): 515-20.
[http://dx.doi.org/10.1053/euhj.1999.1699] [PMID: 10775006]
[44]
Natali A, L’Abbate A, Ferrannini E. Erythrocyte sedimentation rate, coronary atherosclerosis, and cardiac mortality. Eur Heart J 2003; 24(7): 639-48.
[http://dx.doi.org/10.1016/S0195-668X(02)00741-8] [PMID: 12657222]
[45]
Baeza VR, Corbalán HR, Castro GP, Acevedo BM, Quiroga GT, Viviani GP. Coronary biomarkers and long-term clinical outcome in acute coronary syndrome without ST segment elevation. Rev Med Chil 2005; 133(11): 1285-93.
[PMID: 16446851]
[46]
Yayan J. Erythrocyte sedimentation rate as a marker for coronary heart disease. Vasc Health Risk Manag 2012; 8: 219-23.
[http://dx.doi.org/10.2147/VHRM.S29284] [PMID: 22536077]
[47]
Rasouli M, Kiasari AM, Bagheri B. Total and differential leukocytes counts, but not hsCRP, ESR, and five fractioned serum proteins have significant potency to predict stable coronary artery disease. Clin Chim Acta 2007; 377(1-2): 127-32.
[http://dx.doi.org/10.1016/j.cca.2006.09.009] [PMID: 17067564]
[48]
Zhou J, Wu J, Zhang J, et al. Association of stroke clinical outcomes with coexistence of hyperglycemia and biomarkers of inflammation. J Stroke Cerebrovasc Dis 2015; 24(6): 1250-5.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2015.01.028] [PMID: 25906929]
[49]
Kliper E, Bashat DB, Bornstein NM, et al. Cognitive decline after stroke: relation to inflammatory biomarkers and hippocampal volume. Stroke 2013; 44(5): 1433-5.
[http://dx.doi.org/10.1161/STROKEAHA.111.000536] [PMID: 23444307]
[50]
Lee JH, Kwon KY, Yoon SY, Kim HS, Lim CS. Characteristics of platelet indices, neutrophil-to-lymphocyte ratio and erythrocyte sed-imentation rate compared with C reactive protein in patients with cerebral infarction: a retrospective analysis of comparing haematological parameters and C reactive protein. BMJ Open 2014; 4(11)e006275
[http://dx.doi.org/10.1136/bmjopen-2014-006275] [PMID: 25412865]
[51]
Ingelsson E, Arnlöv J, Sundström J, Lind L. Inflammation, as measured by the erythrocyte sedimentation rate, is an independent predictor for the development of heart failure. J Am Coll Cardiol 2005; 45(11): 1802-6.
[http://dx.doi.org/10.1016/j.jacc.2005.02.066] [PMID: 15936609]
[52]
Dada N, Kim NW, Wolfert RL. Lp-PLA2: an emerging biomarker of coronary heart disease. Expert Rev Mol Diagn 2002; 2(1): 17-22.
[http://dx.doi.org/10.1586/14737159.2.1.17] [PMID: 11963798]
[53]
Mallat Z, Lambeau G, Tedgui A. Lipoprotein-associated and secreted phospholipases A2 in cardiovascular disease. Circulation 2010; 122: 2183-200.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.936393] [PMID: 21098459]
[54]
Zalewski A, Macphee C. CATIS investigation groups. Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol 2005; 25(5): 923-31.
[http://dx.doi.org/10.1161/01.ATV.0000160551.21962.a7] [PMID: 15731492]
[55]
Dohi T, Miyauchi K, Okazaki S, et al. Decreased circulating lipoprotein-associated phospholipase A2 levels are associated with coronary plaque regression in patients with acute coronary syndrome. Atherosclerosis 2011; 219(2): 907-12.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.09.019] [PMID: 22024276]
[56]
White HD, Simes J, Stewart RA, et al. LIPID Study Investigators.. Changes in lipoprotein-Associated phospholipase A2 activity predict coronary events and partly account for the treatment effect of pravastatin: results from the long-term intervention with pravastatin in ischemic disease study. J Am Heart Assoc 2013; 2(5)e000360
[http://dx.doi.org/10.1161/JAHA.113.000360] [PMID: 24152981]
[57]
Mohler ER III, Ballantyne CM, Davidson MH, et al. Darapladib Investigators.. The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol 2008; 51(17): 1632-41.
[http://dx.doi.org/10.1016/j.jacc.2007.11.079] [PMID: 18436114]
[58]
O’Donoghue ML, Braunwald E, White HD, et al. SOLID-TIMI 52 Investigators.. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA 2014; 312(10): 1006-15.
[http://dx.doi.org/10.1001/jama.2014.11061] [PMID: 25173516]
[59]
White HD, Held C, Stewart R, et al. STABILITY Investigators.. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med 2014; 370(18): 1702-11.
[http://dx.doi.org/10.1056/NEJMoa1315878] [PMID: 24678955]
[60]
Casas JP, Ninio E, Panayiotou A, et al. PLA2G7 genotype, lipoprotein-associated phospholipase A2 activity, and coronary heart disease risk in 10 494 cases and 15 624 controls of European Ancestry. Circulation 2010; 121(21): 2284-93.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.923383] [PMID: 20479152]
[61]
Thompson A, Gao P, Orfei L, et al. Lp-PLA(2) Studies Collaboration. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet 2010; 375(9725): 1536-44.
[http://dx.doi.org/10.1016/S0140-6736(10)60319-4] [PMID: 20435228]
[62]
Li D, Wei W, Ran X, et al. Lipoprotein-associated phospholipase A2 and risks of coronary heart disease and ischemic stroke in the general population: A systematic review and meta-analysis. Clin Chim Acta 2017; 471: 38-45.
[http://dx.doi.org/10.1016/j.cca.2017.05.017] [PMID: 28514697]
[63]
Tian Y, Jia H, Li S, et al. The associations of stroke, transient ischemic attack, and/or stroke-related recurrent vascular events with Lipoprotein-associated phospholipase A2: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96(51)e9413
[http://dx.doi.org/10.1097/MD.0000000000009413] [PMID: 29390564]
[64]
Han L, Zhong C, Bu X, et al. CATIS investigation groups. Prognostic value of lipoprotein-associated phospholipase A2 mass for all-cause mortality and vascular events within one year after acute ischemic stroke. Atherosclerosis 2017; 266: 1-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.09.013] [PMID: 28934604]
[65]
Li J, Wang H, Tian J, Chen B, Du F. Change in lipoprotein-associated phospholipase A2 and its association with cardiovascular outcomes in patients with acute coronary syndrome. Medicine (Baltimore) 2018; 97(28)e11517
[http://dx.doi.org/10.1097/MD.0000000000011517] [PMID: 29995820]
[66]
Cai A, Li G, Chen J, Li X, Li L, Zhou Y. Increased serum level of Lp-PLA2 is independently associated with the severity of coronary artery diseases: a cross-sectional study of Chinese population. BMC Cardiovasc Disord 2015; 15: 14.
[http://dx.doi.org/10.1186/s12872-015-0001-9] [PMID: 25879827]
[67]
Garg PK, Jorgensen NW, McClelland RL, et al. Lipoprotein-associated phospholipase A2 and risk of incident peripheral arterial disease in a multi-ethnic cohort: The Multi-Ethnic Study of Atherosclerosis. Vasc Med 2017; 22(1): 5-12.
[http://dx.doi.org/10.1177/1358863X16671424] [PMID: 28215109]
[68]
Garg PK, Arnold AM, Hinckley Stukovsky KD, et al. Lipoprotein-associated phospholipase A2 and incident peripheral arterial disease in older adults: the cardiovascular health study. Arterioscler Thromb Vasc Biol 2016; 36(4): 750-6.
[http://dx.doi.org/10.1161/ATVBAHA.115.306647] [PMID: 26848158]
[69]
Younus A, Humayun C, Ahmad R, et al. Lipoprotein-associated phospholipase A2 and its relationship with markers of subclinical cardiovascular disease: A systematic review. J Clin Lipidol 2017; 11(2): 328-37.
[http://dx.doi.org/10.1016/j.jacl.2017.02.005] [PMID: 28502488]
[70]
Wallentin L, Held C, Armstrong PW, et al. STABILITY Investigators.. Lipoprotein-associated phospholipase A2 activity is a marker of risk but not a useful target for treatment in patients with stable coronary heart disease. J Am Heart Assoc 2016; 5(6)e003407
[http://dx.doi.org/10.1161/JAHA.116.003407] [PMID: 27329448]
[71]
Szekely Y, Arbel Y. A review of interleukin-1 in heart disease: where do we stand today? Cardiol Ther 2018; 7(1): 25-44.
[http://dx.doi.org/10.1007/s40119-018-0104-3] [PMID: 29417406]
[72]
Ozeren A, Aydin M, Tokac M, et al. Levels of serum IL-1beta, IL-2, IL-8 and tumor necrosis factor-alpha in patients with unstable angina pectoris. Mediators Inflamm 2003; 12(6): 361-5.
[http://dx.doi.org/10.1080/09629350310001633360] [PMID: 14668096]
[73]
Hasdai D, Scheinowitz M, Leibovitz E, Sclarovsky S, Eldar M, Barak V. Increased serum concentrations of interleukin-1 beta in patients with coronary artery disease. Heart 1996; 76(1): 24-8.
[http://dx.doi.org/10.1136/hrt.76.1.24] [PMID: 8774323]
[74]
Blum A, Sclarovsky S, Rehavia E, Shohat B. Levels of T-lymphocyte subpopulations, interleukin-1 beta, and soluble interleukin-2 receptor in acute myocardial infarction. Am Heart J 1994; 127(5): 1226-30.
[http://dx.doi.org/10.1016/0002-8703(94)90040-X] [PMID: 8172050]
[75]
Balbay Y, Tikiz H, Baptiste RJ, Ayaz S, Saşmaz H, Korkmaz S. Circulating interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and soluble ICAM-1 in patients with chronic stable angina and myocardial infarction. Angiology 2001; 52(2): 109-14.
[http://dx.doi.org/10.1177/000331970105200204] [PMID: 11228083]
[76]
Waehre T, Yndestad A, Smith C, et al. Increased expression of interleukin-1 in coronary artery disease with downregulatory effects of HMG-CoA reductase inhibitors. Circulation 2004; 109(16): 1966-72.
[http://dx.doi.org/10.1161/01.CIR.0000125700.33637.B1] [PMID: 15051633]
[77]
Abbate A, Kontos MC, Grizzard JD, et al. VCU-ART Investigators. Interleukin-1 blockade with anakinra to prevent adverse cardiac re-modeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol 2010; 105(10): 1371-1377.e1.
[http://dx.doi.org/10.1016/j.amjcard.2009.12.059] [PMID: 20451681]
[78]
Abbate A, Van Tassell BW, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study. Am J Cardiol 2013; 111(10): 1394-400.
[http://dx.doi.org/10.1016/j.amjcard.2013.01.287] [PMID: 23453459]
[79]
Ikonomidis I, Lekakis JP, Nikolaou M, et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 2008; 117(20): 2662-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.731877] [PMID: 18474811]
[80]
Ikonomidis I, Tzortzis S, Andreadou I, et al. Increased benefit of interleukin-1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ Cardiovasc Imaging 2014; 7(4): 619-28.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.001193] [PMID: 24782115]
[81]
Zhou L, Cai J, Liu G, Wei Y, Tang H. Associations between interleukin-1 gene polymorphisms and coronary heart disease risk: a meta-analysis. PLoS One 2012; 7(9)e45641
[http://dx.doi.org/10.1371/journal.pone.0045641] [PMID: 23029154]
[82]
Rai H, Sinha N, Kumar S, Sharma AK, Agrawal S. Interleukin-1 gene cluster polymorphisms and their association with coronary artery disease: separate evidences from the largest case-control study amongst north indians and an updated meta-analysis. PLoS One 2016; 11(4)e0153480
[http://dx.doi.org/10.1371/journal.pone.0153480] [PMID: 27078871]
[83]
Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990; 265(3): 621-36.
[http://dx.doi.org/10.1042/bj2650621] [PMID: 1689567]
[84]
Pai JK, Pischon T, Ma J, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 2004; 351(25): 2599-610.
[http://dx.doi.org/10.1056/NEJMoa040967] [PMID: 15602020]
[85]
Fanola CL, Morrow DA, Cannon CP, et al. Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the SOLID-TIMI 52 (stabilization of plaque using darapladib-thrombolysis in myocardial infarction 52) trial. J Am Heart Assoc 2017; 6(10)e005637
[http://dx.doi.org/10.1161/JAHA.117.005637] [PMID: 29066436]
[86]
Held C, White HD, Stewart RAH, et al. STABILITY Investigators. Inflammatory biomarkers interleukin-6 and c-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (Stabilization of atherosclerotic plaque by initiation of darapladib therapy) Trial. J Am Heart Assoc 2017; 6(10)e005077
[http://dx.doi.org/10.1161/JAHA.116.005077] [PMID: 29066452]
[87]
Saremi A, Anderson RJ, Luo P, et al. VADT. Association between IL-6 and the extent of coronary atherosclerosis in the veterans affairs diabetes trial (VADT). Atherosclerosis 2009; 203(2): 610-4.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.07.031] [PMID: 18804762]
[88]
Simon TG, Trejo MEP, McClelland R, et al. Circulating Interleukin-6 is a biomarker for coronary atherosclerosis in nonalcoholic fatty liver disease: Results from the Multi-Ethnic Study of Atherosclerosis. Int J Cardiol 2018; 259: 198-204.
[http://dx.doi.org/10.1016/j.ijcard.2018.01.046] [PMID: 29579601]
[89]
Niu W, Liu Y, Qi Y, Wu Z, Zhu D, Jin W. Association of interleukin-6 circulating levels with coronary artery disease: a meta-analysis implementing mendelian randomization approach. Int J Cardiol 2012; 157(2): 243-52.
[http://dx.doi.org/10.1016/j.ijcard.2011.12.098] [PMID: 22261689]
[90]
Bunevicius A, Kazlauskas H, Raskauskiene N, et al. Role of N-terminal pro-B-type natriuretic peptide, high-sensitivity C-reactive protein, and inteleukin-6 in predicting a poor outcome after a stroke. Neuroimmunomodulation 2015; 22(6): 365-72.
[http://dx.doi.org/10.1159/000381218] [PMID: 25967464]
[91]
Whiteley W, Jackson C, Lewis S, et al. Inflammatory markers and poor outcome after stroke: a prospective cohort study and systematic review of interleukin-6. PLoS Med 2009; 6(9)e1000145
[http://dx.doi.org/10.1371/journal.pmed.1000145] [PMID: 19901973]
[92]
Bustamante A, Sobrino T, Giralt D, et al. Prognostic value of blood interleukin-6 in the prediction of functional outcome after stroke: a systematic review and meta-analysis. J Neuroimmunol 2014; 274(1-2): 215-24.
[http://dx.doi.org/10.1016/j.jneuroim.2014.07.015] [PMID: 25091431]
[93]
Boehme AK, McClure LA, Zhang Y, et al. Inflammatory markers and outcomes after lacunar stroke: levels of inflammatory markers in treatment of stroke study. Stroke 2016; 47(3): 659-67.
[http://dx.doi.org/10.1161/STROKEAHA.115.012166] [PMID: 26888535]
[94]
Liu M, Chen J, Huang D, Ke J, Wu W. A meta-analysis of proinflammatory cytokines in chronic heart failure. Heart Asia 2014; 6(1): 130-6.
[http://dx.doi.org/10.1136/heartasia-2013-010484] [PMID: 27326188]
[95]
Swerdlow DI, Holmes MV, Kuchenbaecker KB, et al. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium, The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 2012; 379: 1214-24.
[96]
Bennet AM, van Maarle MC, Hallqvist J, et al. Association of TNF-alpha serum levels and TNFA promoter polymorphisms with risk of myocardial infarction. Atherosclerosis 2006; 187(2): 408-14.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.09.022] [PMID: 16243340]
[97]
Vlachopoulos C, Gravos A, Georgiopoulos G, et al. The effect of TNF-a antagonists on aortic stiffness and wave reflections: a meta-analysis. Clin Rheumatol 2018; 37(2): 515-26.
[http://dx.doi.org/10.1007/s10067-017-3657-y] [PMID: 28484887]
[98]
Moreau KL, Deane KD, Meditz AL, Kohrt WM. Tumor necrosis factor-α inhibition improves endothelial function and decreases arterial stiffness in estrogen-deficient postmenopausal women. Atherosclerosis 2013; 230(2): 390-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.07.057] [PMID: 24075772]
[99]
Tam LS, Kitas GD, González-Gay MA. Can suppression of inflammation by anti-TNF prevent progression of subclinical atherosclerosis in inflammatory arthritis? Rheumatology (Oxford) 2014; 53(6): 1108-19.
[http://dx.doi.org/10.1093/rheumatology/ket454] [PMID: 24501245]
[100]
Di Minno MN, Iervolino S, Peluso R, Scarpa R, Di Minno G. CaRRDs study group. Carotid intima-media thickness in psoriatic arthritis: differences between tumor necrosis factor-α blockers and traditional disease-modifying antirheumatic drugs. Arterioscler Thromb Vasc Biol 2011; 31(3): 705-12.
[http://dx.doi.org/10.1161/ATVBAHA.110.214585] [PMID: 21212403]
[101]
Alam SR, Stirrat C, Spath N, et al. Myocardial inflammation, injury and infarction during on-pump coronary artery bypass graft surgery. J Cardiothorac Surg 2017; 12(1): 115.
[http://dx.doi.org/10.1186/s13019-017-0681-6] [PMID: 29246240]
[102]
Inoue T, Komoda H, Nonaka M, Kameda M, Uchida T, Node K. Interleukin-8 as an independent predictor of long-term clinical outcome in patients with coronary artery disease. Int J Cardiol 2008; 124(3): 319-25.
[http://dx.doi.org/10.1016/j.ijcard.2007.02.012] [PMID: 17442429]
[103]
Hashmi S, Zeng QT. Role of interleukin-17 and interleukin-17-induced cytokines interleukin-6 and interleukin-8 in unstable coronary artery disease. Coron Artery Dis 2006; 17(8): 699-706.
[http://dx.doi.org/10.1097/01.mca.0000236288.94553.b4] [PMID: 17119379]
[104]
Opstad TB, Arnesen H, Pettersen AÅ, Seljeflot I. Combined elevated levels of the proinflammatory cytokines IL-18 and IL-12 are as-sociated with clinical events in patients with coronary artery disease: an observational study. Metab Syndr Relat Disord 2016; 14(5): 242-8.
[http://dx.doi.org/10.1089/met.2015.0130] [PMID: 27058587]
[105]
Thompson SR, Novick D, Stock CJ, et al. Free Interleukin (IL)-18 levels, and the impact of IL18 and IL18BP genetic variation, in CHD patients and healthy men. Arterioscler Thromb Vasc Biol 2007; 27(12): 2743-9.
[http://dx.doi.org/10.1161/ATVBAHA.107.149245] [PMID: 17951325]
[106]
Tiret L, Godefroy T, Lubos E, et al. AtheroGene Investigators.Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation 2005; 112(5): 643-50.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.519702] [PMID: 16043644]
[107]
Schernthaner C, Paar V, Wernly B, et al. Elevated plasma levels of interleukin-16 in patients with acute myocardial infarction. Medicine (Baltimore) 2017; 96(44)e8396
[http://dx.doi.org/10.1097/MD.0000000000008396] [PMID: 29095267]
[108]
Gregersen I, Sandanger Ø, Askevold ET, et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLoS One 2017; 12(11)e0188387
[http://dx.doi.org/10.1371/journal.pone.0188387] [PMID: 29176764]
[109]
Miura K, Saita E, Suzuki-Sugihara N, et al. Plasma interleukin-27 levels in patients with coronary artery disease. Medicine (Baltimore) 2017; 96(43)e8260
[http://dx.doi.org/10.1097/MD.0000000000008260] [PMID: 29068992]
[110]
Li Z, Jin D, Wu Y, et al. Increased serum interleukin-34 in patients with coronary artery disease. J Int Med Res 2012; 40(5): 1866-70.
[http://dx.doi.org/10.1177/030006051204000525] [PMID: 23206468]
[111]
Fan Q, Yan X, Zhang H, et al. IL-34 is associated with the presence and severity of renal dysfunction and coronary artery disease in pa-tients with heart failure. Sci Rep 2016; 6: 39324.
[http://dx.doi.org/10.1038/srep39324] [PMID: 27982136]
[112]
Trompet S, Pons DDE, Craen AJ, et al. Genetic variation in the interleukin-10 gene promoter and risk of coronary and cerebrovascular events: the PROSPER study. Ann N Y Acad Sci 2007; 1100: 189-98.
[http://dx.doi.org/10.1196/annals.1395.018] [PMID: 17460178]
[113]
Mälarstig A, Eriksson P, Hamsten A, Lindahl B, Wallentin L, Siegbahn A. Raised interleukin-10 is an indicator of poor outcome and enhanced systemic inflammation in patients with acute coronary syndrome. Heart 2008; 94(6): 724-9.
[http://dx.doi.org/10.1136/hrt.2007.119271] [PMID: 17690160]
[114]
Cavusoglu E, Marmur JD, Hojjati MR, et al. Plasma interleukin-10 levels and adverse outcomes in acute coronary syndrome. Am J Med 2011; 124(8): 724-30.
[http://dx.doi.org/10.1016/j.amjmed.2011.02.040] [PMID: 21787901]
[115]
Oemrawsingh RM, Lenderink T, Akkerhuis KM, et al. CAPTURE investigators Multimarker risk model containing troponin-T, interleukin 10, myeloperoxidase and placental growth factor predicts long-term cardiovascular risk after non-ST-segment elevation acute coronary syndrome. Heart 2011; 97(13): 1061-6.
[http://dx.doi.org/10.1136/hrt.2010.197392] [PMID: 21558475]
[116]
Sämpi M, Ukkola O, Päivänsalo M, Kesäniemi YA, Binder CJ, Hörkkö S. Plasma interleukin-5 levels are related to antibodies binding to oxidized low-density lipoprotein and to decreased subclinical atherosclerosis. J Am Coll Cardiol 2008; 52(17): 1370-8.
[http://dx.doi.org/10.1016/j.jacc.2008.06.047] [PMID: 18940525]
[117]
Silveira A, McLeod O, Strawbridge RJ, et al. Plasma IL-5 concentration and subclinical carotid atherosclerosis. Atherosclerosis 2015; 239(1): 125-30.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.046] [PMID: 25587992]
[118]
Ishigami T, Abe K, Aoki I, et al. Anti-interleukin-5 and multiple autoantibodies are associated with human atherosclerotic diseases and serum interleukin-5 levels. FASEB J 2013; 27(9): 3437-45.
[http://dx.doi.org/10.1096/fj.12-222653] [PMID: 23699176]
[119]
Madhumitha H, Mohan V, Deepa M, Babu S, Aravindhan V. Increased Th1 and suppressed Th2 serum cytokine levels in subjects with diabetic coronary artery disease. Cardiovasc Diabetol 2014; 13: 1.
[http://dx.doi.org/10.1186/1475-2840-13-1] [PMID: 24383855]
[120]
Matsumori A, Furukawa Y, Hashimoto T, et al. Plasma levels of the monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 are elevated in patients with acute myocardial infarction. J Mol Cell Cardiol 1997; 29(1): 419-23.
[http://dx.doi.org/10.1006/jmcc.1996.0285] [PMID: 9040055]
[121]
Soejima H, Ogawa H, Yasue H, et al. Angiotensin-converting enzyme inhibition reduces monocyte chemoattractant protein-1 and tissue factor levels in patients with myocardial infarction. J Am Coll Cardiol 1999; 34(4): 983-8.
[http://dx.doi.org/10.1016/S0735-1097(99)00318-6] [PMID: 10520779]
[122]
Gullestad L, Aukrust P, Ueland T, et al. Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol 1999; 34(7): 2061-7.
[http://dx.doi.org/10.1016/S0735-1097(99)00495-7] [PMID: 10588224]
[123]
de Lemos JA, Morrow DA, Sabatine MS, et al. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation 2003; 107(5): 690-5.
[http://dx.doi.org/10.1161/01.CIR.0000049742.68848.99] [PMID: 12578870]
[124]
Herder C, Baumert J, Thorand B, et al. Chemokines and incident coronary heart disease: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler Thromb Vasc Biol 2006; 26(9): 2147-52.
[http://dx.doi.org/10.1161/01.ATV.0000235691.84430.86] [PMID: 16825597]
[125]
Ray KK, Cannon CP, Morrow DA, et al. Synergistic relationship between hyperglycaemia and inflammation with respect to clinical outcomes in non-ST-elevation acute coronary syndromes: analyses from OPUS-TIMI 16 and TACTICS-TIMI 18. Eur Heart J 2007; 28(7): 806-13.
[http://dx.doi.org/10.1093/eurheartj/ehm010] [PMID: 17403721]
[126]
Park HJ, Chang K, Park CS, et al. Coronary collaterals: the role of MCP-1 during the early phase of acute myocardial infarction. Int J Cardiol 2008; 130(3): 409-13.
[http://dx.doi.org/10.1016/j.ijcard.2007.08.128] [PMID: 18158188]
[127]
Economou E, Tousoulis D, Katinioti A, et al. Chemokines in patients with ischaemic heart disease and the effect of coronary angioplasty. Int J Cardiol 2001; 80(1): 55-60.
[http://dx.doi.org/10.1016/S0167-5273(01)00454-5] [PMID: 11532547]
[128]
Pello AM, Cristóbal C, Tarín N, et al. Differential profile in inflammatory and mineral metabolism biomarkers in patients with ischemic heart disease without classical coronary risk factors. J Cardiol 2015; 66(1): 22-7.
[http://dx.doi.org/10.1016/j.jjcc.2014.11.006] [PMID: 25533425]
[129]
Ding D, Su D, Li X, et al. Serum levels of monocyte chemoattractant protein-1 and all-cause and cardiovascular mortality among patients with coronary artery disease. PLoS One 2015; 10(3)e0120633
[http://dx.doi.org/10.1371/journal.pone.0120633] [PMID: 25786118]
[130]
Tuñón J, Blanco-Colio L, Cristóbal C, et al. Usefulness of a combination of monocyte chemoattractant protein-1, galectin-3, and N-terminal probrain natriuretic peptide to predict cardiovascular events in patients with coronary artery disease. Am J Cardiol 2014; 113(3): 434-40.
[http://dx.doi.org/10.1016/j.amjcard.2013.10.012] [PMID: 24295549]
[131]
Tajfard M, Latiff LA, Rahimi HR, et al. Serum concentrations of MCP-1 and IL-6 in combination predict the presence of coronary artery disease and mortality in subjects undergoing coronary angiography. Mol Cell Biochem 2017; 435(1-2): 37-45.
[http://dx.doi.org/10.1007/s11010-017-3054-5] [PMID: 28534120]
[132]
Heller EA, Liu E, Tager AM, et al. Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 2006; 113(19): 2301-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.605121] [PMID: 16682613]
[133]
Rothenbacher D, Müller-Scholze S, Herder C, Koenig W, Kolb H. Differential expression of chemokines, risk of stable coronary heart disease, and correlation with established cardiovascular risk markers. Arterioscler Thromb Vasc Biol 2006; 26(1): 194-9.
[http://dx.doi.org/10.1161/01.ATV.0000191633.52585.14] [PMID: 16239601]
[134]
de Oliveira RT, Mamoni RL, Souza JR, et al. Differential expression of cytokines, chemokines and chemokine receptors in patients with coronary artery disease. Int J Cardiol 2009; 136(1): 17-26.
[http://dx.doi.org/10.1016/j.ijcard.2008.04.009] [PMID: 18617279]
[135]
Niki T, Soeki T, Yamaguchi K, et al. Elevated concentration of interferon-inducible protein of 10 kD (IP-10) is associated with coronary atherosclerosis. Int Heart J 2015; 56(3): 269-72.
[http://dx.doi.org/10.1536/ihj.14-300] [PMID: 25902883]
[136]
Tavakolian Ferdousie V, Mohammadi M, Hassanshahi G, et al. Serum CXCL10 and CXCL12 chemokine levels are associated with the severity of coronary artery disease and coronary artery occlusion. Int J Cardiol 2017; 233: 23-8.
[http://dx.doi.org/10.1016/j.ijcard.2017.02.011] [PMID: 28189264]
[137]
Appay V, Rowland-Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol 2001; 22(2): 83-7.
[http://dx.doi.org/10.1016/S1471-4906(00)01812-3] [PMID: 11286708]
[138]
Cavusoglu E, Eng C, Chopra V, Clark LT, Pinsky DJ, Marmur JD. Low plasma RANTES levels are an independent predictor of cardiac mortality in patients referred for coronary angiography. Arterioscler Thromb Vasc Biol 2007; 27(4): 929-35.
[http://dx.doi.org/10.1161/01.ATV.0000258789.21585.76] [PMID: 17255538]
[139]
Herder C, Peeters W, Illig T, et al. CARDIoGRAM Consortium.RANTES/CCL5 and risk for coronary events: results from the MONICA/KORA Augsburg case-cohort, Athero-Express and CARDIoGRAM studies. PLoS One 2011; 6(12)e25734
[http://dx.doi.org/10.1371/journal.pone.0025734] [PMID: 22162987]
[140]
Canouï-Poitrine F, Luc G, Mallat Z, et al. PRIME Study Group. Systemic chemokine levels, coronary heart disease, and ischemic stroke events: the PRIME study. Neurology 2011; 77(12): 1165-73.
[http://dx.doi.org/10.1212/WNL.0b013e31822dc7c8] [PMID: 21849651]
[141]
Blanchet X, Cesarek K, Brandt J, et al. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome. Thromb Haemost 2014; 112(6): 1277-87.
[PMID: 25183015]
[142]
Podolec J, Kopec G, Niewiara L, et al. Chemokine RANTES is increased at early stages of coronary artery disease. J Physiol Pharmacol 2016; 67(2): 321-8.
[PMID: 27226191]
[143]
Maurer M, von Stebut E. Macrophage inflammatory protein-1. Int J Biochem Cell Biol 2004; 36(10): 1882-6.
[http://dx.doi.org/10.1016/j.biocel.2003.10.019] [PMID: 15203102]
[144]
de Jager SC, Kraaijeveld AO, Grauss RW, et al. CCL3 (MIP-1 alpha) levels are elevated during acute coronary syndromes and show strong prognostic power for future ischemic events. J Mol Cell Cardiol 2008; 45(3): 446-52.
[http://dx.doi.org/10.1016/j.yjmcc.2008.06.003] [PMID: 18619972]
[145]
de Jager SC, Bongaerts BW, Weber M, et al. Chemokines CCL3/MIP1α, CCL5/RANTES and CCL18/PARC are independent risk predictors of short-term mortality in patients with acute coronary syndromes. PLoS One 2012; 7(9)e45804
[http://dx.doi.org/10.1371/journal.pone.0045804] [PMID: 23029252]
[146]
Schiopu A, Bengtsson E, Gonçalves I, Nilsson J, Fredrikson GN, Björkbacka H. Associations between macrophage colony-stimulating factor and monocyte chemotactic protein 1 in plasma and first-time coronary events: a nested case-control study. J Am Heart Assoc 2016; 5(9)e002851
[http://dx.doi.org/10.1161/JAHA.115.002851] [PMID: 27625345]
[147]
Strzepa A, Pritchard KA, Dittel BN. Myeloperoxidase: A new player in autoimmunity. Cell Immunol 2017; 317: 1-8.
[http://dx.doi.org/10.1016/j.cellimm.2017.05.002] [PMID: 28511921]
[148]
Morrow DA, Sabatine MS, Brennan ML, et al. Concurrent evaluation of novel cardiac biomarkers in acute coronary syndrome: myeloperoxidase and soluble CD40 ligand and the risk of recurrent ischaemic events in TACTICS-TIMI 18. Eur Heart J 2008; 29(9): 1096-102.
[http://dx.doi.org/10.1093/eurheartj/ehn071] [PMID: 18339606]
[149]
Scirica BM, Sabatine MS, Jarolim P, et al. Assessment of multiple cardiac biomarkers in non-ST-segment elevation acute coronary syndromes: observations from the MERLIN-TIMI 36 trial. Eur Heart J 2011; 32(6): 697-705.
[http://dx.doi.org/10.1093/eurheartj/ehq468] [PMID: 21183500]
[150]
Arsenault BJ, Barter P, DeMicco DA, et al. Prediction of cardiovascular events in statin-treated stable coronary patients of the treating to new targets randomized controlled trial by lipid and non-lipid biomarkers. PLoS One 2014; 9(12)e114519
[http://dx.doi.org/10.1371/journal.pone.0114519] [PMID: 25531109]
[151]
Koch C, Henrich M, Heidt MC. Sequential analysis of myeloperoxidase for prediction of adverse events after suspected acute coronary ischemia. Clin Cardiol 2014; 37(12): 744-9.
[http://dx.doi.org/10.1002/clc.22336] [PMID: 25403739]
[152]
O’Donoghue ML, Morrow DA, Cannon CP, et al. multimarker risk stratification in patients with acute myocardial infarction. J Am Heart Assoc 2016; 5(5)e002586
[http://dx.doi.org/10.1161/JAHA.115.002586] [PMID: 27207959]
[153]
Khine HW, Teiber JF, Haley RW, Khera A, Ayers CR, Rohatgi A. Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: observations from the Dallas heart study. Atherosclerosis 2017; 263: 156-62.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.06.007] [PMID: 28645072]
[154]
Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J Am Coll Cardiol 2017; 69(22): 2759-68.
[http://dx.doi.org/10.1016/j.jacc.2017.04.010] [PMID: 28571642]
[155]
Hofmann A, Brunssen C, Morawietz H. Contribution of lectin-like oxidized low-density lipoprotein receptor-1 and LOX-1 modulating compounds to vascular diseases. Vascul Pharmacol 2017 Oct;19S1537-1891 (17): 30171-4.
[156]
Yang TC, Chang PY, Lu SC. L5-LDL from ST-elevation myocardial infarction patients induces IL-1β production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol 2017; 312(2): H265-74.
[http://dx.doi.org/10.1152/ajpheart.00509.2016] [PMID: 27864235]
[157]
Li D, Williams V, Liu L, et al. Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction. J Am Coll Cardiol 2003; 41(6): 1048-55.
[http://dx.doi.org/10.1016/S0735-1097(02)02966-2] [PMID: 12651056]
[158]
Hayashida K, Kume N, Murase T, et al. Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation 2005; 112(6): 812-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.468397] [PMID: 16061745]
[159]
Kume N, Mitsuoka H, Hayashida K, Tanaka M, Kominami G, Kita T. Soluble lectin-like oxidized LDL receptor-1 (sLOX-1) as a sensitive and specific biomarker for acute coronary syndrome--comparison with other biomarkers. J Cardiol 2010; 56(2): 159-65.
[http://dx.doi.org/10.1016/j.jjcc.2010.05.002] [PMID: 20605699]
[160]
Balın M, Celik A, Kobat MA. Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are associated with proximal/middle segment of the LAD lesions in patients with stable coronary artery disease. Clin Res Cardiol 2012; 101(4): 247-53.
[http://dx.doi.org/10.1007/s00392-011-0386-0] [PMID: 22116101]
[161]
Zhao ZW, Zhu XL, Luo YK, Lin CG, Chen LL. Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are as-sociated with angiographic coronary lesion complexity in patients with coronary artery disease. Clin Cardiol 2011; 34(3): 172-7.
[http://dx.doi.org/10.1002/clc.20847] [PMID: 21400544]
[162]
Balin M, Celik A, Kobat MA, Baydas A. Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels predict percutaneous coronary intervention-related periprocedural myocardial infarction in stable patients undergoing elective native single-vessel PCI. J Thromb Thrombolysis 2012; 34(4): 483-90.
[http://dx.doi.org/10.1007/s11239-012-0770-2] [PMID: 22797935]
[163]
Liu J, Liu Y, Jia K, et al. Clinical analysis of lectin-like oxidized low-density lipoprotein receptor-1 in patients with in-stent restenosis after percutaneous coronary intervention. Medicine (Baltimore) 2018; 97(17)e0366
[http://dx.doi.org/10.1097/MD.0000000000010366] [PMID: 29702981]
[164]
Besli F, Gullulu S, Sag S, et al. The relationship between serum lectin-like oxidized LDL receptor-1 levels and systolic heart failure. Acta Cardiol 2016; 71(2): 185-90.
[http://dx.doi.org/10.1080/AC.71.2.3141848] [PMID: 27090040]
[165]
Yokota C, Sawamura T, Watanabe M, et al. High levels of soluble lectin-like oxidized low-density lipoprotein receptor-1 in acute stroke: an age- and sex-matched cross-sectional study. J Atheroscler Thromb 2016; 23(10): 1222-6.
[http://dx.doi.org/10.5551/jat.32466] [PMID: 27025681]
[166]
Skarpengland T, Skjelland M, Kong XY, et al. Increased levels of lectin-like oxidized low-density lipoprotein receptor-1 in ischemic stroke and transient ischemic attack. J Am Heart Assoc 2018; 7(2)e006479
[http://dx.doi.org/10.1161/JAHA.117.006479] [PMID: 29330254]
[167]
Etzioni A. Adhesion molecules--their role in health and disease. Pediatr Res 1996; 39(2): 191-8.
[http://dx.doi.org/10.1203/00006450-199602000-00001] [PMID: 8825786]
[168]
Jang Y, Lincoff AM, Plow EF, Topol EJ. Cell adhesion molecules in coronary artery disease. J Am Coll Cardiol 1994; 24(7): 1591-601.
[http://dx.doi.org/10.1016/0735-1097(94)90162-7] [PMID: 7963103]
[169]
Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the atherosclerosis risk in communities (ARIC) study. Circulation 1997; 96(12): 4219-25.
[http://dx.doi.org/10.1161/01.CIR.96.12.4219] [PMID: 9416885]
[170]
Malik I, Danesh J, Whincup P, et al. Soluble adhesion molecules and prediction of coronary heart disease: a prospective study and meta-analysis. Lancet 2001; 358(9286): 971-6.
[http://dx.doi.org/10.1016/S0140-6736(01)06104-9] [PMID: 11583751]
[171]
Blankenberg S, Rupprecht HJ, Bickel C, et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 2001; 104(12): 1336-42.
[http://dx.doi.org/10.1161/hc3701.095949] [PMID: 11560847]
[172]
Luc G, Arveiler D, Evans A, et al. PRIME Study Group. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and incident coronary heart disease: the PRIME Study. Atherosclerosis 2003; 170(1): 169-76.
[http://dx.doi.org/10.1016/S0021-9150(03)00280-6] [PMID: 12957696]
[173]
Ren HY, Khera A, de Lemos JA, Ayers CR, Rohatgi A. Soluble endothelial cell-selective adhesion molecule and incident cardiovascular events in a multiethnic population. Am Heart J 2017; 191: 55-61.
[http://dx.doi.org/10.1016/j.ahj.2017.06.008] [PMID: 28888270]
[174]
Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci 2015; 36(7): 461-70.
[http://dx.doi.org/10.1016/j.tips.2015.04.014] [PMID: 26022934]
[175]
Blüher M, Mantzoros CS. From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 2015; 64(1): 131-45.
[http://dx.doi.org/10.1016/j.metabol.2014.10.016] [PMID: 25497344]
[176]
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372(6505): 425-32.
[http://dx.doi.org/10.1038/372425a0] [PMID: 7984236]
[177]
Chai SB, Sun F, Nie XL, Wang J. Leptin and coronary heart disease: a systematic review and meta-analysis. Atherosclerosis 2014; 233(1): 3-10.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.069] [PMID: 24529114]
[178]
Martin SS, Blaha MJ, Muse ED, et al. Leptin and incident cardiovascular disease: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis 2015; 239(1): 67-72.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.12.033] [PMID: 25574859]
[179]
Khera AV, Qamar A, Murphy SA, Cannon CP, Sabatine MS, Rader DJ. On-statin resistin, leptin, and risk of recurrent coronary events after hospitalization for an acute coronary syndrome (from the pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction 22 study). Am J Cardiol 2015; 116(5): 694-8.
[http://dx.doi.org/10.1016/j.amjcard.2015.05.038] [PMID: 26119654]
[180]
Yang H, Guo W, Li J, et al. Leptin concentration and risk of coronary heart disease and stroke: A systematic review and meta-analysis. PLoS One 2017; 12(3)e0166360
[http://dx.doi.org/10.1371/journal.pone.0166360] [PMID: 28278178]
[181]
Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin 2018; 39(7): 1176-88.
[http://dx.doi.org/10.1038/aps.2018.40] [PMID: 29877321]
[182]
Hao G, Li W, Guo R, et al. Serum total adiponectin level and the risk of cardiovascular disease in general population: a meta-analysis of 17 prospective studies. Atherosclerosis 2013; 228(1): 29-35.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.02.018] [PMID: 23489345]
[183]
Kyrou I, Tsantarlioti O, Panagiotakos DB, et al. ATTICA study group. Adiponectin circulating levels and 10-year (2002-2012) car-diovascular disease incidence: the ATTICA Study. Endocrine 2017; 58(3): 542-52.
[http://dx.doi.org/10.1007/s12020-017-1434-y] [PMID: 29039145]
[184]
Seven E, Husemoen LL, Sehested TS, et al. Adipocytokines, C-reactive protein, and cardiovascular disease: a population-based prospective study. PLoS One 2015; 10(6)e0128987
[http://dx.doi.org/10.1371/journal.pone.0128987] [PMID: 26035431]
[185]
Wu ZJ, Cheng YJ, Gu WJ, Aung LH. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metabolism 2014; 63(9): 1157-66.
[http://dx.doi.org/10.1016/j.metabol.2014.05.001] [PMID: 24933398]
[186]
Katsiki N, Mantzoros C, Mikhailidis DP. Adiponectin, lipids and atherosclerosis. Curr Opin Lipidol 2017; 28(4): 347-54.
[http://dx.doi.org/10.1097/MOL.0000000000000431] [PMID: 28463859]
[187]
Katsiki N, Yovos JG, Gotzamani-Psarrakou A, Karamitsos DT. Adipokines and vascular risk in type 2 diabetes mellitus. Angiology 2011; 62(8): 601-4.
[http://dx.doi.org/10.1177/0003319711409201] [PMID: 21990548]
[188]
Kollia C, Antonopoulos AS, Siasos G, et al. Associations between adiponectin gene variability, proinflammatory and angiogenetic markers: implications for microvascular disease development in type 2 diabetes mellitus? Curr Vasc Pharmacol 2019; 17(2): 204-8.
[http://dx.doi.org/10.2174/1570161116666180108113825] [PMID: 29308741]
[189]
Wu Z, Cheng Y, Aung LH, Li B. Association between adiponectin concentrations and cardiovascular disease in diabetic patients: a systematic review and meta-analysis. PLoS One 2013; 8(11)e78485
[http://dx.doi.org/10.1371/journal.pone.0078485] [PMID: 24223814]
[190]
Schrieks IC, Nozza A, Stähli BE, et al. Adiponectin, free fatty acids, and cardiovascular outcomes in patients with type 2 diabetes and acute coronary syndrome. Diabetes Care 2018; 41(8): 1792-800.
[http://dx.doi.org/10.2337/dc18-0158] [PMID: 29903845]
[191]
Zhang JZ, Gao Y, Zheng YY, et al. Increased serum resistin level is associated with coronary heart disease. Oncotarget 2017; 8(30): 50148-54.
[http://dx.doi.org/10.18632/oncotarget.15707] [PMID: 28404934]
[192]
Sinan UY, Canbolat IP, Baydar O, et al. Relationship between increased serum resistin level and severity of coronary artery disease. Angiology 2014; 65(3): 239-42.
[http://dx.doi.org/10.1177/0003319713502718] [PMID: 24052521]
[193]
Fontana A, Spadaro S, Copetti M, et al. Association between resistin levels and all-cause and cardiovascular mortality: a new study and a systematic review and meta-analysis. PLoS One 2015; 10(3)e0120419
[http://dx.doi.org/10.1371/journal.pone.0120419] [PMID: 25793385]
[194]
Guo W, Zhang B, Wang X. Lower irisin levels in coronary artery disease: a meta-analysis. Minerva Endocrinol 2017. Epub ahead of print
[http://dx.doi.org/10.23736/S0391-1977.17.02663-3] [PMID: 29160049]
[195]
Anastasilakis AD, Koulaxis D, Kefala N, et al. Circulating irisin levels are lower in patients with either stable coronary artery disease (CAD) or myocardial infarction (MI) versus healthy controls, whereas follistatin and activin A levels are higher and can discriminate MI from CAD with similar to CK-MB accuracy. Metabolism 2017; 73: 1-8.
[http://dx.doi.org/10.1016/j.metabol.2017.05.002] [PMID: 28732565]
[196]
Aronis KN, Moreno M, Polyzos SA, et al. Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int J Obes 2015; 39(1): 156-61.
[http://dx.doi.org/10.1038/ijo.2014.101] [PMID: 24916788]
[197]
Hsieh IC, Ho MY, Wen MS, et al. Serum irisin levels are associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Int J Cardiol 2018; 261: 12-7.
[http://dx.doi.org/10.1016/j.ijcard.2017.11.072] [PMID: 29657036]
[198]
Chang YH, Chang DM, Lin KC, Shin SJ, Lee YJ. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes Metab Res Rev 2011; 27(6): 515-27.
[http://dx.doi.org/10.1002/dmrr.1201] [PMID: 21484978]
[199]
Yang Y, Li Z, Tao HF, et al. An elevated plasma level of visfatin increases the risk of myocardial infarction. Genet Mol Res 2014; 13(4): 8586-95.
[http://dx.doi.org/10.4238/2014.January.24.18] [PMID: 24615088]
[200]
El-Lebedy DH, Ibrahim AA, Ashmawy IO. Novel adipokines vaspin and irisin as risk biomarkers for cardiovascular diseases in type 2 diabetes mellitus. Diabetes Metab Syndr 2018; 12(5): 643-8.
[http://dx.doi.org/10.1016/j.dsx.2018.04.025] [PMID: 29673927]
[201]
Wu H, Du Q, Dai Q, Ge J, Cheng X. Cysteine protease cathepsins in atherosclerotic cardiovascular diseases. J Atheroscler Thromb 2018; 25(2): 111-23.
[http://dx.doi.org/10.5551/jat.RV17016] [PMID: 28978867]
[202]
Mohammadpour AH, Salehinejad Z, Elyasi S, et al. Evaluation of serum cathepsin D concentrations in coronary artery disease. Indian Heart J 2018; 70(4): 471-5.
[http://dx.doi.org/10.1016/j.ihj.2018.01.003] [PMID: 30170638]
[203]
Cheng XW, Kikuchi R, Ishii H, et al. Circulating cathepsin K as a potential novel biomarker of coronary artery disease. Atherosclerosis 2013; 228(1): 211-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.004] [PMID: 23369704]
[204]
Wuopio J, Hilden J, Bring C, et al. Cathepsin B and S as markers for cardiovascular risk and all-cause mortality in patients with stable coronary heart disease during 10 years: a CLARICOR trial sub-study. Atherosclerosis 2018; 278: 97-102.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.09.006] [PMID: 30261474]
[205]
Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol 2009; 54(8): 669-77.
[http://dx.doi.org/10.1016/j.jacc.2009.03.076] [PMID: 19679244]
[206]
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229(1): 152-72.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00782.x] [PMID: 19426221]
[207]
Heeschen C, Dimmeler S, Hamm CW, et al. CAPTURE Study Investigators. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 2003; 348(12): 1104-11.
[http://dx.doi.org/10.1056/NEJMoa022600] [PMID: 12646667]
[208]
Kinlay S, Schwartz GG, Olsson AG, et al. Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators. Effect of atorvastatin on risk of recurrent cardiovascular events after an acute coronary syndrome associated with high soluble CD40 ligand in the myocardial ischemia reduction with aggressive cholesterol lowering (MIRACL) study. Circulation 2004; 110(4): 386-91.
[http://dx.doi.org/10.1161/01.CIR.0000136588.62638.5E] [PMID: 15262833]
[209]
Olenchock BA, Wiviott SD, Murphy SA, et al. Lack of association between soluble CD40L and risk in a large cohort of patients with acute coronary syndrome in OPUS TIMI-16. J Thromb Thrombolysis 2008; 26(2): 79-84.
[http://dx.doi.org/10.1007/s11239-007-0156-z] [PMID: 17917707]
[210]
Chen J, Li JH, Zhao SJ, Wang DY, Zhang WZ, Liang WJ. Clinical significance of costimulatory molecules CD40/CD40L and CD134/CD134L in coronary heart disease: A case-control study. Medicine (Baltimore) 2017; 96(32)e7634
[http://dx.doi.org/10.1097/MD.0000000000007634] [PMID: 28796044]
[211]
Li J, Wang Y, Lin J, et al. CHANCE Investigators. Soluble CD40L is a useful marker to predict future strokes in patients with minor stroke and transient ischemic attack. Stroke 2015; 46(7): 1990-2.
[http://dx.doi.org/10.1161/STROKEAHA.115.008685] [PMID: 26012640]
[212]
Löffek S, Schilling O, Franzke CW. Series “matrix metalloproteinases in lung health and disease”: Biological role of matrix metallo-proteinases: a critical balance. Eur Respir J 2011; 38(1): 191-208.
[http://dx.doi.org/10.1183/09031936.00146510] [PMID: 21177845]
[213]
Blankenberg S, Rupprecht HJ, Poirier O, et al. AtheroGene Investigators.. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 2003; 107(12): 1579-85.
[http://dx.doi.org/10.1161/01.CIR.0000058700.41738.12] [PMID: 12668489]
[214]
Kelly D, Khan SQ, Thompson M, et al. Plasma tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9: novel indicators of left ventricular remodelling and prognosis after acute myocardial infarction. Eur Heart J 2008; 29(17): 2116-24.
[http://dx.doi.org/10.1093/eurheartj/ehn315] [PMID: 18614523]
[215]
Opstad TB, Seljeflot I, Bøhmer E, Arnesen H, Halvorsen S. MMP-9 and Its Regulators TIMP-1 and EMMPRIN in Patients with Acute ST-Elevation Myocardial Infarction: A NORDISTEMI Substudy. Cardiology 2018; 139(1): 17-24.
[http://dx.doi.org/10.1159/000481684] [PMID: 29141241]
[216]
Tan J, Hua Q, Gao J, Fan ZX. Clinical implications of elevated serum interleukin-6, soluble CD40 ligand, metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in patients with acute ST-segment elevation myocardial infarction. Clin Cardiol 2008; 31(9): 413-8.
[http://dx.doi.org/10.1002/clc.20254] [PMID: 18781600]
[217]
Nilsson L, Hallén J, Atar D, Jonasson L, Swahn E. Early measurements of plasma matrix metalloproteinase-2 predict infarct size and ventricular dysfunction in ST-elevation myocardial infarction. Heart 2012; 98(1): 31-6.
[http://dx.doi.org/10.1136/heartjnl-2011-300079] [PMID: 21727201]
[218]
George J, Patal S, Wexler D, Roth A, Sheps D, Keren G. Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure. Am Heart J 2005; 150(3): 484-7.
[http://dx.doi.org/10.1016/j.ahj.2004.11.016] [PMID: 16169329]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 3
Year: 2021
Published on: 17 March, 2020
Page: [323 - 342]
Pages: 20
DOI: 10.2174/1570161118666200318104434
Price: $65

Article Metrics

PDF: 38
HTML: 3