A Tropical Lichen, Dirinaria consimilis Selectively Induces Apoptosis in MCF-7 Cells through the Regulation of p53 and Caspase-Cascade Pathway

Author(s): Anil K. Shendge, Sourav Panja, Tapasree Basu, Nripendranath Mandal*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 10 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Breast cancer is the most leading cause of death, with 49.9% of crude incidence rate and 12.9% of crude mortality rate. Natural resources have been extensively used throughout history for better and safer treatment against various diseases.

Objectives: The present study was aimed to investigate the antioxidant and anticancer potential of a tropical lichen Dirinaria consimilis (DCME) and its phytochemical analysis.

Methods: The DCME was preliminarily evaluated for ROS, and RNS scavenging potential. Furthermore, DCME was evaluated for in vitro anticancer activity through cell proliferation assay, cell cycle analysis, annexin V/PI staining, morphological analysis, and western blotting study. Finally, the HPLC and LC-MS analyses were done to identify probable bioactive compounds.

Results: The in vitro antioxidant studies showed promising ROS, and RNS scavenging potential of DCME. Moreover, the in vitro antiproliferative study bared the cytotoxic nature of DCME towards MCF-7 (IC50 - 98.58 ± 6.82μg/mL) and non-toxic towards WI-38 (IC50 - 685.85 ± 19.51μg/mL). Furthermore, the flow-cytometric analysis revealed the increase in sub G1 population as well as early apoptotic populations dose-dependently. The results from confocal microscopy showed the DNA fragmentation in MCF-7 upon DCME treatment. Finally, the western blotting study revealed the induction of tumor suppressor protein, p53, which results in increasing the Bax/Bcl-2 ratio and activation of caspase-cascade pathways.

Conclusion: The activation of caspase-3, -8, -9 and PARP degradation led us to conclude that DCME induces apoptosis in MCF-7 through both intrinsic and extrinsic mechanisms. The LC-MS analysis showed the presence of various bioactive compounds.

Keywords: Lichen, Dirinaria consimilis, antioxidant, anticancer, p53, caspase-cascade.

[1]
Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[2]
Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal., 2007, 9(1), 49-89.
[http://dx.doi.org/10.1089/ars.2007.9.49] [PMID: 17115887]
[3]
Kinsella, J.E.; Frankel, E.; German, B.; Kanner, J. Possible mechanism for the protective role of the antioxidant in wine and plant foods. Food Technol., 1993, 47, 85-89.
[4]
World Health Organization. Global Cancer Observatory.International agency for research on cancer, http://gco.iarc.fr [Accessed on: August 17, 2019]
[5]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[6]
Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 2019, 9(11), E258.
[http://dx.doi.org/10.3390/metabo9110258] [PMID: 31683833]
[7]
Cheuka, P.M.; Mayoka, G.; Mutai, P.; Chibale, K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules, 2017, 22(1), 58.
[http://dx.doi.org/10.3390/molecules22010058] [PMID: 28042865]
[8]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[9]
Ghate, N.B.; Chaudhuri, D.; Sarkar, R.; Sajem, A.L.; Panja, S.; Rout, J.; Mandal, N. An antioxidant extract of tropical lichen, Parmotrema reticulatum, induces cell cycle arrest and apoptosis in breast carcinoma cell line MCF-7. PLoS One, 2013, 8(12), e82293.
[http://dx.doi.org/10.1371/journal.pone.0082293] [PMID: 24358166]
[10]
Zambare, V.P.; Christopher, L.P. Biopharmaceutical potential of lichens. Pharm. Biol., 2012, 50(6), 778-798.
[http://dx.doi.org/10.3109/13880209.2011.633089] [PMID: 22471936]
[11]
Fernández-Moriano, C.; Gómez-Serranillos, M.P.; Crespo, A. Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharm. Biol., 2016, 54(1), 1-17.
[http://dx.doi.org/10.3109/13880209.2014.1003354] [PMID: 25885942]
[12]
Haraldsdóttir, S.; Guolaugsdóttir, E.; Ingólfsdóttir, K.; Ogmundsdóttir, H.M. Anti-proliferative effects of lichen-derived lipoxygenase inhibitors on twelve human cancer cell lines of different tissue origin in vitro. Planta Med., 2004, 70(11), 1098-1100.
[http://dx.doi.org/10.1055/s-2004-832657] [PMID: 15549672]
[13]
Ahmed, E.F.; Elkhateeb, W.A.; Taie, H.; Rateb, M.E.; Fayad, W. Biological capacity and chemical composition of secondary metabolites from representatives Japanese Lichens. J. Appl. Pharm. Sci., 2017, 7, 98-103.
[http://dx.doi.org/10.7324/JAPS.2017.70113]
[14]
Tatipamula, V.; Vedula, G. Anti-inflammatory properties of Dirinaria consimilis extracts in albino rats. J. Biomed. Sci., 2018, 4, 3-8.
[http://dx.doi.org/10.3126/jbs.v4i1.20572]
[15]
Chaudhuri, D.; Ghate, N.B.; Sarkar, R.; Mandal, N. Phytochemical analysis and evaluation of antioxidant and free radical scavenging activity of Withania somnifera root. Asian J. Pharm. Clin. Res., 2012, 5, 193-199.
[16]
Hazra, B.; Biswas, S.; Mandal, N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement. Altern. Med., 2008, 8, 63.
[http://dx.doi.org/10.1186/1472-6882-8-63] [PMID: 19068130]
[17]
Kokate, C.K.; Purohit, A.P.; Gokhale, S.B. Textbook of Pharmacognosy; Nirali Prakashan: Pune, 2003.
[18]
Shendge, A.K.; Basu, T.; Chaudhuri, D.; Panja, S.; Mandal, N. In vitro antioxidant and antiproliferative activities of various solvent fractions from Clerodendrum viscosum leaves. Pharmacogn. Mag., 2017, 13(Suppl. 2), S344-S353.
[http://dx.doi.org/10.4103/pm.pm_395_16] [PMID: 28808404]
[19]
Gupta, G.; Das, A.; Panja, S.; Ryu, J.Y.; Lee, J.; Mandal, N.; Lee, C.Y. Self-assembly of novel thiophene-based BODIPY RuII rectangles: Potential antiproliferative agents selective against cancer cells. Chemistry, 2017, 23(68), 17199-17203.
[http://dx.doi.org/10.1002/chem.201704368] [PMID: 28961334]
[20]
Bos, R.; Hendriks, H.; Scheffer, J.J.; Woerdenbag, H.J. Cytotoxic potential of valerian constituents and valerian tinctures. Phytomedicine, 1998, 5(3), 219-225.
[http://dx.doi.org/10.1016/S0944-7113(98)80032-9] [PMID: 23195845]
[21]
Razak, S.; Afsar, T.; Ullah, A.; Almajwal, A.; Alkholief, M.; Alshamsan, A.; Jahan, S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/β-catenin signaling pathway. BMC Cancer, 2018, 18(1), 1043.
[http://dx.doi.org/10.1186/s12885-018-4959-4] [PMID: 30367624]
[22]
Wang, Y.; Wang, Q.; Bao, X.; Ding, Y.; Shentu, J.; Cui, W.; Chen, X.; Wei, X.; Xu, S. Taxifolin prevents β-amyloid-induced impairments of synaptic formation and deficits of memory via the inhibition of cytosolic phospholipase A2/prostaglandin E2 content. Metab. Brain Dis., 2018, 33(4), 1069-1079.
[http://dx.doi.org/10.1007/s11011-018-0207-5] [PMID: 29542038]
[23]
Wang, T.; Zhao, Y.L.; Zhao, X.N.; He, H.; Chang, X.L.; Li, C. Constituents and antioxidant activity in vitro of Salix microstachya var. bordensis. Zhong Yao Cai, 2014, 37(12), 2222-2225.
[PMID: 26080509]
[24]
Yamauchi, K.; Mitsunaga, T.; Inagaki, M.; Suzuki, T. Synthesized quercetin derivatives stimulate melanogenesis in B16 melanoma cells by influencing the expression of melanin biosynthesis proteins MITF and p38 MAPK. Bioorg. Med. Chem., 2014, 22(13), 3331-3340.
[http://dx.doi.org/10.1016/j.bmc.2014.04.053] [PMID: 24853321]
[25]
Sisodia, R.; Geol, M.; Verma, S.; Rani, A.; Dureja, P. Antibacterial and antioxidant activity of lichen species Ramalina roesleri. Nat. Prod. Res., 2013, 27(23), 2235-2239.
[http://dx.doi.org/10.1080/14786419.2013.811410] [PMID: 23822758]
[26]
Thadhani, V.M.; Choudhary, M.I.; Ali, S.; Omar, I.; Siddique, H.; Karunaratne, V. Antioxidant activity of some lichen metabolites. Nat. Prod. Res., 2011, 25(19), 1827-1837.
[http://dx.doi.org/10.1080/14786419.2010.529546] [PMID: 22136374]
[27]
Ristic, S.; Rankovic, B.; Kosanić, M.; Stamenkovic, S.; Stanojković, T.; Sovrlić, M.; Manojlović, N. Biopharmaceutical potential of two ramalina lichens and their metabolites. Curr. Pharm. Biotechnol., 2016, 17(7), 651-658.
[http://dx.doi.org/10.2174/1389201017666160401144825] [PMID: 27033512]
[28]
Ebrahim, H.Y.; Elsayed, H.E.; Mohyeldin, M.M.; Akl, M.R.; Bhattacharjee, J.; Egbert, S.; El Sayed, K.A. Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting c-Met. Phytother. Res., 2016, 30(4), 557-566.
[http://dx.doi.org/10.1002/ptr.5551] [PMID: 26744260]
[29]
Manojlovic, N.T.; Vasiljevic, P.J.; Maskovic, P.Z.; Juskovic, M.; Bogdanovic-Dusanovic, G. Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evid. Based Complement. Alternat. Med., 2012, 2012452431
[http://dx.doi.org/10.1155/2012/452431] [PMID: 21915186]
[30]
Manojlović, N.; Ranković, B.; Kosanić, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine, 2012, 19(13), 1166-1172.
[http://dx.doi.org/10.1016/j.phymed.2012.07.012] [PMID: 22921748]
[31]
Solár, P.; Hrčková, G.; Koptašíková, L.; Velebný, S.; Solárová, Z.; Bačkor, M. Murine breast carcinoma 4T1 cells are more sensitive to atranorin than normal epithelial NMuMG cells in vitro: Anticancer and hepatoprotective effects of atranorin in vivo. Chem. Biol. Interact., 2016, 250, 27-37.
[http://dx.doi.org/10.1016/j.cbi.2016.03.012] [PMID: 26969521]
[32]
Galanty, A.; Koczurkiewicz, P.; Wnuk, D.; Paw, M.; Karnas, E.; Podolak, I.; Węgrzyn, M.; Borusiewicz, M.; Madeja, Z.; Czyż, J.; Michalik, M. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicol. In Vitro, 2017, 40, 161-169.
[http://dx.doi.org/10.1016/j.tiv.2017.01.008] [PMID: 28095330]
[33]
Kumar, A.; Sunita, P.; Jha, S.; Pattanayak, S.P. 7,8-Dihydroxycoumarin exerts antitumor potential on DMBA-induced mammary carcinogenesis by inhibiting ERα, PR, EGFR, and IGF1R: Involvement of MAPK1/2-JNK1/2-Akt pathway. J. Physiol. Biochem., 2018, 74(2), 223-234.
[http://dx.doi.org/10.1007/s13105-018-0608-2] [PMID: 29435821]
[34]
Shen, L.; Zhou, T.; Wang, J.; Sang, X.; Lan, L.; Luo, L.; Yin, Z. Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in Raw264.7 cells via suppressing JAK/STATs activation and ROS production. Inflamm. Res., 2017, 66(7), 579-589.
[http://dx.doi.org/10.1007/s00011-017-1039-1] [PMID: 28409189]
[35]
Lee, W.; Bae, J.S. Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation, 2015, 38(4), 1502-1516.
[http://dx.doi.org/10.1007/s10753-015-0125-1] [PMID: 25655391]
[36]
Yang, S.; Lee, C.; Lee, B.S.; Park, E.K.; Kim, K.M.; Bae, J.S. Renal protective effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in a mouse model of sepsis. Pharmacol. Rep., 2018, 70(6), 1195-1201.
[http://dx.doi.org/10.1016/j.pharep.2018.07.004] [PMID: 30340097]
[37]
Joubert, E.; Beelders, T.; de Beer, D.; Malherbe, C.J.; de Villiers, A.J.; Sigge, G.O. Variation in phenolic content and antioxidant activity of fermented rooibos herbal tea infusions: Role of production season and quality grade. J. Agric. Food Chem., 2012, 60(36), 9171-9179.
[http://dx.doi.org/10.1021/jf302583r] [PMID: 22920220]
[38]
Jung, S.H.; Lee, Y.S.; Lim, S.S.; Lee, S.; Shin, K.H.; Kim, Y.S. Antioxidant activities of isoflavones from the rhizomes of Belamcanda chinensis on carbon tetrachloride-induced hepatic injury in rats. Arch. Pharm. Res., 2004, 27(2), 184-188.
[http://dx.doi.org/10.1007/BF02980104] [PMID: 15022720]
[39]
Zhang, R.; Piao, M.J.; Oh, M.C.; Park, J.E.; Shilnikova, K.; Moon, Y.J.; Kim, D.H.; Jung, U.; Kim, I.G.; Hyun, J.W. Protective effect of an isoflavone, tectorigenin, against oxidative stress-induced cell death via catalase activation. J. Cancer Prev., 2016, 21(4), 257-263.
[http://dx.doi.org/10.15430/JCP.2016.21.4.257] [PMID: 28053960]
[40]
Gao, X.X.; Shi, D.H.; Chen, Y.X.; Cui, J.T.; Wang, Y.R.; Jiang, C.P.; Wu, J.H. The therapeutic effects of tectorigenin on chemically induced liver fibrosis in rats and an associated metabonomic investigation. Arch. Pharm. Res., 2012, 35(8), 1479-1493.
[http://dx.doi.org/10.1007/s12272-012-0819-y] [PMID: 22941492]
[41]
Costa, P.; Almeida, M.O.; Lemos, M.; Arruda, C.; Casoti, R.; Somensi, L.B.; Boeing, T.; Mariott, M.; da Silva, R.C.M.V.A.F.; Stein, B.P.; Souza, P.; Dos Santos, A.C.; Bastos, J.K.; da Silva, L.M.; Andrade, S.F. Artepillin C, drupanin, aromadendrin-4′-O methyl- ether and kaempferide from Brazilian green propolis promote gastroprotective action by diversified mode of action. J. Ethnopharmacol., 2018, 226, 82-89.
[http://dx.doi.org/10.1016/j.jep.2018.08.006] [PMID: 30107246]
[42]
Benov, L. How superoxide radical damages the cell. Protoplasma, 2001, 217(1-3), 33-36.
[http://dx.doi.org/10.1007/BF01289410] [PMID: 11732335]
[43]
Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem., 1992, 59(5), 1609-1623.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x] [PMID: 1402908]
[44]
Halliwell, B.; Gutteridge, J.M.; Aruoma, O.I. The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem., 1987, 165(1), 215-219.
[http://dx.doi.org/10.1016/0003-2697(87)90222-3] [PMID: 3120621]
[45]
Korycka-Dahl, M.; Richardson, T. Photogeneration of superoxide anion in serum of bovine milk and in model systems containing riboflavin and amino acids. J. Dairy Sci., 1978, 61, 400-407.
[http://dx.doi.org/10.3168/jds.S0022-0302(78)83613-3]
[46]
Kochevar, I.E.; Redmond, R.W. Photosensitized production of singlet oxygen. Methods Enzymol., 2000, 319, 20-28.
[http://dx.doi.org/10.1016/S0076-6879(00)19004-4] [PMID: 10907495]
[47]
Taylor, B.S.; Kim, Y.M.; Wang, Q.; Shapiro, R.A.; Billiar, T.R.; Geller, D.A. Nitric oxide down-regulates hepatocyte-inducible nitric oxide synthase gene expression. Arch. Surg., 1997, 132(11), 1177-1183.
[http://dx.doi.org/10.1001/archsurg.1997.01430350027005] [PMID: 9366709]
[48]
Ischiropoulos, H.; Al-Mehdi, A.B.; Fisher, A.B. Reactive species in ischemic rat lung injury: Contribution of peroxynitrite. Am. J. Physiol., 1995, 269(2 Pt 1), L158-L164.
[PMID: 7544536]
[49]
Pucci, B.; Kasten, M.; Giordano, A. Cell cycle and apoptosis. Neoplasia, 2000, 2(4), 291-299.
[http://dx.doi.org/10.1038/sj.neo.7900101] [PMID: 11005563]
[50]
Darzynkiewicz, Z.; Huang, X. Analysis of cellular DNA content by flow cytometry. Curr. Protoc. Immunol., 2004, 5, 7.
[http://dx.doi.org/10.1002/0471142735.im0507s60] [PMID: 18432930]
[51]
Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184(1), 39-51.
[http://dx.doi.org/10.1016/0022-1759(95)00072-I] [PMID: 7622868]
[52]
Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature, 2000, 408(6810), 307-310.
[http://dx.doi.org/10.1038/35042675] [PMID: 11099028]
[53]
Gross, A.; Jockel, J.; Wei, M.C.; Korsmeyer, S.J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J., 1998, 17(14), 3878-3885.
[http://dx.doi.org/10.1093/emboj/17.14.3878] [PMID: 9670005]
[54]
Weng, C.; Li, Y.; Xu, D.; Shi, Y.; Tang, H. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J. Biol. Chem., 2005, 280(11), 10491-10500.
[http://dx.doi.org/10.1074/jbc.M412819200] [PMID: 15637055]
[55]
Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev., 2001, 15(22), 2922-2933.
[PMID: 11711427]
[56]
Anto, R.J.; Mukhopadhyay, A.; Denning, K.; Aggarwal, B.B. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 2002, 23(1), 143-150.
[http://dx.doi.org/10.1093/carcin/23.1.143] [PMID: 11756235]
[57]
Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res., 1995, 22(4), 375-383.
[http://dx.doi.org/10.3109/10715769509145649] [PMID: 7633567]
[58]
Begum, S.; Naqvi, S.Q.; Ahmed, A.; Tauseef, S.; Siddiqui, B.S. Antimycobacterial and antioxidant activities of reserpine and its derivatives. Nat. Prod. Res., 2012, 26(22), 2084-2088.
[http://dx.doi.org/10.1080/14786419.2011.625502] [PMID: 22273392]
[59]
Basu, T.; Panja, S.; Shendge, A.K.; Das, A.; Mandal, N. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation. Environ. Toxicol., 2018, 33(5), 603-618.
[http://dx.doi.org/10.1002/tox.22549] [PMID: 29446234]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 10
Year: 2020
Page: [1173 - 1187]
Pages: 15
DOI: 10.2174/1871520620666200318095410
Price: $65

Article Metrics

PDF: 20