Magnetic Nanoparticles; Synthesis, Properties and Electrochemical Application: A Review

Author(s): Maryam Roostaee*, Iran Sheikhshoaie

Journal Name: Current Biochemical Engineering

Volume 6 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The Fe3O4 nanoparticles have been highly regarded in recent years due to their unique properties and different applications. Magnetic separation capability of Fe3O4 nanoparticles provides an environmentally friendly procedure for the synthesis of this nanoparticle and its derivatives.

Objective: There are many methods for synthesizing magnetic nanoparticles, and the properties of these nanoparticles are largely dependent on their synthesis method. Magnetite has many applications in various fields, one of the most important of which is the application of electrochemical sensors. These nanoparticles attached to the surface of different electrodes and used for the sensitive and selective electrochemical determination of trace amounts of several combinations. In this review paper, recently suggested synthesis methods of Fe3O4 and its derivatives and their electrochemical application are discussed.

Keywords: Magnetic nanoparticles, synthesis, properties, electrochemical application, Fe3O4, biocompatibility.

[1]
F. Yang, Q. Zhou, Y. Zhang, G. Zeng, G. Li, Z. Shi, B. Wang, and S. Feng, "Inspiration from old molecules: field-induced slow magnetic relaxation in three air-stable tetrahedral cobalt(II) compounds", Chem. Commun. (Camb.), vol. 49, no. 46, pp. 5289-5291, 2013.
[http://dx.doi.org/10.1039/c3cc00277b] [PMID: 23632459]
[2]
J.D. Qiu, M. Xiong, R.P. Liang, H.P. Peng, and F. Liu, "Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application", Biosens. Bioelectron., vol. 24, no. 8, pp. 2649-2653, 2009.
[http://dx.doi.org/10.1016/j.bios.2009.01.022] [PMID: 19230651]
[3]
S.V. Salihov, Y.A. Ivanenkov, S.P. Krechetov, M.S. Veselov, N.V. Sviridenkova, A.G. Savchenko, and A.G. Majouga, "Recent advances in the synthesis of Fe3O4@ AU core/shell nanoparticles", J. Magn. Magn. Mater., vol. 394, pp. 173-178, 2015.
[http://dx.doi.org/10.1016/j.jmmm.2015.06.012]
[4]
A.Y. Soloveva, Y.V. Ioni, and S.P. Gubin, "Synthesis of Fe3O4 nanoparticles on the surface of graphene", Mendeleev Commun., vol. 26, pp. 38-39, 2016.
[http://dx.doi.org/10.1016/j.mencom.2016.01.015]
[5]
K. Mosbach, and L. Andersson, "Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography", Nature, vol. 270, no. 5634, pp. 259-261, 1977.
[http://dx.doi.org/10.1038/270259a0] [PMID: 593344]
[6]
"K. SUGIBAYASHI, and Y. KATO, Y. A. S. U. N. O. R. I. L. MoRiMoTo, ““Biomedical applications of magnetic fluids. II. Preparation and magnetic guidance of magnetic albumin microsphere for site specific drug delivery in vivo", J. Pharm. Dyn., vol. 4, pp. 624-631, 1981.
[http://dx.doi.org/10.1248/bpb1978.4.624]
[7]
A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy", Cancer Gene Ther., vol. 8, no. 9, pp. 649-654, 2001.
[http://dx.doi.org/10.1038/sj.cgt.7700357] [PMID: 11593333]
[8]
E. Katz, Y. Weizmann, and I. Willner, "Magnetoswitchable reactions of DNA monolayers on electrodes: gating the processes by hydrophobic magnetic nanoparticles", J. Am. Chem. Soc., vol. 127, no. 25, pp. 9191-9200, 2005.
[http://dx.doi.org/10.1021/ja0517771] [PMID: 15969597]
[9]
G. Cheng, J. Zhao, Y. Tu, P. He, and Y. Fang, "A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole", Anal. Chim. Acta, vol. 533, pp. 11-16, 2005.
[http://dx.doi.org/10.1016/j.aca.2004.10.044]
[10]
G. Zhao, J.J. Xu, and H.Y. Chen, "Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin", Electrochem. Commun., vol. 8, pp. 148-154, 2006.
[http://dx.doi.org/10.1016/j.elecom.2005.11.001]
[11]
Z.M. Cui, L.Y. Jiang, W.G. Song, and Y.G. Guo, "High-yield gas− liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries", Chem. Mater., vol. 21, pp. 1162-1166, 2009.
[http://dx.doi.org/10.1021/cm8033609]
[12]
T. Osaka, T. Matsunaga, T. Nakanishi, A. Arakaki, D. Niwa, and H. Iida, "Synthesis of magnetic nanoparticles and their application to bioassays", Anal. Bioanal. Chem., vol. 384, no. 3, pp. 593-600, 2006.
[http://dx.doi.org/10.1007/s00216-005-0255-7] [PMID: 16402174]
[13]
M.P. Morales, O. Bomati-Miguel, R.P. De Alejo, J. Ruiz-Cabello, S. Veintemillas-Verdaguer, and K. O’Grady, "Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis", J. Magn. Magn. Mater., vol. 266, pp. 102-109, 2003.
[http://dx.doi.org/10.1016/S0304-8853(03)00461-X]
[14]
J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang, and X. Shi, "Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors", Biomaterials, vol. 38, pp. 10-21, 2015.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.065] [PMID: 25457979]
[15]
Y. Ma, W. Li, E.C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, "Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties", ACS Nano, vol. 4, no. 11, pp. 6725-6734, 2010.
[http://dx.doi.org/10.1021/nn102237c] [PMID: 20964400]
[16]
M. Peng, G. Bi, C. Cai, G. Guo, H. Wu, and Z. Xu, "Enhanced photoluminescence properties of bismuth sulfide nanocrystals with core-shell Ag@SiO2", Opt. Lett., vol. 41, no. 7, pp. 1466-1469, 2016.
[http://dx.doi.org/10.1364/OL.41.001466] [PMID: 27192263]
[17]
Y.S. Kim, P. Rai, and Y.T. Yu, "“Microwave assisted hydrothermal synthesis of Au@ TiO2 core–shell nanoparticles for high temperature CO sensing applications”, Sensor Actuat", Biol. Chem., vol. 186, pp. 633-639, 2013.
[18]
M. Shabani-Nooshabadi, M. Roostaee, and F. Tahernejad-Javazmi, "Graphene oxide/NiO nanoparticle composite-ionic liquid modified carbon paste electrode for selective sensing of 4-chlorophenol in the presence of nitrite", J. Mol. Liq., vol. 219, pp. 142-148, 2016.
[http://dx.doi.org/10.1016/j.molliq.2016.01.081]
[19]
F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, and H. Karimi-Maleh, "Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte", Talanta, vol. 176, pp. 208-213, 2018.
[http://dx.doi.org/10.1016/j.talanta.2017.08.027] [PMID: 28917742]
[20]
M. Elyasi, M.A. Khalilzadeh, and H. Karimi-Maleh, "High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples", Food Chem., vol. 141, no. 4, pp. 4311-4317, 2013.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.020] [PMID: 23993620]
[21]
M. Shabani-Nooshabadi, and M. Roostaee, "Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis", J. Mol. Liq., vol. 220, pp. 329-333, 2016.
[http://dx.doi.org/10.1016/j.molliq.2016.05.001]
[22]
S. Cheraghi, M.A. Taher, and H. Karimi‐Maleh, "A novel strategy for determination of paracetamol in the presence of morphine using a carbon paste electrode modified with CdO nanoparticles and ionic liquids", Electroanalysis, vol. 28, pp. 366-371, 2016.
[http://dx.doi.org/10.1002/elan.201500357]
[23]
M. Aghazadeh, M.G. Maragheh, M.R. Ganjali, P. Norouzi, and F. Faridbod, "Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance", Appl. Surf. Sci., vol. 364, pp. 141-147, 2016.
[http://dx.doi.org/10.1016/j.apsusc.2015.12.146]
[24]
M.R. Press, and D.E. Ellis, "Defect clusters in wustite Fe1-xO", Phys. Rev. B Condens. Matter, vol. 35, no. 9, pp. 4438-4454, 1987.
[http://dx.doi.org/10.1103/PhysRevB.35.4438] [PMID: 9941999]
[25]
R. M. Cornell, and U. Schwertmann, "The iron oxides: structure, properties, reactions, occurrences and uses", JWS. Oct 2003
[http://dx.doi.org/10.1002/3527602097]
[26]
T. Danno, H. Asaoka, M. Nakanishi, T. Fujii, Y. Ikeda, Y. Kusano, and J. Takada, "Formation mechanism of nano-crystalline β-Fe2O3 particles with bixbyite structure and their magnetic properties", J.Phys. Conf. Ser.,, vol. 200, . 2010.082003
[http://dx.doi.org/10.1088/1742-6596/200/8/082003]
[27]
R. Dronskowski, "The little maghemite story: A classic functional material", Adv. Funct. Mater., vol. 11, no. 1, pp. 27-29, 2001.
[http://dx.doi.org/10.1002/1616-3028(200102)11:1<27:AID-ADFM27>3.0.CO;2-X]
[28]
C. DoMINGO, "Clemente Rodríguez, and M. Blesa, ““Morphological properties of α-FeOOH, γ-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe (II) solutions", J. Colloid Interface Sci., vol. 165, pp. 244-252, 1994.
[http://dx.doi.org/10.1006/jcis.1994.1225]
[29]
M. Mohapatra, and S. Anand, "Synthesis and applications of nanostructured iron oxides/hydroxides–a reviewInt", j. eng. sci. technol, vol. Vol. 2. 2010, .
[30]
R. V. Ramanujan, and W. T. Chong, "The synthesis and characterization of polymer coated iron oxide microspheres", J. Mater. Sci- Mater. M, vol. Vol.15, pp. 901-908. Aug 2004.
[http://dx.doi.org/10.1023/B:JMSM.0000036278.09272.97]
[31]
J. Park, J. Joo, S.G. Kwon, Y. Jang, and T. Hyeon, "Synthesis of monodisperse spherical nanocrystals", Angew. Chem. Int. Ed. Engl., vol. 46, no. 25, pp. 4630-4660, 2007.
[http://dx.doi.org/10.1002/anie.200603148] [PMID: 17525914]
[32]
X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis", Nature, vol. 437, no. 7055, pp. 121-124, 2005.
[http://dx.doi.org/10.1038/nature03968] [PMID: 16136139]
[33]
Y. Zhang, S. Chen, J. Chen, H. Xiong, Q. Zhang, H. Shen, and K. Gong, "Preparation and Structure of Fe_ (3) O_ (4) Nanoparticle-polystyrene Uniformly Dispersed System", Chem. J. Chin. Univ., vol. 24, pp. 1717-1720, 2003.
[34]
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R.N. Muller, "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications", Chem. Rev., vol. 108, no. 6, pp. 2064-2110, 2008.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[35]
W.C. Elmore, "Ferromagnetic colloid for studying magnetic structures", Phys. Rev., vol. 54, no. 4, p. 309, 1938.
[http://dx.doi.org/10.1103/PhysRev.54.309]
[36]
U. Schwertmann, and R. M. Cornell, "Iron oxides in the laboratory: preparation and characterization", JWS. Aug 2008.
[37]
S.F. Hasany, N.H. Abdurahman, A.R. Sunarti, and R. Jose, "Magnetic iron oxide nanoparticles: chemical synthesis and applications review", Curr. Nanosci., vol. 9, pp. 561-575, 2013.
[http://dx.doi.org/10.2174/15734137113099990085]
[38]
P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreño, and C.J. Serna, "Synthesis, properties and biomedical applications of magnetic nanoparticles", Handb. Magn. Mater., vol. 16, pp. 403-482, 2006.
[http://dx.doi.org/10.1016/S1567-2719(05)16005-3]
[39]
V.K. LaMer, and R.H. Dinegar, "Theory, production and mechanism of formation of monodispersed hydrosols", JACS, vol. 72, pp. 4847-4854, 1950.
[http://dx.doi.org/10.1021/ja01167a001]
[40]
T. Sugimoto, and E. Matijević, "Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels", J. Colloid Interface Sci., vol. 74, pp. 227-243, 1980.
[http://dx.doi.org/10.1016/0021-9797(80)90187-3]
[41]
T. Sen, S. Magdassi, G. Nizri, and I.J. Bruce, "Dispersion of magnetic nanoparticles in suspension", Micro & Nano Lett., vol. 1, pp. 39-42, 2006.
[http://dx.doi.org/10.1049/mnl:20065033]
[42]
R. Massart, "Preparation of aqueous magnetic liquids in alkaline and acidic media", IEEE Trans. Magn., vol. 17, pp. 1247-1248, 1981.
[http://dx.doi.org/10.1109/TMAG.1981.1061188]
[43]
A. Bee, R. Massart, and S. Neveu, "Synthesis of very fine maghemite particles", J. Magn. Magn. Mater., vol. 149, pp. 6-9, 1995.
[http://dx.doi.org/10.1016/0304-8853(95)00317-7]
[44]
R. Massart, and V. Cabuil, "Synthèse en milieu alcalin de magnétite colloïdale: contrôle du rendement et de la taille des particules", J. Chim. Phys., vol. 84, pp. 967-973, 1987.
[http://dx.doi.org/10.1051/jcp/1987840967]
[45]
L. Babes, B. Denizot, G. Tanguy, J.J. Le Jeune,, and P. Jallet, "Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study", J. Colloid Interface Sci., vol. 212, no. 2, pp. 474-482, 1999.
[http://dx.doi.org/10.1006/jcis.1998.6053] [PMID: 10092379]
[46]
S. Ge, X. Shi, K. Sun, C. Li, J.R. Baker, M.M. Banaszak Holl, and B.G. Orr, "Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties", J Phys Chem C Nanomater Interfaces, vol. 113, no. 31, pp. 13593-13599, 2009.
[http://dx.doi.org/10.1021/jp902953t] [PMID: 20174618]
[47]
A. Tavakoli, M. Sohrabi, and A. Kargari, "A review of methods for synthesis of nanostructured metals with emphasis on iron compounds", Chem. Pap., vol. 61, pp. 151-170, 2007.
[http://dx.doi.org/10.2478/s11696-007-0014-7]
[48]
M.A. Willard, L.K. Kurihara, E.E. Carpenter, S. Calvin, and V.G. Harris, "“Chemically prepared magnetic nanoparticles”, IInt", Mater. Rev., vol. 49, pp. 125-170, 2004.
[http://dx.doi.org/10.1179/095066004225021882]
[49]
L.H. Reddy, J.L. Arias, J. Nicolas, and P. Couvreur, "Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications", Chem. Rev., vol. 112, no. 11, pp. 5818-5878, 2012.
[http://dx.doi.org/10.1021/cr300068p] [PMID: 23043508]
[50]
F. Chen, Q. Gao, G. Hong, and J. Ni, "Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method", J. Magn. Magn. Mater., vol. 320, pp. 1775-1780, 2008.
[http://dx.doi.org/10.1016/j.jmmm.2008.02.117]
[51]
U.T. Lam, R. Mammucari, K. Suzuki, and N.R. Foster, "Processing of iron oxide nanoparticles by supercritical fluids", Ind. Eng. Chem. Res., vol. 47, pp. 599-614, 2008.
[http://dx.doi.org/10.1021/ie070494+]
[52]
C. Cannas, D. Gatteschi, A. Musinu, G. Piccaluga, and C. Sangregorio, "Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix", J. Phys. Chem. B, vol. 102, pp. 7721-7726, 1998.
[http://dx.doi.org/10.1021/jp981355w]
[53]
M. Tadić, D. Marković, V. Spasojević, V. Kusigerski, M. Remškar, J. Pirnat, and Z. Jagličić, "Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matrix", J. Alloys Compd., vol. 441, pp. 291-296, 2007.
[http://dx.doi.org/10.1016/j.jallcom.2006.09.099]
[54]
B.K. Kwak, D.S. Park, Y.S. Yun, and J. Yi, "Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol–gel method for the hydrogenolysis of glycerol", Catal. Commun., vol. 24, pp. 90-95, 2012.
[http://dx.doi.org/10.1016/j.catcom.2012.03.029]
[55]
S. Solinas, G. Piccaluga, M.P. Morales, and C.J. Serna, "Sol-gel formation of γ-Fe2O3/SiO2 nanocomposites", Acta Mater., vol. 49, pp. 2805-2811, 2001.
[http://dx.doi.org/10.1016/S1359-6454(01)00160-4]
[56]
J. Xu, H. Yang, W. Fu, K. Du, Y. Sui, J. Chen, and G. Zou, "Preparation and magnetic properties of magnetite nanoparticles by sol–gel method", J. Magn. Magn. Mater., vol. 309, pp. 307-311, 2007.
[http://dx.doi.org/10.1016/j.jmmm.2006.07.037]
[57]
H. Cui, Y. Feng, W. Ren, T. Zeng, H. Lv, and Y. Pan, "Strategies of large scale synthesis of monodisperse nanoparticles", Recent Pat. Nanotechnol., vol. 3, no. 1, pp. 32-41, 2009.
[http://dx.doi.org/10.2174/187221009787003302] [PMID: 19149753]
[58]
M.A. Lopez-Quintela, "Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control", Curr. Opin. Colloid In. Sci., vol. 8, pp. 137-144, 2003.
[http://dx.doi.org/10.1016/S1359-0294(03)00019-0]
[59]
C. Destrée, F. Debuigne, L. Jeunieau, and J.B. Nagy, "Mechanism of formation of inorganic and organic nanoparticles from microemulsions", Adv. Colloid Interface Sci., vol. 123-126, pp. 353-367, 2006.
[http://dx.doi.org/10.1016/j.cis.2006.05.022] [PMID: 16860772]
[60]
A.S. Teja, and P.Y. Koh, "Synthesis, properties, and applications of magnetic iron oxide nanoparticles", Prog. Cryst. Growth Ch., vol. 55, pp. 22-45, 2009.
[http://dx.doi.org/10.1016/j.pcrysgrow.2008.08.003]
[61]
T. Tago, T. Hatsuta, K. Miyajima, M. Kishida, S. Tashiro, and K. Wakabayashi, "Novel synthesis of silica‐coated ferrite nanoparticles prepared using water‐in‐oil microemulsion", J. Am. Ceram. Soc., vol. 85, pp. 2188-2194, 2002.
[http://dx.doi.org/10.1111/j.1151-2916.2002.tb00433.x]
[62]
Z.L. Liu, X. Wang, K.L. Yao, G.H. Du, Q.H. Lu, Z.H. Ding, and D. Xi, "Synthesis of magnetite nanoparticles in W/O microemulsion", J. Mater. Sci., vol. 39, pp. 2633-2636, 2004.
[http://dx.doi.org/10.1023/B:JMSC.0000020046.68106.22]
[63]
A. Gabrene, I. Juhņeviča, J. Sētiņa, and G. Mežinskis, Synthesis., Properties and Applications of Magnetic Iron Oxide Nanoparticles, 2013, pp. 11-18.
[64]
S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, and W. Tan, Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactantsLangmuir,, vol. Vol 17. May 2001, pp. 2900-2906.
[65]
D. Zhang, Z. Tong, S. Li, X. Zhang, and A. Ying, "Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion", Mater. Lett., vol. 62, pp. 4053-4055, 2008.
[http://dx.doi.org/10.1016/j.matlet.2008.05.023]
[66]
T. Lu, J. Wang, J. Yin, A. Wang, X. Wang, and T. Zhang, "“Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method”, Colloid Surf. A Physicochem", Eng. Asp., vol. 436, pp. 675-683, 2013.
[http://dx.doi.org/10.1016/j.colsurfa.2013.08.004]
[67]
T.J. Mason, and J.P. Lorimer, "Applied sonochemistry: the uses of power ultrasound in chemistry and processing", Synthesis, vol. Vol.61., . 2002
[http://dx.doi.org/10.1002/352760054X]
[68]
H. Xu, B.W. Zeiger, and K.S. Suslick, "Sonochemical synthesis of nanomaterials", Chem. Soc. Rev., vol. 42, no. 7, pp. 2555-2567, 2013.
[http://dx.doi.org/10.1039/C2CS35282F] [PMID: 23165883]
[69]
F. Dang, N. Enomoto, J. Hojo, and K. Enpuku, "Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol-water mixed solvent", Ultrason. Sonochem., vol. 16, no. 5, pp. 649-654, 2009.
[http://dx.doi.org/10.1016/j.ultsonch.2008.11.003] [PMID: 19112040]
[70]
A.L. Morel, S.I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, and M. Simonoff, "Sonochemical approach to the synthesis of Fe3O4@ SiO2 core− shell nanoparticles with tunable propertiesACS", nano, vol. Vol. 2. May 2008, pp. 847-856.
[http://dx.doi.org/10.1021/nn800091q]
[71]
J. Osuna, D. de Caro, C. Amiens, B. Chaudret, E. Snoeck, M. Respaud, and A. Fert, "Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor", J. Phys. Chem., vol. 100, pp. 14571-14574, 1996.
[http://dx.doi.org/10.1021/jp961086e]
[72]
S.J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, and T. Hyeon, "Synthesis and magnetic studies of uniform iron nanorods and nanospheres", JACS, vol. 122, pp. 8581-8582, 2000.
[http://dx.doi.org/10.1021/ja001628c]
[73]
K. S. Suslick, S. B. Choe, A. A. Cichowlas, and M. W. Grinstaff, "Sonochemical synthesis of amorphous iron",", nature, vol. Vol 353, p. 414, Oct 1991.
[http://dx.doi.org/10.1038/353414a0]
[74]
J.H. Bang, and K.S. Suslick, "Applications of ultrasound to the synthesis of nanostructured materials", Adv. Mater., vol. 22, no. 10, pp. 1039-1059, 2010.
[http://dx.doi.org/10.1002/adma.200904093] [PMID: 20401929]
[75]
P. Jamshidi, M. Salavati-Niasari, D. Ghanbari, and H.R. Shams, "Synthesis, characterization, photoluminescence and photocatalytic properties of CeO 2 nanoparticles by the sonochemical method", J. Cluster Sci., vol. 24, pp. 1151-1162, 2013.
[http://dx.doi.org/10.1007/s10876-013-0605-0]
[76]
M. Ashokkumar, J. Lee, S. Kentish, and F. Grieser, "Bubbles in an acoustic field: an overview", Ultrason. Sonochem., vol. 14, no. 4, pp. 470-475, 2007.
[http://dx.doi.org/10.1016/j.ultsonch.2006.09.016] [PMID: 17234444]
[77]
X. Wang, G. Chen, and W. Guo, "Sonochemical degradation kinetics of methyl violet in aqueous solution", Molecules, vol. 8, pp. 40-44, 2003.
[http://dx.doi.org/10.3390/80100040]
[78]
R. Vijayakumar, Y. Koltypin, I. Felner, and A. Gedanken, "Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles", Mater. Sci. Eng. A, vol. 286, pp. 101-105, 2000.
[http://dx.doi.org/10.1016/S0921-5093(00)00647-X]
[79]
W. Wu, Q. He, H. Chen, J. Tang, and L. Nie, "Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles", Nanotech, vol. 18, . 2007.145609
[http://dx.doi.org/10.1088/0957-4484/18/14/145609]
[80]
D. Ghanbari, M. Salavati-Niasari, and M. Ghasemi-Kooch, "A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite", J. Ind. Eng. Chem., vol. 20, pp. 3970-3974, 2014.
[http://dx.doi.org/10.1016/j.jiec.2013.12.098]
[81]
K. Wu, D. Liu, W. Lu, and K. Zhang, "One-pot sonochemical synthesis of magnetite@ reduced graphene oxide nanocomposite for high performance Li ion storageUltrason", sonochem, vol. Vol. 45, 2018, pp. 167-172. Lul
[http://dx.doi.org/10.1016/j.ultsonch.2018.03.015]
[82]
F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, "Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles", Solid State Ion., vol. 32, pp. 198-205, 1989.
[http://dx.doi.org/10.1016/0167-2738(89)90222-1]
[83]
H. Gavilán, E.H. Sánchez, M.E.F. Brollo, L. Asín, K.K. Moerner, C. Frandsen, F.J. Lázaro, C.J. Serna, S. Veintemillas-Verdaguer, M.P. Morales, and L. Gutiérrez, "Formation mechanism of maghemite nanoflowers synthesized by a polyol-mediated process", ACS Omega, vol. 2, no. 10, pp. 7172-7184, 2017.
[http://dx.doi.org/10.1021/acsomega.7b00975] [PMID: 31457296]
[84]
D.V. Wagle, A.J. Rondinone, J.D. Woodward, and G.A. Baker, "Polyol Synthesis of Magnetite Nanocrystals in a Thermostable Ionic Liquid", Cryst. Growth Des., vol. 17, pp. 1558-1567, 2017.
[http://dx.doi.org/10.1021/acs.cgd.6b01511]
[85]
D. Jezequel, J. Guenot, N. Jouini, and F. Fievet, "Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics", J. Mater. Res., vol. 10, pp. 77-83, 1995.
[http://dx.doi.org/10.1557/JMR.1995.0077]
[86]
H. Dong, Y.C. Chen, and C. Feldmann, Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elementsGreen chem vol. Vol.17 no. 8, 4107-4132, 2015. Lul.
[87]
R.J. Joseyphus, K. Shinoda, D. Kodama, and B. Jeyadevan, "Size controlled Fe nanoparticles through polyol process and their magnetic properties", Mater. Chem. Phys., vol. 123, pp. 487-493, 2010.
[http://dx.doi.org/10.1016/j.matchemphys.2010.05.001]
[88]
D. Ung, Y. Soumare, N. Chakroune, G. Viau, M.J. Vaulay, V. Richard, and F. Fiévet, "Growth of magnetic nanowires and nanodumbbells in liquid polyol", Chem. Mater., vol. 19, pp. 2084-2094, 2007.
[http://dx.doi.org/10.1021/cm0627387]
[89]
W. Cai, and J. Wan, "Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols", J. Colloid Interface Sci., vol. 305, no. 2, pp. 366-370, 2007.
[http://dx.doi.org/10.1016/j.jcis.2006.10.023] [PMID: 17084856]
[90]
R.L. Silva, J.H. Araújo, L.M. Silva, and M.A. Morales, "Surface effect in PVP coated Sm doped magnetite nanoparticles prepared by the polyol method", Ceram. Int., vol. 44, pp. 13050-13054, 2018.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.124]
[91]
T. Hyeon, S.S. Lee, J. Park, Y. Chung, and H.B. Na, "Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process", J. Am. Chem. Soc., vol. 123, no. 51, pp. 12798-12801, 2001.
[http://dx.doi.org/10.1021/ja016812s] [PMID: 11749537]
[92]
"N, J. Orsini, B. Babić-Stojić, V. Spasojević, M. P. Calatayud, N. Cvjetićanin, and G. F. Goya, G. “Magnetic and power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of Fe(acac)3", J. Magn. Magn. Mater., vol. 449, pp. 286-296, 2018.
[http://dx.doi.org/10.1016/j.jmmm.2017.10.053]
[93]
R.F. Marques, C. Garcia, P. Lecante, S.J. Ribeiro, L. Noé, N.J. Silva, and M. Verelst, "Electro-precipitation of Fe3O4 nanoparticles in ethanol", J. Magn. Magn. Mater., vol. 320, pp. 2311-2315, 2008.
[http://dx.doi.org/10.1016/j.jmmm.2008.04.165]
[94]
L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales, and P. Herrasti, "Magnetite nanoparticles: electrochemical synthesis and characterization", Electrochim. Acta, vol. 53, pp. 3436-3441, 2008.
[http://dx.doi.org/10.1016/j.electacta.2007.12.006]
[95]
S. Franger, P. Berthet, and J. Berthon, "Electrochemical synthesis of Fe 3 O 4 nanoparticles in alkaline aqueous solutions containing complexing agents", J. Solid State Electrochem., vol. 8, pp. 218-223, 2004.
[http://dx.doi.org/10.1007/s10008-003-0469-6]
[96]
Z. Zhang, Q. Zhang, L.N. Xu, and Y.B. Xia, "Preparation of Nanometer γ‐Fe2O3 by an Electrochemical Method in Non‐aqueous Medium and Reaction Dynamics", Synth. React. Inorg. M., vol. 37, pp. 53-56, 2007.
[http://dx.doi.org/10.1080/15533170601172468]
[97]
G. Salazar-Alvarez, M. Muhammed, and A.A. Zagorodni, "Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution", Chem. Eng. Sci., vol. 61, pp. 4625-4633, 2006.
[http://dx.doi.org/10.1016/j.ces.2006.02.032]
[98]
M. Di Marco, M. Port, P. Couvreur, C. Dubernet, P. Ballirano, and C. Sadun, "Structural characterization of ultrasmall superparamagnetic iron oxide (USPIO) particles in aqueous suspension by energy dispersive X-ray diffraction (EDXD)", J. Am. Chem. Soc., vol. 128, no. 31, pp. 10054-10059, 2006.
[http://dx.doi.org/10.1021/ja061674y] [PMID: 16881633]
[99]
M.D.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, C.J. Serna, A. Roig, L. Casas, and F. Sandiumenge, "Surface and internal spin canting in γ-Fe2O3 nanoparticles", Chem. Mater., vol. 11, pp. 3058-3064, 1999.
[http://dx.doi.org/10.1021/cm991018f]
[100]
J. Chatterjee, Y. Haik, and C.J. Chen, "Size dependent magnetic properties of iron oxide nanoparticles", J. Magn. Magn. Mater., vol. 257, pp. 113-118, 2003.
[http://dx.doi.org/10.1016/S0304-8853(02)01066-1]
[101]
A. K. Gupta, and M. Gupta, "Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications", biomater, vol. Vol 26, pp. 3995-4021, Jun 2005.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012]
[102]
F.C. Voogt, T.T.M. Palstra, L. Niesen, O.C. Rogojanu, M.A. James, and T. Hibma, "Superparamagnetic behavior of structural domains in epitaxial ultrathin magnetite films", Phys. Rev. B Condens. Matter Mater. Phys., vol. 57, p. R8107, 1998.
[http://dx.doi.org/10.1103/PhysRevB.57.R8107]
[103]
F. Walz, "The Verwey transition-a topical review", J. Phys. Condens. Matter, vol. 14, p. R285, 2002.
[http://dx.doi.org/10.1088/0953-8984/14/12/203]
[104]
D. Gubbins, E. Herrero-Bervera, Eds., Encyclopedia of geomagnetism and paleomagnetism., SSBM, 2007.
[http://dx.doi.org/10.1007/978-1-4020-4423-6]
[105]
R. Aragón, D.J. Buttrey, J.P. Shepherd, and J.M. Honig, "Influence of nonstoichiometry on the Verwey transition", Phys. Rev. B Condens. Matter, vol. 31, no. 1, pp. 430-436, 1985.
[http://dx.doi.org/10.1103/PhysRevB.31.430] [PMID: 9935445]
[106]
Ö. Özdemir, D.J. Dunlop, and B.M. Moskowitz, "The effect of oxidation on the Verwey transition in magnetite", Geophys. Res. Lett., vol. 20, pp. 1671-1674, 1993.
[http://dx.doi.org/10.1029/93GL01483]
[107]
G.F. Goya, T.S. Berquo, F.C. Fonseca, and M.P. Morales, "Static and dynamic magnetic properties of spherical magnetite nanoparticles", J. Appl. Phys., vol. 94, pp. 3520-3528, 2003.
[http://dx.doi.org/10.1063/1.1599959]
[108]
I.W. Hamley, "Nanotechnology with soft materials", Angew. Chem. Int. Ed. Engl., vol. 42, no. 15, pp. 1692-1712, 2003.
[http://dx.doi.org/10.1002/anie.200200546] [PMID: 12707884]
[109]
G.D. Mendenhall, Y. Geng, and J. Hwang, "Optimization of long-term stability of magnetic fluids from magnetite and synthetic polyelectrolytes", J. Colloid Interface Sci., vol. 184, no. 2, pp. 519-526, 1996.
[http://dx.doi.org/10.1006/jcis.1996.0647] [PMID: 8978555]
[110]
H. Karimi-Maleh, P. Biparva, and M. Hatami, "A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid", Biosens. Bioelectron., vol. 48, pp. 270-275, 2013.
[http://dx.doi.org/10.1016/j.bios.2013.04.029] [PMID: 23707873]
[111]
H. Karimi‐Maleh, F. Tahernejad‐Javazmi, M. Daryanavard, H. Hadadzadeh, A. A. Ensafi, and M. Abbasghorbani, "Electrocatalytic and Simultaneous Determination of Ascorbic Acid, Nicotinamide Adenine Dinucleotide and Folic Acid at Ruthenium (II) Complex‐ZnO/CNTs Nanocomposite Modified Carbon Paste Electrode", Electroanal, vol. Vol 26, no. 5, pp. 962-970, . May 2014
[http://dx.doi.org/10.1002/elan.201400013]
[112]
P. Norouzi, B. Larijani, M.R. Ganjali, and F. Faridbod, "Admittometric electrochemical determination of atrazine by nano-composite immune-biosensor using FFT-square wave voltammetry", Int. J. Electrochem. Sci., vol. 7, pp. 10414-10426, 2012.
[113]
M.L. Yola, V.K. Gupta, T. Eren, A.E. Şen, and N. Atar, "A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin", Electrochim. Acta, vol. 120, pp. 204-211, 2014.
[http://dx.doi.org/10.1016/j.electacta.2013.12.086]
[114]
X. Luo, A. Morrin, A. J. Killard, and M. R. Smyth, "Application of nanoparticles in electrochemical sensors and biosensors", Electroynalysis (N.Y.N.Y.),, vol. Vol 18, pp. 319-326. Feb 2006.
[http://dx.doi.org/10.1002/elan.200503415]
[115]
B. Fang, G. Wang, W. Zhang, M. Li, and X Kan, "Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine", Electroynalysis (N.Y.N.Y.),, vol. Vol 17, no. 9, pp. 744-748. May 2005
[http://dx.doi.org/10.1002/elan.200403136]
[116]
M. S. Lin, and H. J. Leu, "A Fe3O4‐based chemical sensor for cathodic determination of hydrogen peroxide", Electroynalysis (N.Y.N.Y.),, vol. Vol 17, no. 22, pp. 2068-2073. Nov 2005.
[http://dx.doi.org/10.1002/elan.200503335]
[117]
H. Huang, X. Liu, X. Zhang, W. Liu, X. Su, and Z. Zhang, "Fabrication of new magnetic nanoparticles (Fe3O4) grafted multiwall carbon nanotubes and heterocyclic compound modified electrode for electrochemical sensor", Electroynalysis (N.Y.N.Y.),, vol. Vol 22, pp. 433-438.> Feb 2010.
[http://dx.doi.org/10.1002/elan.200900335]
[118]
M. Daneshpour, L.S. Moradi, P. Izadi, and K. Omidfar, "Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode", Biosens. Bioelectron., vol. 77, pp. 1095-1103, 2016.
[http://dx.doi.org/10.1016/j.bios.2015.11.007] [PMID: 26562330]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 2
Year: 2020
Page: [91 - 102]
Pages: 12
DOI: 10.2174/2212711906666200316163207
Price: $25

Article Metrics

PDF: 8