Circulating MicroRNAs and Blood-Brain-Barrier Function in Breast Cancer Metastasis

Author(s): Carolin J. Curtaz, Constanze Schmitt, Kinga G. Blecharz-Lang, Norbert Roewer, Achim Wöckel, Malgorzata Burek*.

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 13 , 2020

Become EABM
Become Reviewer

Abstract:

Brain metastases are a major cause of death in breast cancer patients. A key event in the metastatic progression of breast cancer in the brain is the migration of cancer cells across the blood-brain barrier (BBB). The BBB is a natural barrier with specialized functions that protect the brain from harmful substances, including antitumor drugs. Extracellular vesicles (EVs) sequestered by cells are mediators of cell-cell communication. EVs carry cellular components, including microRNAs that affect the cellular processes of target cells. Here, we summarize the knowledge about microRNAs known to play a significant role in breast cancer and/or in the BBB function. In addition, we describe previously established in vitro BBB models, which are a useful tool for studying molecular mechanisms involved in the formation of brain metastases.

Keywords: Metastatic breast cancer, blood-brain barrier, in vitro models, microRNA, extracellular vesicles (EVs), brain metastases.

[1]
Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell 2004; 116(2)(Suppl.): S89-S92,.
[http://dx.doi.org/10.1016/S0092-8674(04)00035-2]
[2]
Consortium EP. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[3]
Lowery AJ, Miller N, Devaney A, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 2009; 11(3): R27.
[http://dx.doi.org/10.1186/bcr2257] [PMID: 19432961]
[4]
Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2010; 127(1): 118-26.
[http://dx.doi.org/10.1002/ijc.25007] [PMID: 19876917]
[5]
Maierthaler M, Benner A, Hoffmeister M, et al. Plasma miR-122 and miR-200 family are prognostic markers in colorectal cancer. Int J Cancer 2017; 140(1): 176-87.
[http://dx.doi.org/10.1002/ijc.30433] [PMID: 27632639]
[6]
Zhang C, Wang C, Chen X, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 2010; 56(12): 1871-9.
[http://dx.doi.org/10.1373/clinchem.2010.147553] [PMID: 20943850]
[7]
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9(8): 581-93.
[http://dx.doi.org/10.1038/nri2567] [PMID: 19498381]
[8]
András IE, Toborek M. Extracellular vesicles of the blood-brain barrier. Tissue Barriers 2015; 4(1): e1131804
[http://dx.doi.org/10.1080/21688370.2015.1131804] [PMID: 27141419]
[9]
György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68(16): 2667-88.
[http://dx.doi.org/10.1007/s00018-011-0689-3] [PMID: 21560073]
[10]
Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol 2018; 15(10): 617-38.
[http://dx.doi.org/10.1038/s41571-018-0036-9] [PMID: 29795272]
[11]
Wang M, Yu F, Ding H, Wang Y, Li P, Wang K. Emerging function and clinical values of exosomal MicroRNAs in cancer. Mol Ther Nucleic Acids 2019; 16: 791-804.
[http://dx.doi.org/10.1016/j.omtn.2019.04.027] [PMID: 31163321]
[12]
Sempere LF, Keto J, Fabbri M. Exosomal MicroRNAs in breast cancer towards diagnostic and therapeutic applications. Cancers (Basel) 2017; 9(7): E71
[http://dx.doi.org/10.3390/cancers9070071] [PMID: 28672799]
[13]
Bahrami A, Aledavood A, Anvari K, et al. The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J Cell Physiol 2018; 233(2): 774-86.
[http://dx.doi.org/10.1002/jcp.25813] [PMID: 28109133]
[14]
Zhang G, Zhang W, Li B, et al. MicroRNA-200c and microRNA- 141 are regulated by a FOXP3-KAT2B axis and associated with tumor metastasis in breast cancer. Breast Cancer Res 2017; 19(1): 73.
[http://dx.doi.org/10.1186/s13058-017-0858-x] [PMID: 28637482]
[15]
Blecharz KG, Colla R, Rohde V, Vajkoczy P. Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell 2015; 107(10): 342-71.
[http://dx.doi.org/10.1111/boc.201500011] [PMID: 26032862]
[16]
Weidle UH, Niewöhner J, Tiefenthaler G. The blood-brain barrier challenge for the treatment of brain cancer, secondary brain metastases, and neurological diseases. Cancer Genomics Proteomics 2015; 12(4): 167-77.
[PMID: 26136217]
[17]
Vasconcelos I, Hussainzada A, Berger S, et al. The St. Gallen surrogate classification for breast cancer subtypes successfully predicts tumor presenting features, nodal involvement, recurrence patterns and disease free survival. Breast 2016; 29: 181-5.
[http://dx.doi.org/10.1016/j.breast.2016.07.016] [PMID: 27544822]
[18]
Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thürlimann B, Senn HJ. ENCODE project consortium.. Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009; 20(8): 1319-29.
[http://dx.doi.org/10.1093/annonc/mdp322] [PMID: 19535820]
[19]
Gluz O, Hartkopf A, Kümmel S, Marmé F. ASCO 2019: new results in breast cancer. Breast Care (Basel) 2019; 14(4): 256-8.
[http://dx.doi.org/10.1159/000501874] [PMID: 31558899]
[20]
Untch M, Thomssen C, Bauerfeind I, et al. Primary therapy of early breast cancer: evidence, controversies, consensus: spectrum of opinion of german specialists on the 16th st. gallen international breast cancer conference (vienna 2019). Geburtshilfe Frauenheilkd 2019; 79(6): 591-604.
[http://dx.doi.org/10.1055/a-0897-6457] [PMID: 31217628]
[21]
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ. Panel members. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011; 22(8): 1736-47.
[http://dx.doi.org/10.1093/annonc/mdr304] [PMID: 21709140]
[22]
Liedtke C, Thill M, Jackisch C, et al. AGO breast committee*. AGO recommendations for the diagnosis and treatment of patients with early breast cancer: update 2017. Breast Care (Basel) 2017; 12(3): 172-83.
[http://dx.doi.org/10.1159/000477575] [PMID: 28785186]
[23]
Schneeweiss A, Denkert C, Fasching PA, et al. Diagnosis and therapy of triple-negative breast cancer (TNBC) - recommendations for daily routine practice. Geburtshilfe Frauenheilkd 2019; 79(6): 605-17.
[http://dx.doi.org/10.1055/a-0887-0285] [PMID: 31217629]
[24]
Wöckel A, Festl J, Stüber T, et al. Interdisciplinary screening, diagnosis, therapy and follow-up of breast cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) - Part 2 with recommendations for the therapy of primary, recurrent and advanced breast cancer. Geburtshilfe Frauenheilkd 2018; 78(11): 1056-88.
[http://dx.doi.org/10.1055/a-0646-4630] [PMID: 30581198]
[25]
Lehmann BD, Jovanović B, Chen X, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One 2016; 11(6): e0157368
[http://dx.doi.org/10.1371/journal.pone.0157368] [PMID: 27310713]
[26]
Thill M, Jackisch C, Janni W, et al. AGO recommendations for the diagnosis and treatment of patients with locally advanced and metastatic breast cancer: update 2019. Breast Care (Basel) 2019; 14(4): 247-55.
[http://dx.doi.org/10.1159/000500999] [PMID: 31558898]
[27]
Kaufmann M, Maass N, Costa SD, et al. GBG-39 Trialists. First-line therapy with moderate dose capecitabine in metastatic breast cancer is safe and active: results of the MONICA trial. Eur J Cancer 2010; 46(18): 3184-91.
[http://dx.doi.org/10.1016/j.ejca.2010.07.009] [PMID: 20797843]
[28]
Thill M, Liedtke C, Müller V, Janni W, Schmidt M, Committee AGOB. AGO breast committee. AGO recommendations for the diagnosis and treatment of patients with advanced and metastatic breast cancer: update 2018. Breast Care (Basel) 2018; 13(3): 209-15.
[http://dx.doi.org/10.1159/000489331] [PMID: 30069182]
[29]
Schmid P, Adams S, Rugo HS, et al. IMpassion130 trial investigators. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med 2018; 379(22): 2108-21.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[30]
Kotecki N, Lefranc F, Devriendt D, Awada A. Therapy of breast cancer brain metastases: challenges, emerging treatments and perspectives. Ther Adv Med Oncol 2018; 10: 1758835918780312
[http://dx.doi.org/10.1177/1758835918780312] [PMID: 29977353]
[31]
Stahl PD, Barbieri MA. Multivesicular bodies and multivesicular endosomes: the “ins and outs” of endosomal traffic. Sci STKE 2002; 2002(141): pe32.
[PMID: 12122203]
[32]
Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010; 73(10): 1907-20.
[http://dx.doi.org/10.1016/j.jprot.2010.06.006] [PMID: 20601276]
[33]
Filipazzi P, Bürdek M, Villa A, Rivoltini L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol 2012; 22(4): 342-9.
[http://dx.doi.org/10.1016/j.semcancer.2012.02.005] [PMID: 22369922]
[34]
Barros FM, Carneiro F, Machado JC, Melo SA. Exosomes and immune response in cancer: friends or foes? Front Immunol 2018; 9: 730.
[http://dx.doi.org/10.3389/fimmu.2018.00730] [PMID: 29696022]
[35]
Melo SA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014; 26(5): 707-21.
[http://dx.doi.org/10.1016/j.ccell.2014.09.005] [PMID: 25446899]
[36]
Fong MY, Zhou W, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 2015; 17(2): 183-94.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[37]
Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527(7578): 329-35.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[38]
Riches A, Campbell E, Borger E, Powis S. Regulation of exosome release from mammary epithelial and breast cancer cells - a new regulatory pathway. Eur J Cancer 2014; 50(5): 1025-34.
[http://dx.doi.org/10.1016/j.ejca.2013.12.019] [PMID: 24462375]
[39]
Gorczynski RM, Erin N, Zhu F. Serum-derived exosomes from mice with highly metastatic breast cancer transfer increased metastatic capacity to a poorly metastatic tumor. Cancer Med 2016; 5(2): 325-36.
[http://dx.doi.org/10.1002/cam4.575] [PMID: 26725371]
[40]
Bos PD, Zhang XH, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459(7249): 1005-9.
[http://dx.doi.org/10.1038/nature08021] [PMID: 19421193]
[41]
Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016; 533(7604): 493-8.
[http://dx.doi.org/10.1038/nature18268] [PMID: 27225120]
[42]
Dilling C, Roewer N, Förster CY, Burek M. Multiple protocadherins are expressed in brain microvascular endothelial cells and might play a role in tight junction protein regulation. J Cereb Blood Flow Metab 2017; 37(10): 3391-400.
[http://dx.doi.org/10.1177/0271678X16688706] [PMID: 28094605]
[43]
Morad G, Carman CV, Hagedorn EJ, et al. Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis. ACS Nano 2019; 13(12): 13853-65.
[http://dx.doi.org/10.1021/acsnano.9b04397] [PMID: 31479239]
[44]
Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 2016; 9(4): 509-29.
[http://dx.doi.org/10.1007/s12195-016-0458-3] [PMID: 28392840]
[45]
Rodrigues G, Hoshino A, Kenific CM, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol 2019; 21(11): 1403-12.
[http://dx.doi.org/10.1038/s41556-019-0404-4] [PMID: 31685984]
[46]
Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 2015; 6: 6716.
[http://dx.doi.org/10.1038/ncomms7716] [PMID: 25828099]
[47]
Lopez-Ramirez MA, Wu D, Pryce G, et al. MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 2014; 28(6): 2551-65.
[http://dx.doi.org/10.1096/fj.13-248880] [PMID: 24604078]
[48]
Burek M, König A, Lang M, et al. Hypoxia-induced MicroRNA-212/132 alter blood-brain barrier integrity through inhibition of tight junction-associated proteins in human and mouse brain microvascular endothelial cells. Transl Stroke Res 2019; 10(6): 672-83.
[http://dx.doi.org/10.1007/s12975-018-0683-2] [PMID: 30617994]
[49]
Fang Z, He QW, Li Q, et al. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. FASEB J 2016; 30(6): 2097-107.
[http://dx.doi.org/10.1096/fj.201500126] [PMID: 26887441]
[50]
Bai Y, Zhang Y, Hua J, et al. Silencing microRNA-143 protects the integrity of the blood-brain barrier: implications for methamphetamine abuse. Sci Rep 2016; 6: 35642.
[http://dx.doi.org/10.1038/srep35642] [PMID: 27767041]
[51]
Ma Q, Dasgupta C, Li Y, Huang L, Zhang L. MicroRNA-210 suppresses junction proteins and disrupts blood-brain barrier integrity in neonatal rat hypoxic-ischemic brain injury. Int J Mol Sci 2017; 18(7): E1356
[http://dx.doi.org/10.3390/ijms18071356] [PMID: 28672801]
[52]
Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X. MiR-34a regulates blood-brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab 2016; 36(2): 387-92.
[http://dx.doi.org/10.1177/0271678X15606147] [PMID: 26661155]
[53]
Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 2014; 13(8): 622-38.
[http://dx.doi.org/10.1038/nrd4359] [PMID: 25011539]
[54]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[55]
Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98(19): 10869-74.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[56]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[57]
Serpico D, Molino L, Di Cosimo S. microRNAs in breast cancer development and treatment. Cancer Treat Rev 2014; 40(5): 595-604.
[http://dx.doi.org/10.1016/j.ctrv.2013.11.002] [PMID: 24286642]
[58]
van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 2015; 17: 21.
[http://dx.doi.org/10.1186/s13058-015-0526-y] [PMID: 25849621]
[59]
Blenkiron C, Goldstein LD, Thorne NP, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2007; 8(10): R214.
[http://dx.doi.org/10.1186/gb-2007-8-10-r214] [PMID: 17922911]
[60]
Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H, Horiguchi J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 2017; 62(1): 15-24.
[http://dx.doi.org/10.1038/jhg.2016.89] [PMID: 27439682]
[61]
Fkih M’hamed I, Privat M, Ponelle F, Penault-Llorca F, Kenani A, Bignon YJ. Identification of miR-10b, miR-26a, miR-146a and miR-153 as potential triple-negative breast cancer biomarkers. Cell Oncol (Dordr) 2015; 38(6): 433-42.
[http://dx.doi.org/10.1007/s13402-015-0239-3] [PMID: 26392359]
[62]
Adhami M, Haghdoost AA, Sadeghi B, Malekpour Afshar R. Candidate miRNAs in human breast cancer biomarkers: a systematic review. Breast Cancer 2018; 25(2): 198-205.
[http://dx.doi.org/10.1007/s12282-017-0814-8] [PMID: 29101635]
[63]
Rodríguez-Martínez A, de Miguel-Pérez D, Ortega FG, et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res 2019; 21(1): 21.
[http://dx.doi.org/10.1186/s13058-019-1109-0] [PMID: 30728048]
[64]
Gan R, Yang Y, Yang X, Zhao L, Lu J, Meng QH. Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther 2014; 21(7): 290-6.
[http://dx.doi.org/10.1038/cgt.2014.29] [PMID: 24924200]
[65]
Zhao JJ, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 2008; 283(45): 31079-86.
[http://dx.doi.org/10.1074/jbc.M806041200] [PMID: 18790736]
[66]
Pulido C, Vendrell I, Ferreira AR, et al. Bone metastasis risk factors in breast cancer. Ecancermedicalscience 2017; 11: 715.
[http://dx.doi.org/10.3332/ecancer.2017.715] [PMID: 28194227]
[67]
Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004; 350(16): 1655-64.
[http://dx.doi.org/10.1056/NEJMra030831] [PMID: 15084698]
[68]
Ahn SG, Lee HM, Cho SH, et al. Prognostic factors for patients with bone-only metastasis in breast cancer. Yonsei Med J 2013; 54(5): 1168-77.
[http://dx.doi.org/10.3349/ymj.2013.54.5.1168] [PMID: 23918566]
[69]
Browne G, Taipaleenmäki H, Stein GS, Stein JL, Lian JB. MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab 2014; 25(6): 320-7.
[http://dx.doi.org/10.1016/j.tem.2014.03.014] [PMID: 24811921]
[70]
Vimalraj S, Miranda PJ, Ramyakrishna B, Selvamurugan N. Regulation of breast cancer and bone metastasis by microRNAs. Dis Markers 2013; 35(5): 369-87.
[http://dx.doi.org/10.1155/2013/451248] [PMID: 24191129]
[71]
Zoni E, van der Pluijm G. The role of microRNAs in bone metastasis. J Bone Oncol 2016; 5(3): 104-8.
[http://dx.doi.org/10.1016/j.jbo.2016.04.002] [PMID: 27761367]
[72]
Croset M, Kan C, Clézardin P. Tumour-derived miRNAs and bone metastasis. Bonekey Rep 2015; 4: 688.
[http://dx.doi.org/10.1038/bonekey.2015.56] [PMID: 25987987]
[73]
Cai WL, Huang WD, Li B, et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer 2018; 17(1): 9.
[http://dx.doi.org/10.1186/s12943-017-0746-0] [PMID: 29343249]
[74]
Dong LL, Chen LM, Wang WM, Zhang LM. Decreased expression of microRNA-124 is an independent unfavorable prognostic factor for patients with breast cancer. Diagn Pathol 2015; 10: 45.
[http://dx.doi.org/10.1186/s13000-015-0257-5] [PMID: 25924779]
[75]
Liang YJ, Wang QY, Zhou CX, et al. MiR-124 targets Slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis 2013; 34(3): 713-22.
[http://dx.doi.org/10.1093/carcin/bgs383] [PMID: 23250910]
[76]
Liu J, Li D, Dang L, et al. Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer. Sci Rep 2017; 7: 40487.
[http://dx.doi.org/10.1038/srep40487] [PMID: 28071724]
[77]
Wang X, Guo B, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med 2013; 19(1): 93-100.
[http://dx.doi.org/10.1038/nm.3026] [PMID: 23223004]
[78]
Ell B, Mercatali L, Ibrahim T, et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 2013; 24(4): 542-56.
[http://dx.doi.org/10.1016/j.ccr.2013.09.008] [PMID: 24135284]
[79]
Taipaleenmäki H, Browne G, Akech J, et al. Targeting of Runx2 by miR-135 and miR-203 impairs progression of breast cancer and metastatic bone disease. Cancer Res 2015; 75(7): 1433-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1026] [PMID: 25634212]
[80]
Pratap J, Lian JB, Javed A, et al. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 2006; 25(4): 589-600.
[http://dx.doi.org/10.1007/s10555-006-9032-0] [PMID: 17165130]
[81]
Zhao FL, Hu GD, Wang XF, Zhang XH, Zhang YK, Yu ZS. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res 2012; 40(3): 859-66.
[http://dx.doi.org/10.1177/147323001204000304] [PMID: 22906258]
[82]
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449(7163): 682-8.
[http://dx.doi.org/10.1038/nature06174] [PMID: 17898713]
[83]
Ell B, Qiu Q, Wei Y, et al. The microRNA-23b/27b/24 cluster promotes breast cancer lung metastasis by targeting metastasis-suppressive gene prosaposin. J Biol Chem 2014; 289(32): 21888-95.
[http://dx.doi.org/10.1074/jbc.M114.582866] [PMID: 24966325]
[84]
Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10(2): 202-10.
[http://dx.doi.org/10.1038/ncb1681] [PMID: 18193036]
[85]
Chen X, Wang YW, Zhu WJ, et al. A 4-microRNA signature predicts lymph node metastasis and prognosis in breast cancer. Hum Pathol 2018; 76: 122-32.
[http://dx.doi.org/10.1016/j.humpath.2018.03.010] [PMID: 29555574]
[86]
Yan LX, Huang XF, Shao Q, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008; 14(11): 2348-60.
[http://dx.doi.org/10.1261/rna.1034808] [PMID: 18812439]
[87]
Rick JW, Shahin M, Chandra A, et al. Systemic therapy for brain metastases. Crit Rev Oncol Hematol 2019; 142: 44-50.
[http://dx.doi.org/10.1016/j.critrevonc.2019.07.012] [PMID: 31357143]
[88]
Li Z, Peng Z, Gu S, et al. Global Analysis of miRNA-mRNA interaction network in breast cancer with brain metastasis. Anticancer Res 2017; 37(8): 4455-68.
[PMID: 28739740]
[89]
Witzel I, Oliveira-Ferrer L, Pantel K, Müller V, Wikman H. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res 2016; 18(1): 8.
[http://dx.doi.org/10.1186/s13058-015-0665-1] [PMID: 26781299]
[90]
Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 2011; 71(3): 645-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1910] [PMID: 21266359]
[91]
Okuda H, Xing F, Pandey PR, et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 2013; 73(4): 1434-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2037] [PMID: 23384942]
[92]
Shao B, Wang X, Zhang L, et al. Plasma microRNAs predict chemoresistance in patients with metastatic breast cancer. Technol Cancer Res Treat 2019; 18: 1533033819828709
[http://dx.doi.org/10.1177/1533033819828709] [PMID: 30786836]
[93]
Ahmad A, Ginnebaugh KR, Sethi S, et al. miR-20b is up-regulated in brain metastases from primary breast cancers. Oncotarget 2015; 6(14): 12188-95.
[http://dx.doi.org/10.18632/oncotarget.3664] [PMID: 25893380]
[94]
Krizbai IA, Nyúl-Tóth Á, Bauer HC, et al. Pharmaceutical targeting of the brain. Curr Pharm Des 2016; 22(35): 5442-62.
[http://dx.doi.org/10.2174/1381612822666160726144203] [PMID: 27464716]
[95]
Wilhelm I, Fazakas C, Molnár K, Végh AG, Haskó J, Krizbai IA. Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab 2018; 38(4): 563-87.
[http://dx.doi.org/10.1177/0271678X17732025] [PMID: 28920514]
[96]
Salvador E, Burek M, Förster CY. Tight junctions and the tumor microenvironment. Curr Pathobiol Rep 2016; 4: 135-45.
[http://dx.doi.org/10.1007/s40139-016-0106-6] [PMID: 27547510]
[97]
Dias K, Dvorkin-Gheva A, Hallett RM, et al. Claudin-low breast cancer; clinical & pathological characteristics. PLoS One 2017; 12(1): e0168669
[http://dx.doi.org/10.1371/journal.pone.0168669] [PMID: 28045912]
[98]
Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36(5): 862-90.
[http://dx.doi.org/10.1177/0271678X16630991] [PMID: 26868179]
[99]
He Y, Yao Y, Tsirka SE, Cao Y. Cell-culture models of the blood-brain barrier. Stroke 2014; 45(8): 2514-26.
[http://dx.doi.org/10.1161/STROKEAHA.114.005427] [PMID: 24938839]
[100]
Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 1983; 14(4): 396-402.
[http://dx.doi.org/10.1002/ana.410140403] [PMID: 6638956]
[101]
Cecchelli R, Dehouck B, Descamps L, et al. In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 1999; 36(2-3): 165-78.
[http://dx.doi.org/10.1016/S0169-409X(98)00083-0] [PMID: 10837714]
[102]
Franke H, Galla H, Beuckmann CT. Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Brain Res Protoc 2000; 5(3): 248-56.
[http://dx.doi.org/10.1016/S1385-299X(00)00020-9] [PMID: 10906490]
[103]
Zhang Y, Li CS, Ye Y, et al. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab Dispos 2006; 34(11): 1935-43.
[http://dx.doi.org/10.1124/dmd.105.006437] [PMID: 16896068]
[104]
Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 2013; 1521: 1-15.
[http://dx.doi.org/10.1016/j.brainres.2012.06.057] [PMID: 22789905]
[105]
Garberg P, Ball M, Borg N, et al. In vitro models for the blood-brain barrier. Toxicol In Vitro 2005; 19(3): 299-334.
[http://dx.doi.org/10.1016/j.tiv.2004.06.011] [PMID: 15713540]
[106]
Prieto P, Blaauboer BJ, de Boer AG, et al. European Centre for the Validation of Alternative Methods. Blood-brain barrier in vitro models and their application in toxicology. The report and recommendations of ECVAM Workshop 49. Altern Lab Anim 2004; 32(1): 37-50.
[http://dx.doi.org/10.1177/026119290403200107] [PMID: 15603552]
[107]
Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci 2001; 90(11): 1681-98.
[http://dx.doi.org/10.1002/jps.1119] [PMID: 11745727]
[108]
Reichel A, Begley DJ, Abbott NJ. An overview of in vitro techniques for blood-brain barrier studies. Methods Mol Med 2003; 89: 307-24.
[http://dx.doi.org/10.1385/1-59259-419-0:307] [PMID: 12958429]
[109]
Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005; 25(1): 59-127.
[http://dx.doi.org/10.1007/s10571-004-1377-8] [PMID: 15962509]
[110]
Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target 2007; 15(4): 253-68.
[http://dx.doi.org/10.1080/10611860701288539] [PMID: 17487694]
[111]
Calabria AR, Weidenfeller C, Jones AR, de Vries HE, Shusta EV. Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. J Neurochem 2006; 97(4): 922-33.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03793.x] [PMID: 16573646]
[112]
Wijsman JA, Shivers RR. Immortalized mouse brain endothelial cells are ultrastructurally similar to endothelial cells and respond to astrocyte-conditioned medium. In Vitro Cell Dev Biol Anim 1998; 34(10): 777-84.
[http://dx.doi.org/10.1007/s11626-998-0032-y] [PMID: 9870527]
[113]
Omidi Y, Campbell L, Barar J, Connell D, Akhtar S, Gumbleton M. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res 2003; 990(1-2): 95-112.
[http://dx.doi.org/10.1016/S0006-8993(03)03443-7] [PMID: 14568334]
[114]
Grab DJ, Nikolskaia O, Kim YV, et al. African trypanosome interactions with an in vitro model of the human blood-brain barrier. J Parasitol 2004; 90(5): 970-9.
[http://dx.doi.org/10.1645/GE-287R] [PMID: 15562595]
[115]
Weksler BB, Subileau EA, Perrière N, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 2005; 19(13): 1872-4.
[http://dx.doi.org/10.1096/fj.04-3458fje] [PMID: 16141364]
[116]
Sano Y, Shimizu F, Abe M, et al. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol 2010; 225(2): 519-28.
[http://dx.doi.org/10.1002/jcp.22232] [PMID: 20458752]
[117]
Förster C, Silwedel C, Golenhofen N, et al. Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol 2005; 565(Pt 2): 475-86.
[http://dx.doi.org/10.1113/jphysiol.2005.084038] [PMID: 15790664]
[118]
Veszelka S, Meszaros M, Kiss L, et al. Biotin and glutathione targeting of solid nanoparticles to cross human brain endothelial cells. Curr Pharm Des 2017; 23(28): 4198-205.
[http://dx.doi.org/10.2174/1381612823666170727144450] [PMID: 28748755]
[119]
Kido Y, Tamai I, Nakanishi T, et al. Evaluation of blood-brain barrier transporters by co-culture of brain capillary endothelial cells with astrocytes. Drug Metab Pharmacokinet 2002; 17(1): 34-41.
[http://dx.doi.org/10.2133/dmpk.17.34] [PMID: 15618650]
[120]
Neuhaus W, Gaiser F, Mahringer A, Franz J, Riethmüller C, Förster C. The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier. Front Cell Neurosci 2014; 8: 352.
[http://dx.doi.org/10.3389/fncel.2014.00352] [PMID: 25389390]
[121]
Banks WA, Kovac A, Morofuji Y. Neurovascular unit crosstalk: Pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. J Cereb Blood Flow Metab 2018; 38(6): 1104-18.
[http://dx.doi.org/10.1177/0271678X17740793] [PMID: 29106322]
[122]
Al-Shehri A, Favretto ME, Ioannou PV, et al. Permeability of PEGylated immunoarsonoliposomes through in vitro blood brain barrier-medulloblastoma co-culture models for brain tumor therapy. Pharm Res 2015; 32(3): 1072-83.
[http://dx.doi.org/10.1007/s11095-014-1519-8] [PMID: 25236341]
[123]
Yan GN, Lv YF, Yang L, Yao XH, Cui YH, Guo DY. Glioma stem cells enhance endothelial cell migration and proliferation via the Hedgehog pathway. Oncol Lett 2013; 6(5): 1524-30.
[http://dx.doi.org/10.3892/ol.2013.1569] [PMID: 24179553]
[124]
Anfuso CD, Motta C, Giurdanella G, Arena V, Alberghina M, Lupo G. Endothelial PKCα-MAPK/ERK-phospholipase A2 pathway activation as a response of glioma in a triple culture model. A new role for pericytes? Biochimie 2014; 99: 77-87.
[http://dx.doi.org/10.1016/j.biochi.2013.11.013] [PMID: 24287292]
[125]
Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res 2007; 1147: 39-50.
[http://dx.doi.org/10.1016/j.brainres.2007.02.029] [PMID: 17368578]
[126]
Tarbell JM. Shear stress and the endothelial transport barrier. Cardiovasc Res 2010; 87(2): 320-30.
[http://dx.doi.org/10.1093/cvr/cvq146] [PMID: 20543206]
[127]
Davies PF, Spaan JA, Krams R. Shear stress biology of the endothelium. Ann Biomed Eng 2005; 33(12): 1714-8.
[http://dx.doi.org/10.1007/s10439-005-8774-0] [PMID: 16389518]
[128]
Stanness KA, Guatteo E, Janigro D. A dynamic model of the blood-brain barrier “in vitro”. Neurotoxicology 1996; 17(2): 481-96.
[PMID: 8856743]
[129]
Stanness KA, Westrum LE, Fornaciari E, et al. Morphological and functional characterization of an in vitro blood-brain barrier model. Brain Res 1997; 771(2): 329-42.
[http://dx.doi.org/10.1016/S0006-8993(97)00829-9] [PMID: 9401753]
[130]
Janigro D, Leaman SM, Stanness KA. Dynamic modeling of the blood-brain barrier: a novel tool for studies of drug delivery to the brain. Pharm Sci Technol Today 1999; 2(1): 7-12.
[http://dx.doi.org/10.1016/S1461-5347(98)00110-2] [PMID: 10234198]
[131]
Cucullo L, Couraud PO, Weksler B, et al. Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab 2008; 28(2): 312-28.
[http://dx.doi.org/10.1038/sj.jcbfm.9600525] [PMID: 17609686]
[132]
Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 1981; 103(3): 177-85.
[http://dx.doi.org/10.1115/1.3138276] [PMID: 7278196]
[133]
Koutsiaris AG, Tachmitzi SV, Batis N, et al. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 2007; 44(5-6): 375-86.
[PMID: 18401076]
[134]
Cucullo L, McAllister MS, Kight K, et al. A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res 2002; 951(2): 243-54.
[http://dx.doi.org/10.1016/S0006-8993(02)03167-0] [PMID: 12270503]
[135]
Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 2012; 30(8): 783-91.
[http://dx.doi.org/10.1038/nbt.2247] [PMID: 22729031]
[136]
Appelt-Menzel A, Cubukova A, Günther K, et al. Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Reports 2017; 8(4): 894-906.
[http://dx.doi.org/10.1016/j.stemcr.2017.02.021] [PMID: 28344002]
[137]
Katt ME, Xu ZS, Gerecht S, Searson PC. Human brain microvascular endothelial cells derived from the BC1 iPS cell line exhibit a blood-brain barrier phenotype. PLoS One 2016; 11(4): e0152105
[http://dx.doi.org/10.1371/journal.pone.0152105] [PMID: 27070801]
[138]
Lim RG, Quan C, Reyes-Ortiz AM, et al. Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep 2017; 19(7): 1365-77.
[http://dx.doi.org/10.1016/j.celrep.2017.04.021] [PMID: 28514657]
[139]
Ribecco-Lutkiewicz M, Sodja C, Haukenfrers J, et al. A novel human induced pluripotent stem cell blood-brain barrier model: Applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep 2018; 8(1): 1873.
[http://dx.doi.org/10.1038/s41598-018-19522-8] [PMID: 29382846]
[140]
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells. Fluids Barriers CNS 2017; 14(1): 9.
[http://dx.doi.org/10.1186/s12987-017-0059-0] [PMID: 28407791]
[141]
Neal EH, Marinelli NA, Shi Y, et al. A simplified, fully defined differentiation scheme for producing blood-brain barrier endothelial cells from human iPSCs. Stem Cell Reports 2019; 12(6): 1380-8.
[http://dx.doi.org/10.1016/j.stemcr.2019.05.008] [PMID: 31189096]
[142]
Qian T, Maguire SE, Canfield SG, et al. Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci Adv 2017; 3(11): e1701679
[http://dx.doi.org/10.1126/sciadv.1701679] [PMID: 29134197]
[143]
Praça C, Rosa SC, Sevin E, Cecchelli R, Dehouck MP, Ferreira LS. Derivation of brain capillary-like endothelial cells from human pluripotent stem cell-derived endothelial progenitor cells. Stem Cell Reports 2019; 13(4): 599-611.
[http://dx.doi.org/10.1016/j.stemcr.2019.08.002] [PMID: 31495714]
[144]
O’Grady BJ, Balikov DA, Lippmann ES, Bellan LM. Spatiotemporal control of morphogen delivery to pattern stem cell differentiation in three-dimensional hydrogels. Curr Protoc Stem Cell Biol 2019; 51(1): e97
[http://dx.doi.org/10.1002/cpsc.97] [PMID: 31756050]
[145]
Cecchelli R, Aday S, Sevin E, et al. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PLoS One 2014; 9(6): e99733
[http://dx.doi.org/10.1371/journal.pone.0099733] [PMID: 24936790]
[146]
Boyer-Di Ponio J, El-Ayoubi F, Glacial F, et al. Instruction of circulating endothelial progenitors in vitro towards specialized blood-brain barrier and arterial phenotypes. PLoS One 2014; 9(1): e84179
[http://dx.doi.org/10.1371/journal.pone.0084179] [PMID: 24392113]
[147]
Lyck R, Lécuyer MA, Abadier M, et al. ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood-brain barrier. J Cereb Blood Flow Metab 2017; 37(8): 2894-909.
[http://dx.doi.org/10.1177/0271678X16678639] [PMID: 28273717]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 13
Year: 2020
Page: [1417 - 1427]
Pages: 11
DOI: 10.2174/1381612826666200316151720
Price: $65

Article Metrics

PDF: 17
HTML: 1