[3]
DeLuca HF, Vitamin D. Historical Overview. Vitam Horm 2016; 100: 1-20.
[4]
Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 2007; 7(9): 684-700.
[5]
Holick MF, Matsuoka LY, Wortsman J. Age, vitamin D, and solar ultraviolet. Lancet 1989; 2(8671): 1104-5.
[7]
Holick MF. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol 1981; 77(1): 51-8.
[10]
Clemens TL, Horiuchi N, Nguyen M, Holick MF. Binding of 1,25-dihydroxy-[3H]vitamin D3 in nuclear and cytosol fractions of whole mouse skin in vivo and in vitro. FEBS Lett 1981; 134(2): 203-6.
[15]
Kasahara AK, Singh RJ, Noymer A. Vitamin D (25OHD) Serum Seasonality in the United States. PLoS One 2013; 8(6)
[19]
Strushkevich N, Usanov SA, Plotnikov AN, Jones G, Park HW. Structural analysis of CYP2R1 in complex with vitamin D3. J Mol Biol 2008; 380(1): 95-106.
[23]
Peterlik M, Cross HS. Vitamin D and calcium insufficiency-related chronic diseases: molecular and cellular pathophysiology. Eur J Clin Nutr 2009; 63(12): 1377-86.
[24]
Chun RF, Adams JS, Hewison M. What is new in vitamin D: 2006-2007. Curr Opin Rheumatol 2007; 19(4): 383-8.
[25]
Bikle DD. Back to the future: a new look at ‘old’ vitamin D. J Endocrinol 2008; 198(2): 261-9.
[26]
Buell JS, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing “D”ecline? Mol Aspects Med 2008; 29(6): 415-22.
[27]
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005; 29(1): 21-30.
[29]
Hewison M, Zehnder D, Chakraverty R, Adams JS. Vitamin D and barrier function: a novel role for extra-renal 1 alpha-hydroxylase. Mol Cell Endocrinol 215(1-2): 31-8.
[32]
Lechner D, Manhardt T, Bajna E, Posner GH, Cross HS. A 24-phenylsulfone analog of vitamin D inhibits 1alpha,25-dihydroxyvitamin D(3) degradation in vitamin D metabolism-competent cells. J Pharmacol Exp Ther 2007; 320(3): 1119-26.
[33]
Lai JK, Lucas RM, Clements MS, Roddam AW, Banks E. Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomised controlled trials and observational studies. BMC Public Health 2010; 10: 331.
[35]
Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96(7): 1911-30.
[39]
Jaroszewski DE, Huh J, Malaisrie SC, Riffel AD, Gordon HS, Wang XL. Utility of detailed preoperative cardiac testing and incidence of post-thoracotomy myocardial infarction. J Thorac Cardiovasc Surg 2008; 135(3): 648-55.
[40]
Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III.Bone 2002; 30(5): 771-7.
[41]
Annweiler C, Souberbielle JC, Schott AM, et al. Vitamin D in the elderly: 5 points to remember. Geriatr Psychol Neuropsychiatr Vieil 2011; 9(3): 259-67.
[43]
Kim YS, Hwang JH, Song MR. The Association Between Vitamin D Deficiency and Metabolic Syndrome in Korean Adolescents. J Pediatr Nurs 2018; 38(17): e7-e11. S0882-5963
[44]
Lips P. Vitamin D status and nutrition in Europe and Asia. J Steroid Biochem Mol Biol 2007; 103(3-5): 620-5.
[49]
Bassil D, Rahme M, Hoteit M, Fuleihan Gel-H. Hypovitaminosis D in the Middle East and North Africa: Prevalence, risk factors and impact on outcomes. Dermatoendocrinol 2013; 5(2): 274-98.
[52]
Markestad T, Aksnes L, Aarskog D, Dahl LB. Vitamin D metabolism in pre-term infants. Lancet 1983; 2(8356): 976.
[55]
Li Y, Camacho P. Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 2004; 164(1): 35-46.
[57]
Montibeller L, de Belleroche J. Amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) are characterised by differential activation of ER stress pathways: focus on UPR target genes. Cell Stress Chaperones 2018; 23(5): 897-912.
[61]
Woehlbier U, Colombo A, Saaranen MJ, et al. ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J 2016; 35(8): 845-65.
[64]
Buitrago C, Pardo VG, Boland R. Boland (2013) Role of VDR in 1alpha,25-dihydroxyvitamin D3-dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J Steroid Biochem Mol Biol 2013; 136: 125-30.
[65]
Landel V, Stephan D, Cui X, Eyles D, Feron F. Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J Steroid Biochem Mol Biol 2018; 177: 129-34.
[67]
Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 2004; 18(11): 2660-71.
[70]
Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 2011; 25(4): 543-49.
[72]
Haussler MR, Haussler CA, Bartik L, et al. Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention 2008; 66(10 Suppl 2): S98-112.
[75]
Wang TT, Tavera-Mendoza LE, Laperriere D, et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 2005; 19(11): 2685-95.
[76]
Landel V, Annweiler C, Millet P, Morello M, Feron F. Vitamin D, Cognition and Alzheimer’s Disease: The Therapeutic Benefit is in the D-Tails. J Alzheimers Dis 2016; 53(2): 419-4.
[77]
Saporito MS, Brown ER, Hartpence KC, et al. Chronic 1,25-dihydroxyvitamin D3-mediated induction of nerve growth factor mRNA and protein in L929 fibroblasts and in adult rat brain. Brain Res 1994; 633(1-2): 189-96.
[78]
Neveu I, Naveilhan P, Jehan F, et al. 1,25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res Mol Brain Res 1994; 24(1-4): 70-6.
[79]
Brown J, Bianco JI, McGrath JJ, Eyles DW. 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 2003; 343(2): 139-43.
[80]
Boyan BD, Chen J, Schwartz Z. Mechanism of Pdia3-dependent 1α,25-dihydroxy vitamin D3 signaling in musculoskeletal cells. Steroids 2012; 77(10): 892-6.
[82]
Fernandes de Abreu DA, Eyles D, Feron F. Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 2009; 34(Suppl. 1): S265-77.
[83]
Dursun E, Gezen-Ak D. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS One 2017; 12(11) e0188605
[91]
Baas D, Prufer K, Ittel ME, et al. Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3). Glia 2000; 31(1): 59-68.
[94]
Ito S, Ohtsuki S, Nezu Y, Koitabashi Y, Murata S, Terasaki T. 1α,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-β peptide(1-40) from mouse brain across the blood-brain barrier. Fluids Barriers CNS 2011; 8: 20.
[95]
Landel V, Millet P, Baranger K, Loriod B, Feron F. Vitamin D interacts with Esr1 and Igf1 to regulate molecular pathways relevant to Alzheimer’s disease. Mol Neurodegener 2016; 11: 22.
[98]
Cui X, Pertile R, Eyles DW. The vitamin D receptor (VDR) binds to the nuclear matrix via its hinge domain: A potential mechanism for the reduction in VDR mediated transcription in mitotic cells. Mol Cell Endocrinol 2018; 472: 18-25.
[99]
Veenstra TD, Fahnestock M, Kumar R. An AP-1 site in the nerve growth factor promoter is essential for 1, 25-dihydroxyvitamin D3-mediated nerve growth factor expression in osteoblasts. Biochemistry 1998; 37(17): 5988-94.
[101]
Moretti R, Morelli ME, Caruso P. Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact. Int J Mol Sci 2018; 19(8)
[102]
Cornet A, Baudet C, Neveu I, Baron-Van Evercooren A, Brachet P, Naveilhan P. 1,25-Dihydroxyvitamin D3 regulates the expression of VDR and NGF gene in Schwann cells in vitro. J Neurosci Res 1998; 53(56): 742-6.
[109]
Puchacz E, Stumpf WE, Stachowiak EK, Stachowiak MK. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol Brain Res 1996; 36(1): 193-6.
[112]
Eyles D, Almeras L, Benech P, et al. Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol 2007; 103(3-5): 538-45.
[113]
Latimer CS, Brewer LD, Searcy JL, et al. Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proc Natl Acad Sci USA 2014; 111(41): E4359-66.
[114]
Salami M, Talaei SA, Davari S, Taghizadeh M. Hippocampal long term potentiation in rats under different regimens of vitamin D: an in vivo study. Neurosci Lett 2012; 509(1): 56-9.
[115]
Taghizadeh M, Talaei SA, Djazayeri A, Salami M. Vitamin D supplementation restores suppressed synaptic plasticity in Alzheimer’s disease. Nutr Neurosci 2014; 17(4): 172-7.
[119]
Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001; 21(1): 98-108.
[123]
Garcion E, Nataf S, Berod A, Darcy F, Brachet P. 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Brain Res Mol Brain Res 1997; 45(2): 255-67.
[129]
Partonen T. Vitamin D and serotonin in winter. Med Hypotheses 1998; 51(3): 267-8.
[130]
Bala KA, Dogan M, Kaba S, Mutluer T, Aslan O, Doğan SZ. Hormone disorder and vitamin deficiency in attention deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASDs). J Pediatr Endocrinol Metab 2016; 29(9): 1077-82.
[170]
Feldman HH, Van Baelen B, Kavanagh SM, Torfs KE. Cognition, function, and caregiving time patterns in patients with mild-to-moderate Alzheimer disease: a 12-month analysis. Alzheimer Dis Assoc Disord 2005; 19(1): 29-36.
[173]
Grimm MOW, Thiel A, Lauer AA, et al. Vitamin D and Its Analogues Decrease Amyloid-β (Aβ) Formation and Increase Aβ-Degradation. Int J Mol Sci 2017; 18(12) E2764
[179]
Sutherland MK, Wong L, Somerville MJ, et al. Reduction of thyroid hormone receptor c-ERB A alpha mRNA levels in the hippocampus of Alzheimer as compared to Huntington brain. Neurobiol Aging 1992; 13(2): 301-12.
[185]
Gezen-Ak D, Dursun E, Bilgic B, et al. Vitamin D receptor gene haplotype is associated with late-onset Alzheimer’s disease. Tohoku J Exp Med 2012; 228(3): 189-96.
[192]
Briones TL, Darwish H. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden. J Neuroinflammation 2012; 9: 244.
[210]
Rimmelzwaan LM, van Schoor NM, Lips P, Berendse HW, Eekhoff EM. Association Between Serum Vitamin D Levels and Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front Neurol 2016; 909.
[212]
Shinpo K, Kikuchi S, Sasaki H, Moriwaka F, Tashiro K. Effect of 1,25-dihydroxyvitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine. J Neurosci Res 2000; 62(3): 374-82.
[215]
Wang JY, Wu JN, Cherng TL, et al. Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 2001; 904(1): 67-75.
[217]
Liu Y, Li YW, Tang YL, et al. Vitamin D: preventive and therapeutic potential in Parkinson’s disease. Curr Drug Metab 2013; 14(9): 989-93.
[218]
Peterson AL, Murchison C, Zabetian C, et al. Memory, mood, and vitamin D in persons with Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 547-55.
[221]
Sato Y, Kaji M, Tsuru T, Satoh K, Kondo I. Vitamin K deficiency and osteopenia in vitamin D-deficient elderly women with Parkinson’s disease. Arch Phys Med Rehabil 2002; 83(1): 86-91.
[224]
Tanaka K, Miyake Y, Fukushima W, et al. Vitamin D receptor gene polymorphisms, smoking, and risk of sporadic Parkinson’s disease in Japan. Neurosci Lett 2017; 643: 97-102.
[225]
Gatto NM, Sinsheimer JS, Cockburn M, Escobedo LA, Bordelon Y, Ritz B. Vitamin D receptor gene polymorphisms and Parkinson’s disease in a population with high ultraviolet radiation exposure. J Neurol Sci 2015; 352(1-2): 88-93.
[229]
Karam C, Barrett MJ, Imperato T, MacGowan DJ, Scelsa S. Vitamin D deficiency and its supplementation in patients with amyotrophic lateral sclerosis. J Clin Neurosci 2013; 20(11): 1550-3.
[230]
Camu W, Tremblier B, Plassot C, et al. Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis. Neurobiol Aging 2014; 35(5): 1198-205.
[231]
Mantadakis E, Deftereos S, Tsouvala E, Thomaidis S. Chatzimichael
Seizures as initial manifestation of vitamin D-deficiency
rickets in a 5-month-old exclusively breastfed infant. Pediatr Neonatol
[232]
Moghimi E, Solomon JA, Gianforcaro A, Hamadeh MJ. Dietary Vitamin D3 Restriction Exacerbates Disease Pathophysiology in the Spinal Cord of the G93A Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2015; 10(5) e0126355
[234]
Libonati L, Onesti E, Gori MC, et al. Vitamin D in amyotrophic lateral sclerosis. Funct Neurol 2017; 32(1): 35-40.
[235]
Yang J, Park JS, Oh KW, Oh SI, Park HM, Kim SH. Vitamin D levels are not predictors of survival in a clinic population of patients with ALS. J Neurol Sci 2016; 367: 83-8.
[239]
Cui X, Gooch H, Petty A, McGrath JJ, Eyles D. Vitamin D and the brain: Genomic and non-genomic actions. Mol Cell Endrocrinol 2017; 453: 131-43.
[240]
Balbuena LD, Middleton RM, Tuite-Dalton K, Pouliou T, Williams KE, Noble GJ. Sunshine, Sea, and Season of Birth: MS Incidence in Wales. PLoS One 2016; 11(5) e0155181
[241]
Rodriguez Cruz PM, Matthews L, Boggild M, et al. Time- and Region-Specific Season of Birth Effects in Multiple Sclerosis in the United Kingdom. JAMA Neurol 2016; 73(8): 954-60.
[242]
Dobson R, Giovannoni G, Ramagopalan S. The month of birth effect in multiple sclerosis: systematic review, meta-analysis and effect of latitude. BMJ 2012; 84(4)
[248]
Cortese M, T Riise, K Bjornevik, et al. (2015); Timing of use of cod liver oil, a vitamin D source, and multiple sclerosis risk: The EnvIMS study. Mult Scler 21(14): 1856-64.
[250]
Munger KL, K Hongell, J Aivo, M Soilu-Hanninen, H.M Surcel, et al. (2017); 25-Hydroxyvitamin D deficiency and risk of MS among women in the Finnish Maternity Cohort. Neurology 89(15): 1578-83.
[251]
Salzer J, G Hallmans, M Nystrom, H Stenlund, G Wadell, et al. (2012); Vitamin D as a protective factor in multiple sclerosis. Neurology 79(21): 2140-5.
[257]
Shirazi HA, J Rasouli, B Ciric, D Wei, A Rostami, et al. (2017); 1,25-Dihydroxyvitamin D3 suppressed experimental autoimmune encephalomyelitis through both immunomodulation and oligodendrocyte maturation. Exp Mol Pathol 102(3): 515-21.
[258]
Matias-Guiu J, C. Oreja-Guevara, J.A. Matias-Guiu, and U. Gomez-
Pinedo. (2018); Vitamin D and remyelination in multiple sclerosis. Neurologia 33(3): 177-86.
[260]
Sandberg L, Bistrom M, Salzer J, Vagberg M, Svenningsson A, et al. 2016.
[261]
Veldman CM, M.T. Cantorna, and H.F. DeLuca. (2000); Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys 374(2): 334-8.
[263]
Adams JS, and M. Hewison. (2010); Update in vitamin D. J Clin Endocrinol Metab 95(2): 471-8.
[265]
Hewison M. (2011); Vitamin D and innate and adaptive immunity. Vitam Horm 86: 23-62.
[266]
Chen C, H Zibiao, Z Ming, et al. (2014); Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit. Dev Comp Immunol 46(2): 341-8.
[268]
Xie X, Y Zhang, R Ke, et al. (2015); Vitamin D-binding protein gene polymorphisms and chronic obstructive pulmonary disease susceptibility: A meta-analysis. Biomed Rep 3(2): 183-8.
[269]
Piemonti L, P Monti, M Sironi, et al. (2000); Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 164(9): 4443-51.
[274]
Prietl B, G Treiber, T.R Pieber, and K Amrein. (2013); Vitamin D and immune function. Nutrients 5(7): 2502-21.
[279]
Cantorna MT, L. Snyder, Y.D Lin, and L. Yang. (2015); Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7(4): 3011-21.
[280]
Hewison M. (2010); Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am 39(2): 365-79. table of contents.
[281]
Babaloo Z, M.R Aliparasti, F Babaiea, Almasi S, Baradaran B, Farhoudi M. (2015); The role of Th17 cells in patients with relapsing-remitting multiple sclerosis: interleukin-17A and interleukin-17F serum levels. Immunol Lett 164(2): 76-80.
[283]
MUller J, K Feige, P Wunderlin, et al. (2011); Double-blind placebo-controlled study with interleukin-18 and interleukin-12-encoding plasmid DNA shows antitumor effect in metastatic melanoma in gray horses. J Immunother 34(1): 58-64.
[284]
Sintzel MB, M Rametta, and A.T Reder. (2018); Vitamin D and Multiple Sclerosis: A Comprehensive Review. Neurol Ther 7(1): 59-85.
[286]
Hewison M. (2012); Vitamin D and immune function: an overview. Proc Nutr Soc 71(1): 50-61.
[288]
Machado-Santos J, E Saji, A.R Troscher, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141(7): 2066-82.
[289]
Lysandropoulos AP, E Jaquiery, S Jilek, Pantaleo G, Schluep M, Du Pasquier RA. (2011); Vitamin D has a direct immunomodulatory effect on CD8+ T cells of patients with early multiple sclerosis and healthy control subjects. J Neuroimmunol 233(1-2): 240-4.
[290]
Chen Z, and M.S Freedman. (2008); Correlation of specialized CD16(+) gammadelta T cells with disease course and severity in multiple sclerosis. J Neuroimmunol 194(1-2): 147-52.