Tubulin Maytansine Site Binding Ligands and their Applications as MTAs and ADCs for Cancer Therapy

Author(s): Shuo Cao, Yue-Hui Dong, De-Feng Wang, Zhao-Peng Liu*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 27 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor


Background: Microtubule Targeting Agents (MTAs) represent the most successful anticancer drugs for cancer chemotherapy. Through interfering with the tubulin polymerization and depolymerization dynamics, MTAs influence intracellular transport and cell signal pathways, inhibit cell mitosis and cell proliferation, and induce cell apoptosis and death. The tubulin maytansine site binding agents are natural or nature-derived products that represent one type of the MTAs that inhibit tubulin polymerization and exhibit potent antitumor activity both in vitro and in vivo. They are used as Antibody-Drug Conjugates (ADCs) in cancer chemotherapy.

Methods: Using SciFinder® as a tool, the publications about maytansine, its derivatives, maytansine binding site, maytansine site binding agents and their applications as MTAs for cancer therapy were surveyed with an exclusion on those published as patents. The latest progresses in clinical trials were obtained from the clinical trial web.

Results: This article presents an introduction about MTAs, maytansine, maytansine binding site and its ligands, the applications of these ligands as MTAs and ADCs in cancer therapy.

Conclusion: The maytansine site binding agents are powerful MTAs for cancer chemotherapy. The maytansine site ligands-based ADCs are used in clinic or under clinical trials as cancer targeted therapy to improve their selectivity and to reduce their side effects. Further improvements in the delivery efficiency of the ADCs will benefit the patients in cancer targeted therapy.

Keywords: Microtubule targeting agents, maytansine binding site, rhizoxin, plocabulin, antibody-drug conjugates, trastuzumab emtansine.

Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
Nogales, E.; Wolf, S.G.; Downing, K.H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature, 1998, 391(6663), 199-203.
[http://dx.doi.org/10.1038/34465] [PMID: 9428769]
Field, J.J.; Waight, A.B.; Senter, P.D. A previously undescribed tubulin binder. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13684-13685.
[http://dx.doi.org/10.1073/pnas.1414572111] [PMID: 25187564]
Desai, A.; Mitchison, T.J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol., 1997, 13, 83-117.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.83] [PMID: 9442869]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev., 2011, 31(3), 443-481.
[http://dx.doi.org/10.1002/med.20242] [PMID: 21381049]
Prota, A.E.; Bargsten, K.; Zurwerra, D.; Field, J.J.; Díaz, J.F.; Altmann, K.H.; Steinmetz, M.O. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science, 2013, 339(6119), 587-590.
[http://dx.doi.org/10.1126/science.1230582] [PMID: 23287720]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202.
[http://dx.doi.org/10.1038/nature02393] [PMID: 15014504]
Gigant, B.; Wang, C.; Ravelli, R.B.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature, 2005, 435(7041), 519-522.
[http://dx.doi.org/10.1038/nature03566] [PMID: 15917812]
Akhmanova, A.; Steinmetz, M.O. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol., 2015, 16(12), 711-726.
[http://dx.doi.org/10.1038/nrm4084] [PMID: 26562752]
Prota, A.E.; Setter, J.; Waight, A.B.; Bargsten, K.; Murga, J.; Diaz, J.F.; Steinmetz, M.O. Pironetin binds covalently to alphaCys316 and perturbs a major loop and helix of alpha-tubulin to inhibit microtubule formation. J. Mol. Biol., 2016, 428(15), 2981-2988.
[http://dx.doi.org/10.1016/j.jmb.2016.06.023] [PMID: 27395016]
Yang, J.; Wang, Y.; Wang, T.; Jiang, J.; Botting, C.H.; Liu, H.; Chen, Q.; Yang, J.; Naismith, J.H.; Zhu, X.; Chen, L. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat. Commun., 2016, 7, 12103.
[http://dx.doi.org/10.1038/ncomms12103] [PMID: 27357539]
Menchon, G.; Prota, A.E.; Lucena-Agell, D.; Bucher, P.; Jansen, R.; Irschik, H.; Müller, R.; Paterson, I.; Díaz, J.F.; Altmann, K.H.; Steinmetz, M.O. A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin. Nat. Commun., 2018, 9(1), 2106.
[http://dx.doi.org/10.1038/s41467-018-04535-8] [PMID: 29844393]
Silvestri, R. New prospects for vinblastine analogues as anticancer agents. J. Med. Chem., 2013, 56(3), 625-627.
[http://dx.doi.org/10.1021/jm400002j] [PMID: 23316748]
Jordan, M.A.; Wendell, K.; Gardiner, S.; Derry, W.B.; Copp, H.; Wilson, L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res., 1996, 56(4), 816-825.
[PMID: 8631019]
Panchagnula, R. Pharmaceutical aspects of paclitaxel. Int. J. Pharm., 1998, 172(1-2), 1-15.
[http://dx.doi.org/10.1016/S0378-5173(98)00188-4] [PMID: 15129967]
Khanna, C.; Rosenberg, M.; Vail, D.M. A review of paclitaxel and novel formulations including those suitable for use in dogs. J. Vet. Intern. Med., 2015, 29(4), 1006-1012.
[http://dx.doi.org/10.1111/jvim.12596] [PMID: 26179168]
Ojima, I.; Lichtenthal, B.; Lee, S.; Wang, C.; Wang, X. Taxane anticancer agents: a patent perspective. Expert Opin. Ther. Pat., 2016, 26(1), 1-20.
[http://dx.doi.org/10.1517/13543776.2016.1111872] [PMID: 26651178]
Cheng, K.L.; Bradley, T.; Budman, D.R. Novel microtubule-targeting agents - the epothilones. Biologics, 2008, 2(4), 789-811.
[http://dx.doi.org/10.2147/btt.s3487] [PMID: 19707459]
Brogdon, C.F.; Lee, F.Y.; Canetta, R.M. Development of other microtubule-stabilizer families: the epothilones and their derivatives. Anticancer Drugs, 2014, 25(5), 599-609.
[http://dx.doi.org/10.1097/CAD.0000000000000071] [PMID: 24398663]
DeConti, R.C.; Algazi, A.P.; Andrews, S.; Urbas, P.; Born, O.; Stoeckigt, D.; Floren, L.; Hwang, J.; Weber, J.; Sondak, V.K.; Daud, A.I. Phase II trial of sagopilone, a novel epothilone analog in metastatic melanoma. Br. J. Cancer, 2010, 103(10), 1548-1553.
[http://dx.doi.org/10.1038/sj.bjc.6605931] [PMID: 20924376]
Morrow, P.K.; Divers, S.; Provencher, L.; Luoh, S.W.; Petrella, T.M.; Giurescu, M.; Schmelter, T.; Wang, Y.; Hortobagyi, G.N.; Vahdat, L.T. Phase II study evaluating the efficacy and safety of sagopilone (ZK-EPO) in patients with metastatic breast cancer that has progressed following chemotherapy. Breast Cancer Res. Treat., 2010, 123(3), 837-842.
[http://dx.doi.org/10.1007/s10549-010-1102-x] [PMID: 20697802]
Prota, A.E.; Bargsten, K.; Diaz, J.F.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, C.; Andreu, J.M.; Altmann, K.H.; Steinmetz, M.O. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13817-13821.
[http://dx.doi.org/10.1073/pnas.1408124111] [PMID: 25114240]
Broderick, J.M. OncLive; FDA Approves Brentuximab Vedotin for CTCL, 2017. Available at:onclive.com/web-exclusives/fda-approves-brentuximab-vedotin-for-ctcl.html
U.S. Food and Drug Administration. FDA expands approval of Adcetris for first-line treatment of stage III or IV classical Hodgkin lymphoma in combination with chemotherapy, 2018. Available at:fda.gov/news-events/press-announcements/fda-expands-approval-adcetris-first-line-treatment-stage-iii-or-iv-classical-hodgkin-lymphoma.html
Kupchan, S.M.; Komoda, Y.; Court, W.A.; Thomas, G.J.; Smith, R.M.; Karim, A.; Gilmore, C.J.; Haltiwanger, R.C.; Bryan, R.F. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J. Am. Chem. Soc., 1972, 94(4), 1354-1356.
[http://dx.doi.org/10.1021/ja00759a054] [PMID: 5062169]
Corey, E.J.; Weigel, L.O.; Chamberlin, A.R.; Cho, H.; Hua, D.H. Total synthesis of maytansine. J. Am. Chem. Soc., 1980, 102(21), 6613-6615.
Meyers, A.I.; Reider, P.J.; Campbell, A.L. Total synthesis of (+-)-maytansinol. The common precursor to the maytansinoids. J. Am. Chem. Soc., 1980, 102(21), 6597-6518.
Pera, B.; Barasoain, I.; Pantazopoulou, A.; Canales, A.; Matesanz, R.; Rodriguez-Salarichs, J.; García-Fernandez, L.F.; Moneo, V.; Jimenez-Barbero, J.; Galmarini, C.M.; Cuevas, C.; Penalva, M.A.; Diaz, J.F.; Andreu, J.M. New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem. Biol., 2013, 8(9), 2084-2094.
[http://dx.doi.org/10.1021/cb400461j] [PMID: 23859655]
Widdison, W.C.; Wilhelm, S.D.; Cavanagh, E.E.; Whiteman, K.R.; Leece, B.A.; Kovtun, Y.; Goldmacher, V.S.; Xie, H.; Steeves, R.M.; Lutz, R.J.; Zhao, R.; Wang, L.; Blattler, W.A.; Chari, R.V.J. Semisynthetic maytansine analogues for the targeted treatment of cancer. J. Med. Chem., 2006, 49(14), 4392-4408.
[http://dx.doi.org/10.1021/jm060319f] [PMID: 16821799]
Chari, R.V.J.; Martell, B.A.; Gross, J.L.; Cook, S.B.; Shah, S.A.; Blattler, W.A.; McKenzie, S.J.; Goldmacher, V.S. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res., 1992, 52(1), 127-131.
[PMID: 1727373]
Kupchan, S.M.; Sneden, A.T.; Branfman, A.R.; Howie, G.A.; Rebhun, L.I.; McIvor, W.E.; Wang, R.W.; Schnaitman, T.C. Structural requirements for antileukemic activity among the naturally occurring and semisynthetic maytansinoids. J. Med. Chem., 1978, 21(1), 31-37.
[http://dx.doi.org/10.1021/jm00199a006] [PMID: 563462]
Iwasaki, S.; Kobayashi, H.; Furukawa, J.; Namikoshi, M.; Okuda, S.; Sato, Z.; Matsuda, I.; Noda, T. Studies on macrocyclic lactone antibiotics. VII. Structure of a phytotoxin “rhizoxin” produced by Rhizopus chinensis. J. Antibiot. (Tokyo), 1984, 37(4), 354-362.
[http://dx.doi.org/10.7164/antibiotics.37.354] [PMID: 6547134]
White, J.D.; Blakemore, P.R.; Green, N.J.; Hauser, E.B.; Holoboski, M.A.; Keown, L.E.; Nylund Kolz, C.S.; Phillips, B.W. Total synthesis of rhizoxin D, a potent antimitotic agent from the fungus Rhizopus chinensis. J. Org. Chem., 2002, 67(22), 7750-7760.
[http://dx.doi.org/10.1021/jo020537q] [PMID: 12398499]
Nakada, M.; Kobayashi, S.; Iwasaki, S.; Ohuo, M. The first total synthesis of the antitumor macrolide rhizoxin: synthesis of the key building blocks. Tetrahedron Lett., 1993, 34(6), 1035-1038.
Nakada, M.; Kobayashi, S.; Shibasaki, M.; Iwasaki, S.; Ohuo, M. The first total synthesis of the antitumor macrolide, rhizoxin. Tetrahedron Lett., 1993, 34(6), 1039-1042.
Tsuruo, T.; Oh-hara, T.; Iida, H.; Tsukagoshi, S.; Sato, Z.; Matsuda, I.; Iwasaki, S.; Okuda, S.; Shimizu, F.; Sasagawa, K.; Masaharu, F.; Kuniaki, F.; Masao, A. Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against human and murine tumor cells and their vincristine-resistant sublines. Cancer Res., 1986, 46(1), 381-385.
[PMID: 3753552]
Hanauske, A.R.; Catimel, G.; Aamdal, S.; ten Bokkel Huinink, W.; Paridaens, R.; Pavlidis, N.; Kaye, S.B.; te Velde, A.; Wanders, J.; Verweij, J. The EORTC Early Clinical Trials Group. Phase II clinical trials with rhizoxin in breast cancer and melanoma. Br. J. Cancer, 1996, 73(3), 397-399.
[http://dx.doi.org/10.1038/bjc.1996.68] [PMID: 8562349]
Kato, Y.; Ogawa, Y.; Imada, T.; Iwasaki, S.; Shimazaki, N.; Kobayashi, T.; Komai, T. Studies on macrocyclic lactone antibiotics. XIII. Anti-tubulin activity and cytotoxicity of rhizoxin derivatives: synthesis of a photoaffinity derivative. J. Antibiot. (Tokyo), 1991, 44(1), 66-75.
[http://dx.doi.org/10.7164/antibiotics.44.66] [PMID: 2001986]
Martin, M.J.; Coello, L.; Fernandez, R.; Reyes, F.; Rodriguez, A.; Murcia, C.; Garranzo, M.; Mateo, C.; Sanchez-Sancho, F.; Bueno, S.; de Eguilior, C.; Francesch, A.; Munt, S.; Cuevas, C. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J. Am. Chem. Soc., 2013, 135(27), 10164-10171.
[http://dx.doi.org/10.1021/ja404578u] [PMID: 23750450]
Martinez-Diez, M.; Guillen-Navarro, M.J.; Pera, B.; Bouchet, B.P.; Martinez-Leal, J.F.; Barasoain, I.; Cuevas, C.; Andreu, J.M.; Garcia-Fernandez, L.F.; Diaz, J.F.; Aviles, P.; Galmarini, C.M. PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. Biochem. Pharmacol., 2014, 88(3), 291-302.
[http://dx.doi.org/10.1016/j.bcp.2014.01.026] [PMID: 24486569]
ClinicalTrials.gov. Clinical Trial of PM060184 on Advanced Colorectal Cancer after Standard Treatment, 2018. Available at:clinicaltrials.gov/ct2/show/NCT034272- 68.html
Cassady, J.M.; Chan, K.K.; Floss, H.G.; Leistner, E. Recent developments in the maytansinoid antitumor agents. Chem. Pharm. Bull. (Tokyo), 2004, 52(1), 1-26.
[http://dx.doi.org/10.1248/cpb.52.1] [PMID: 14709862]
Kovtun, Y.V.; Audette, C.A.; Ye, Y.; Xie, H.; Ruberti, M.F.; Phinney, S.J.; Leece, B.A.; Chittenden, T.; Blattler, W.A.; Goldmacher, V.S. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res., 2006, 66(6), 3214-3221.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3973] [PMID: 16540673]
Junttila, T.T.; Li, G.; Parsons, K.; Phillips, G.L.; Sliwkowski, M.X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat., 2011, 128(2), 347-356.
[http://dx.doi.org/10.1007/s10549-010-1090-x] [PMID: 20730488]
Boyraz, B.; Sendur, M.A.; Aksoy, S.; Babacan, T.; Roach, E.C.; Kizilarslanoglu, M.C.; Petekkaya, I.; Altundag, K. Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr. Med. Res. Opin., 2013, 29(4), 405-414.
[http://dx.doi.org/10.1185/03007995.2013.775113] [PMID: 23402224]
Lambert, J.M.; Chari, R.V. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem., 2014, 57(16), 6949-6964.
[http://dx.doi.org/10.1021/jm500766w] [PMID: 24967516]
Perez, H.L.; Cardarelli, P.M.; Deshpande, S.; Gangwar, S.; Schroeder, G.M.; Vite, G.D.; Borzilleri, R.M. Antibody-drug conjugates: current status and future directions. Drug Discov. Today, 2014, 19(7), 869-881.
[http://dx.doi.org/10.1016/j.drudis.2013.11.004] [PMID: 24239727]
Singh, S.K.; Luisi, D.L.; Pak, R.H. Antibody-drug conjugates: design, formulation and physicochemical stability. Pharm. Res., 2015, 32(11), 3541-3571.
[http://dx.doi.org/10.1007/s11095-015-1704-4] [PMID: 25986175]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Dieras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
Recondo, G., Jr; de la Vega, M.; Galanternik, F.; Diaz-Canton, E.; Leone, B.A.; Leone, J.P. Novel approaches to target HER2-positive breast cancer: trastuzumab emtansine. Cancer Manag. Res., 2016, 8, 57-65.https://dx.doi.org/10.2147%2FCMAR.S104447
[PMID: 27274311]
Krop, I.E.; Beeram, M.; Modi, S.; Jones, S.F.; Holden, S.N.; Yu, W.; Girish, S.; Tibbitts, J.; Yi, J.H.; Sliwkowski, M.X.; Jacobson, F.; Lutzker, S.G.; Burris, H.A. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J. Clin. Oncol., 2010, 28(16), 2698-2704.
[http://dx.doi.org/10.1200/JCO.2009.26.2071] [PMID: 20421541]
Hurvitz, S.A.; Dirix, L.; Kocsis, J.; Bianchi, G.V.; Lu, J.; Vinholes, J.; Guardino, E.; Song, C.; Tong, B.; Ng, V.; Chu, Y.W.; Perez, E.A. Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J. Clin. Oncol., 2013, 31(9), 1157-1163.
[http://dx.doi.org/10.1200/JCO.2012.44.9694] [PMID: 23382472]
Miller, K.D.; Dieras, V.; Harbeck, N.; Andre, F.; Mahtani, R.L.; Gianni, L.; Albain, K.S.; Crivellari, D.; Fang, L.; Michelson, G.; de Haas, S.L.; Burris, H.A. Phase IIa trial of trastuzumab emtansine with pertuzumab for patients with human epidermal growth factor receptor 2-positive, locally advanced, or metastatic breast cancer. J. Clin. Oncol., 2014, 32(14), 1437-1444.
[http://dx.doi.org/10.1200/JCO.2013.52.6590] [PMID: 24733796]
Krop, I.E.; Kim, S.B.; Gonzalez-Martin, A.; LoRusso, P.M.; Ferrero, J.M.; Smitt, M.; Yu, R.; Leung, A.C.F.; Wildiers, H. TH3RESA study collaborators. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol., 2014, 15(7), 689-699.
[http://dx.doi.org/10.1016/S1470-2045(14)70178-0] [PMID: 24793816]
Oncology-times. FDA Approves T-DM1, Now Called Kadcyla, For Late-Stage. Breast Cancer, 2013, 35(6), 21.
Theriault, R.L.; Carlson, R.W.; Allred, C.; Anderson, B.O.; Burstein, H.J.; Edge, S.B.; Farrar, W.B.; Forero, A.; Giordano, S.H.; Goldstein, L.J.; Gradishar, W.J.; Hayes, D.F.; Hudis, C.A.; Isakoff, S.J.; Ljung, B.M.; Mankoff, D.A.; Marcom, P.K.; Mayer, I.A.; McCormick, B.; Pierce, L.J.; Reed, E.C.; Schwartzberg, L.S.; Smith, M.L.; Soliman, H.; Somlo, G.; Ward, J.H.; Wolff, A.C.; Zellars, R.; Shead, D.A.; Kumar, R. National Comprehensive Cancer Network. Breast cancer, version 3.2013: featured updates to the NCCN guidelines. J. Natl. Compr. Canc. Netw., 2013, 11(7), 753-760.
[http://dx.doi.org/10.6004/jnccn.2013.0098] [PMID: 23847214]
Ikeda, H.; Hideshima, T.; Fulciniti, M.; Lutz, R.J.; Yasui, H.; Okawa, Y.; Kiziltepe, T.; Vallet, S.; Pozzi, S.; Santo, L.; Perrone, G.; Tai, Y.T.; Cirstea, D.; Raje, N.S.; Uherek, C.; Dalken, B.; Aigner, S.; Osterroth, F.; Munshi, N.; Richardson, P.; Anderson, K.C. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res., 2009, 15(12), 4028-4037.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2867] [PMID: 19509164]
Schonfeld, K.; Zuber, C.; Pinkas, J.; Hader, T.; Bernoster, K.; Uherek, C. Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: pre-clinical studies. J. Hematol. Oncol., 2017, 10(1), 13-16.
[http://dx.doi.org/10.1186/s13045-016-0380-0] [PMID: 28077160]
Schonfeld, K.; Herbener, P.; Zuber, C.; Hader, T.; Bernister, K.; Uherek, C.; Schuttrumpf, J. Activity of indatuximab ravtansine against triple-negative breast cancer in preclinical tumor models. Pharm. Res., 2018, 35(6), 118-127.
[http://dx.doi.org/10.1007/s11095-018-2400-y] [PMID: 29666962]
Jagannath, S.; Heffner, L.T., Jr; Ailawadhi, S.; Munshi, N.C.; Zimmerman, T.M.; Rosenblatt, J.; Lonial, S.; Chanan-Khan, A.; Ruehle, M.; Rharbaoui, F.; Haeder, T.; Wartenberg-Demand, A.; Anderson, K.C. Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk., 2019, 19(6), 372-380.
[http://dx.doi.org/10.1016/j.clml.2019.02.006] [PMID: 30930134]
Hong, E.E.; Erickson, H.; Lutz, R.J.; Whiteman, K.R.; Jones, G.; Kovtun, Y.; Blanc, V.; Lambert, J.M. Design of coltuximab ravtansine, a CD19-targeting antibody-drug conjugate (ADC) for the treatment of B-Cell malignancies: structure-activity relationships and preclinical evaluation. Mol. Pharm., 2015, 12(6), 1703-1716.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00175] [PMID: 25856201]
Blanc, V.; Bousseau, A.; Caron, A.; Carrez, C.; Lutz, R.J.; Lambert, J.M. SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin. Cancer Res., 2011, 17(20), 6448-6458.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0485] [PMID: 22003072]
Kantarjian, H.M.; Lioure, B.; Kim, S.K.; Atallah, E.; Leguay, T.; Kelly, K.; Marolleau, J.P.; Escoffre-Barbe, M.; Thomas, X.G.; Cortes, J.; Jabbour, E.; O’Brien, S.; Bories, P.; Oprea, C.; Hatteville, L.; Dombret, H. A Phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin. Lymphoma Myeloma Leuk., 2016, 16(3), 139-145.
[http://dx.doi.org/10.1016/j.clml.2015.12.004] [PMID: 26775883]
Coiffier, B.; Thieblemont, C.; de Guibert, S.; Dupuis, J.; Ribrag, V.; Bouabdallah, R.; Morschhauser, F.; Navarro, R.; Le Gouill, S.; Haioun, C.; Houot, R.; Casasnovas, O.; Holte, H.; Lamy, T.; Broussais, F.; Payrard, S.; Hatteville, L.; Tilly, H. A phase II, single-arm, multicentre study of coltuximab ravtansine (SAR3419) and rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. Br. J. Haematol., 2016, 173(5), 722-730.
[http://dx.doi.org/10.1111/bjh.13992] [PMID: 27010483]
Trneny, M.; Verhoef, G.; Dyer, M.J.; Ben Yehuda, D.; Patti, C.; Canales, M.; Lopez, A.; Awan, F.T.; Montgomery, P.G.; Janikova, A.; Barbui, A.M.; Sulek, K.; Terol, M.J.; Radford, J.; Guidetti, A.; Di Nicola, M.; Siraudin, L.; Hatteville, L.; Schwab, S.; Oprea, C.; Gianni, A.M. A phase II multicenter study of the anti-CD19 antibody drug conjugate coltuximab ravtansine (SAR3419) in patients with relapsed or refractory diffuse large B-cell lymphoma previously treated with rituximab-based immunotherapy. Haematologica, 2018, 103(8), 1351-1358.
[http://dx.doi.org/10.3324/haematol.2017.168401] [PMID: 29748443]
Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; Harrenga, A.; Hauff, P.; Scholle, F.D.; Muller-Tiemann, B.; Kreft, B.; Ziegelbauer, K. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther., 2014, 13(6), 1537-1548.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0926] [PMID: 24714131]
Johrens, K.; Lazzerini, L.; Barinoff, J.; Sehouli, J.; Cichon, G. Mesothelin as a target for cervical cancer therapy. Arch. Gynecol. Obstet., 2019, 299(1), 211-216.
[http://dx.doi.org/10.1007/s00404-018-4933-z] [PMID: 30324544]
ClinicalTrials.gov. Phase I Dose Escalation Study Of BAY94-9343 Given by Intravenous Infusion Every 3 Weeks in Japanese Subjects with Advanced Malignancies, 2018. Available at:malignancies.clinicaltrials.gov/ct2/show/NC- T02485119.html
ClinicalTrials.gov Phase II Anetumab Ravtansine as 2nd Line Treatment for Malignant Pleural Mesothelioma, 2018. Available at:mesothelioma.clinicaltrials.gov/ct2/show/ NCT02610140.html
ClinicalTrials.gov. Phase Ib Study of Anetumab Ravtansine in Combination with Pemetrexed and Cisplatin in Mesothelin-Expressing Solid Tumors, 2019. Available at:clinicaltrials.gov/ct2/show/NCT02639091.html
ClinicalTrials.gov. Phase I Study Of Anetumab Ravtansine in Hepatic or Renal Impairment, 2019. Available at:clinicaltrials.gov/ct2/show/NCT02696642.html
ClinicalTrials.gov. Phase Ib Study of Anetumab Ravtansine in Combination with Pegylated Liposomal Doxorubicin in Patients with Recurrent Mesothelin-Expressing Platinum-Resistant Cancer, 2019. Available at:clinicaltrials.gov/ct2/show/NCT02751918.html
ClinicalTrials.gov. Thorough ECG (Electrocardiogram) and Drug Interaction Study with Anetumab Ravtansine and Itraconazole,, 2019. Available at:clinicaltrials.gov/ct2/ show/NCT02824042.html
ClinicalTrials.gov. Pase II Anetumab Ravtansine in Pre-Treated Mesothelin-Expressing Pancreatic Cancer, 2020. Available at:clinicaltrials.gov/ct2/show/NCT03023-722. html
ClinicalTrials.gov. Phase 1b Multi-Indication Study of Anetumab Ravtansine in Mesothelin Expressing Advanced Solid Tumors; (ARCS-Multi), 2020. Available at:clinicaltrials.gov/ct2/show/NCT03102320.html
ClinicalTrials.gov. Pembrolizumab with or without Anetumab Ravtansine in Treating Patients with Mesothelin-Positive Pleural Mesothelioma, 2020. Available at:clinicaltrials.gov/ct2/show/NCT03126630.html
ClinicalTrials.gov. Anetumab Ravtansine and Atezolizumab in Treating Participants with Advanced Non-Small Cell Lung Cancer, 2020. Available at:clinicaltrials.gov/ ct2/ show/NCT03455556.html
ClinicalTrials.gov. Bevacizumab And Anetumab Ravtansine or Paclitaxel on Treating Participants with Refractory Ovarian, Fallopian Tube, or Primary Peritoneal Cancer, 2020. Available at:clinicaltrials.gov/ct2/show/ NCT035-87311.html
ClinicalTrials.gov. A Clinical Study of Anetumab Ravtansine in Adults with Solid Tumors Who Have Been Treated in Previous Bayer-Sponsored Anetumab Ravtansine Studies, 2020. Available at:clinicaltrials.gov/ct2/show/ NCT03926143.html
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 16 March, 2020
Page: [4567 - 4576]
Pages: 10
DOI: 10.2174/0929867327666200316144610
Price: $65

Article Metrics

PDF: 27