The SNPs within 3'UTR of miRNA Target Genes Related to Multiple Sclerosis: A Computational Prediction

Author(s): Mina Zafarpiran, Roya Sharifi, Zeinab Shirvani-Farsani*

Journal Name: Current Pharmacogenomics and Personalized Medicine
Formerly Current Pharmacogenomics

Volume 17 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Multiple Sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system, and genetic factors play an important role in its susceptibility. The expressions of many inflammatory genes implicated in MS are regulated by microRNA (miRNAs), whose function is to suppress the translation by pairing with miRNA Recognition Elements (MREs) present in the 3' untranslated region (3'UTR) of target mRNA. Recently, it has been shown that the Single Nucleotide Polymorphism (SNPs) present within the 3'UTR of mRNAs can affect the miRNA-mediated gene regulation and susceptibility to a variety of human diseases.

Objective: The aim of this study was to analyze the SNPs within the 3'UTR of miRNA inflammatory target genes related to multiple sclerosis.

Methods: By DisGeNET, dbGaP, Ovid, DAVID, Web of knowledge, and SNPs databases, 3'UTR genetic variants were identified in all inflammatory genes associated with MS. Also, miRNA's target prediction databases were used for predicting the miRNA binding sites.

Results: We identified 125 SNPs with MAF>0.05 located in the binding site of the miRNA of 35 genes among 59 inflammatory genes related to MS. Bioinformatics analysis predicted 62 MRE-modulating SNPs and 59 MRE-creating SNPs in the 3'UTR of MSimplicated inflammatory genes. These candidate SNPs within miRNA binding sites of inflammatory genes can alter the miRNAs binding, and consequently lead to the mRNA gene regulation.

Conclusion: Therefore, these miRNA and MRE-SNPs may play important roles in personalized medicine of MS, and hence, they would be valuable for further functional verification investigations.

Keywords: Single Nucleotide Polymorphism (SNP), miRNA, miRNA binding sites, Multiple sclerosis, inflammatory genes, personalized medicine.

[1]
Nakahara J, Maeda M, Aiso S, Suzuki N. Current concepts in multiple sclerosis: Autoimmunity versus oligodendrogliopathy. Clin Rev Allergy Immunol 2012; 42(1): 26-34.
[http://dx.doi.org/10.1007/s12016-011-8287-6 ] [PMID: 22189514]
[2]
Zindler E, Zipp F. Neuronal injury in chronic CNS inflammation. Best Pract Res Clin Anaesthesiol 2010; 24(4): 551-62.
[http://dx.doi.org/10.1016/j.bpa.2010.11.001 ] [PMID: 21619866]
[3]
Farsani ZS, Behmanesh M, Sahraian MA. Interleukin-10 but not transforming growth factor-β1 gene expression is up-regulated by vitamin D treatment in multiple sclerosis patients. J Neurol Sci 2015; 350(1-2): 18-23.
[http://dx.doi.org/10.1016/j.jns.2015.01.030 ] [PMID: 25680585]
[4]
Naghavi Gargari B, Behmanesh M, Shirvani Farsani Z, Pahlevan Kakhki M, Azimi AR. Vitamin D supplementation up-regulates IL-6 and IL-17A gene expression in multiple sclerosis patients. Int Immunopharmacol 2015; 28(1): 414-9.
[http://dx.doi.org/10.1016/j.intimp.2015.06.033 ] [PMID: 26188623]
[5]
Consortium IMSG. Refining genetic associations in multiple sclerosis. Lancet Neurol 2008; 7(7): 567-9.
[http://dx.doi.org/10.1016/S1474-4422(08)70122-4 ] [PMID: 18565446]
[6]
Mohammadi SM, Shirvani Farsani Z, Dosti R, Sahraian MA, Behmanesh M. Association study of two functional single nucleotide polymorphisms of neuropeptide y gene with multiple sclerosis. Neuropeptides 2016; 60: 45-50.
[http://dx.doi.org/10.1016/j.npep.2016.08.004 ] [PMID: 27559040]
[7]
Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD. MicroRNAs: New regulators of immune cell development and function. Nat Immunol 2008; 9(8): 839-45.
[http://dx.doi.org/10.1038/ni.f.209 ] [PMID: 18645592]
[8]
Xiao C, Rajewsky K. MicroRNA control in the immune system: Basic principles. Cell 2009; 136(1): 26-36.
[http://dx.doi.org/10.1016/j.cell.2008.12.027 ] [PMID: 19135886]
[9]
O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104(5): 1604-9.
[http://dx.doi.org/10.1073/pnas.0610731104 ] [PMID: 17242365]
[10]
Kacperska MJ, Walenczak J, Tomasik B. Plasmatic microRNA as potential biomarkers of multiple sclerosis: Literature review. Adv Clin Exp Med 2016; 25: 775-9.
[http://dx.doi.org/10.17219/acem/60098]
[11]
Regev K, Paul A, Healy B, von Glenn F, Diaz-Cruz C, Gholipour T, et al. Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3(5) e267
[http://dx.doi.org/10.1212/NXI.0000000000000267] [PMID: 27606352]
[12]
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet 2007; 39(10): 1278-84.
[http://dx.doi.org/10.1038/ng2135 ] [PMID: 17893677]
[13]
Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am J Hum Genet 2008; 82(2): 283-9.
[http://dx.doi.org/10.1016/j.ajhg.2007.09.021 ] [PMID: 18252210]
[14]
Lheureux S, Lambert B, Krieger S, Legros A, Vaur D, Denoyelle C, et al. Two novel variants in the 3'UTR of the BRCA1 gene in familial breast and/or ovarian cancer. Breast Cancer Res Treat 2011; 125(3): 885-91.
[http://dx.doi.org/10.1007/s10549-010-1165-8 ] [PMID: 20848184]
[15]
Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017; 45(D1): D833-9.
[http://dx.doi.org/10.1093/nar/gkw943 ] [PMID: 27924018]
[16]
Kumar A, Wong AK-L, Tizard ML, Moore RJ, Lefèvre C. miRNA_Targets: A database for miRNA target predictions in coding and non-coding regions of mRNAs. Genomics 2012; 100(6): 352-6.
[http://dx.doi.org/10.1016/j.ygeno.2012.08.006 ] [PMID: 22940442]
[17]
Liu C, Zhang F, Li T, Lu M, Wang L, Yue W, et al. MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs. BMC Genomics 2012; 13: 661.
[http://dx.doi.org/10.1186/1471-2164-13-661 ] [PMID: 23173617]
[18]
Ziebarth JD, Bhattacharya A, Chen A, Cui Y. PolymiRTS Database 2.0: Linking polymorphisms in microRNA target sites with human diseases and complex traits. Nucleic Acids Res 2012; 40(Database issue): D216-21.
[http://dx.doi.org/10.1093/nar/gkr1026 ] [PMID: 22080514]
[19]
Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: A database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes. BMC Genomics 2012; 13: 44.
[http://dx.doi.org/10.1186/1471-2164-13-44 ] [PMID: 22276777]
[20]
Lipchina I, Elkabetz Y, Hafner M, Sheridan R, Mihailovic A, Tuschl T, et al. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev 2011; 25(20): 2173-86.
[http://dx.doi.org/10.1101/gad.17221311 ] [PMID: 22012620]
[21]
Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, et al. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res 2015; 43(W1) W460-6
[http://dx.doi.org/10.1093/nar/gkv403] [PMID: 25977294]
[22]
Landi D, Barale R, Gemignani F, Landi S. Prediction of the biological effect of polymorphisms within microRNA binding sites, MicroRNA and Cancer. Springer 2011; pp. 197-210.
[http://dx.doi.org/10.1007/978-1-60761-863-8_14 ]
[23]
Motsinger AA, Brassat D, Caillier SJ, Erlich HA, Walker K, Steiner LL, et al. Complex gene-gene interactions in multiple sclerosis: A multifactorial approach reveals associations with inflammatory genes. Neurogenetics 2007; 8(1): 11-20.
[http://dx.doi.org/10.1007/s10048-006-0058-9 ] [PMID: 17024427]
[24]
Alcina A, Fedetz M, Fernández O, Saiz A, Izquierdo G, Lucas M, et al. Identification of a functional variant in the KIF5A-CYP27B1-METTL1-FAM119B locus associated with multiple sclerosis. J Med Genet 2013; 50(1): 25-33.
[http://dx.doi.org/10.1136/jmedgenet-2012-101085 ] [PMID: 23160276]
[25]
Nohra R, Beyeen AD, Guo JP, Khademi M, Sundqvist E, Hedreul MT, et al. RGMA and IL21R show association with experimental inflammation and multiple sclerosis. Genes Immun 2010; 11(4): 279-93.
[http://dx.doi.org/10.1038/gene.2009.111 ] [PMID: 20072140]
[26]
Perga S, Montarolo F, Martire S, Berchialla P, Malucchi S, Bertolotto A. Anti-inflammatory genes associated with multiple sclerosis: A gene expression study. J Neuroimmunol 2015; 279: 75-8.
[http://dx.doi.org/10.1016/j.jneuroim.2015.01.004 ] [PMID: 25670004]
[27]
Hussman JP, Beecham AH, Schmidt M, Martin ER, McCauley JL, Vance JM, et al. GWAS analysis implicates NF-κB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun 2016; 17(5): 305-12.
[http://dx.doi.org/10.1038/gene.2016.23 ] [PMID: 27278126]
[28]
Arthur AT, Armati PJ, Bye C, Heard RN, Stewart GJ, Pollard JD, et al. Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission. BMC Med Genet 2008; 9: 17.
[http://dx.doi.org/10.1186/1471-2350-9-17 ] [PMID: 18366677]
[29]
Sawcer S, Hellenthal G, Pirinen M, Spencer CCA, Donnelly P, Compston A. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011; 476(7359): 214-9.
[http://dx.doi.org/10.1038/nature10251 ] [PMID: 21833088]
[30]
Goris A, Boonen S, D’hooghe MB, Dubois B. Replication of KIF21B as a susceptibility locus for multiple sclerosis. J Med Genet 2010; 47(11): 775-6.
[http://dx.doi.org/10.1136/jmg.2009.075911 ] [PMID: 20587413]
[31]
Gilli F, Lindberg RL, Valentino P, Marnetto F, Malucchi S, Sala A, et al. Learning from nature: Pregnancy changes the expression of inflammation-related genes in patients with multiple sclerosis. PLoS One 2010; 5(1) e8962
[http://dx.doi.org/10.1371/journal.pone.0008962] [PMID: 20126412]
[32]
Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: Genes, inflammation, and neurodegeneration. Neuron 2006; 52(1): 61-76.
[http://dx.doi.org/10.1016/j.neuron.2006.09.011 ] [PMID: 17015227]
[33]
Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis EIW, de Bakker P, Deloukas P, et al. Integrating common and rare genetic variation in diverse human populations. Nature 2010; 467(7311): 52-8.
[http://dx.doi.org/10.1038/nature09298 ] [PMID: 20811451]
[34]
Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collns FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009; 106(23): 9362-7.
[http://dx.doi.org/10.1073/pnas.0903103106 ] [PMID: 19474294]
[35]
Illes Z, Safrany E, Peterfalvi A, Magyari L, Farago B, Pozsonyi E, et al. 3'UTR C2370A allele of the IL-23 receptor gene is associated with relapsing-remitting multiple sclerosis. Neurosci Lett 2008; 431(1): 36-8.
[http://dx.doi.org/10.1016/j.neulet.2007.11.015 ] [PMID: 18180107]
[36]
Lill CM, Schilling M, Ansaloni S, Schröder J, Jaedicke M, Luessi F, et al. Assessment of microRNA-related SNP effects in the 3′ untranslated region of the IL22RA2 risk locus in multiple sclerosis. Neurogenetics 2014; 15(2): 129-34.
[http://dx.doi.org/10.1007/s10048-014-0396-y ] [PMID: 24638856]
[37]
Rasmussen HB, Kelly MA, Clausen J. Genetic susceptibility to multiple sclerosis: detection of polymorphic nucleotides and an intron in the 3′ untranslated region of the major histocompatibility complex class II transactivator gene. Hum Immunol 2001; 62(4): 371-7.
[http://dx.doi.org/10.1016/S0198-8859(01)00215-4 ] [PMID: 11295470]
[38]
Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 2011; 187(5): 2213-21.
[http://dx.doi.org/10.4049/jimmunol.1003952 ] [PMID: 21788439]
[39]
Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10(12): 1252-9.
[http://dx.doi.org/10.1038/ni.1798 ] [PMID: 19838199]
[40]
Zhang R, Tian A, Wang J, Shen X, Qi G, Tang Y. miR26a modulates Th17/T reg balance in the EAE model of multiple sclerosis by targeting IL6. Neuromolecular Med 2015; 17(1): 24-34.
[http://dx.doi.org/10.1007/s12017-014-8335-5 ] [PMID: 25362566]
[41]
Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med 2012; 18(7): 1077-86.
[http://dx.doi.org/10.1038/nm.2815 ] [PMID: 22660635]
[42]
Satoh J. Molecular network analysis of human microRNA targetome: From cancers to Alzheimer’s disease. BioData Min 2012; 5(1): 17.
[http://dx.doi.org/10.1186/1756-0381-5-17 ] [PMID: 23034144]
[43]
Rhead B, Shao X, Graves JS, Chitnis T, Waldman AT, Lotze T, et al. miRNA contributions to pediatric-onset multiple sclerosis inferred from GWAS. Ann Clin Transl Neurol 2019; 6(6): 1053-61.
[http://dx.doi.org/10.1002/acn3.786 ] [PMID: 31211169]
[44]
Liguori M, Nuzziello N, Licciulli F, Consiglio A, Simone M, Viterbo RG, et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: an integrated approach to uncover novel pathogenic mechanisms of the disease. Hum Mol Genet 2018; 27(1): 66-79.
[http://dx.doi.org/10.1093/hmg/ddx385 ] [PMID: 29087462]
[45]
Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448(7152): 480-3.
[http://dx.doi.org/10.1038/nature05969 ] [PMID: 17581589]
[46]
Linnstaedt SD, Walker MG, Riker KD, Nyland JE, Hu JM, Rossi C, et al. Genetic variant rs3750625 in the 3'UTR of ADRA2A affects stress-dependent acute pain severity after trauma and alters a microRNA-34a regulatory site. Pain 2017; 158(2): 230-9.
[http://dx.doi.org/10.1097/j.pain.0000000000000742 ] [PMID: 27805929]
[47]
Begemann M, Grube S, Papiol S, Malzahn D, Krampe H, Ribbe K, et al. Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch Gen Psychiatry 2010; 67(9): 879-88.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.107 ] [PMID: 20819981]
[48]
Ghosh A, Sadhukhan T, Giri S, Biswas A, Das SK, Ray K, et al. Dopamine β Hydroxylase (DBH) is a potential modifier gene associated with Parkinson’s disease in Eastern India. Neurosci Lett 2019; 706: 75-80.
[http://dx.doi.org/10.1016/j.neulet.2019.05.015 ] [PMID: 31082450]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 2
Year: 2020
Page: [133 - 147]
Pages: 15
DOI: 10.2174/1875692118666200316130727
Price: $25

Article Metrics

PDF: 17
HTML: 2