Recent Advances of Sulfonylation Reactions in Water

Author(s): Li Wu, Lifen Peng*, Zhifang Hu, Yinchun Jiao, Zilong Tang

Journal Name: Current Organic Synthesis

Volume 17 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The sulfonyl groups are general structural moieties present in agrochemicals, pharmaceuticals, and natural products. Recently, many efforts have been focused on developing efficient procedures for preparation of organic sulfones.

Materials and Methods: Water, a proton source, is considered one of the most ideal and promising solvents in organic synthesis for its easy availability, low cost, nontoxic and nonflammable characteristics. From the green and sustainable point of view, more and more reactions are designed proceeding in water.

Objective: The review focuses on recent advances of sulfonylation reactions proceeding in water. Sulfonylation reactions using sodium sulfinates, sulfonyl hydrazides, sulfinic acids, and sulfonyl chlorides as sulfonating agents were introduced in detail.

Results and Discussion: In this review, sulfonylation reactions proceeding in water developed in recent four yields were presented. Sulfonylation reactions using water as solvent have attracted more and more attention because water is one of the most ideal and promising solvents in organic synthesis for its facile availability, low cost, nontoxic and nonflammable properties.

Conclusion: Numerous sulfonating agents such as sodium sulfinates, sulfonyl hydrazides, sulfinic acid, sulfonyl chlorides and disulfides are efficient for sulfonylation reactions which proceed in water.

Keywords: Sulfonylation, water, sodium sulfonates, sulfonyl hydrazides, organic sulfones, sulfonyl chlorides.

[1]
(a) Feng, M.; Tang, B.; Liang, S-H.; Jiang, X. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
(b)Shaaban, S.; Liang, S.; Liu, N.W.; Manolikakes, G. Synthesis of sulfones via selective C-H-functionalization. Org. Biomol. Chem., 2017, 15(9), 1947-1955.
[http://dx.doi.org/10.1039/C6OB02424F] [PMID: 28155938]
(c)Liu, N-W.; Liang, S.; Manolikakes, G. Recent advances in the synthesis of sulfones. Synthesis, 2016, 48, 1939-1973.
[http://dx.doi.org/10.1055/s-0035-1560444]
(d) Deeming, A.S.; Emmett, E.J.; Richards-Taylor, C.S.; Willis, M.C. Rediscovering the chemistry of sulfur dioxide: new developments in synthesis and catalysis. Synthesis, 2014, 20, 2701-2710.
(e) Wei, W.; Liu, C-L.; Yang, D-S.; Wen, J-W.; You, J-M.; Wang, H. Metal-free direct construction of sulfonamides via iodine-mediated coupling reaction of sodium sulfinates and amines at room temperature. Adv. Synth. Catal., 2015, 357, 987-992.
[http://dx.doi.org/10.1002/adsc.201400801]
(f) Xie, L-Y.; Li, Y-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K-J.; Cao, Z.; He, W-M. A base-free, ultrasound accelerated one-pot synthesis of 2-sulfonylquinolines in water. Green Chem., 2017, 19, 5642-5646.
[http://dx.doi.org/10.1039/C7GC02304A]
(g) Meadows, D.C.; Gervay-Hague, J. Vinyl sulfones: synthetic preparations and medicinal chemistry applications. Med. Res. Rev., 2006, 26(6), 793-814.
[http://dx.doi.org/10.1002/med.20074] [PMID: 16788979]
(h) El-Awa, A.; Noshi, M.N.; du Jourdin, X.M.; Fuchs, P.L. Evolving organic synthesis fostered by the pluripotent phenylsulfone moiety. Chem. Rev., 2009, 109(6), 2315-2349.
[http://dx.doi.org/ 10.1021/cr800309r ] [PMID: 19438205]
(i) Nielsen, M.; Jacobsen, C.B.; Holub, N.; Paixão, M.W.; Jørgensen, K.A. Asymmetric organocatalysis with sulfones. Angew. Chem. Int. Ed. Engl., 2010, 49(15), 2668-2679.
[http://dx.doi.org/10.1002/anie.200906340] [PMID: 20209543]
(j) Alba, A.N.R.; Companyó, X.; Rios, R. Sulfones: new reagents in organocatalysis. Chem. Soc. Rev., 2010, 39(6), 2018-2033.
[http://dx.doi.org/10.1039/b911852g ] [PMID: 20502800]
(k) Curti, C.; Laget, M.; Carle, A.O.; Gellis, A.; Vanelle, P. Rapid synthesis of sulfone derivatives as potential anti-infectious agents. Eur. J. Med. Chem., 2007, 42(6), 880-884.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.015] [PMID: 17320245]
(l) Woo, S.Y.; Kim, J.H.; Moon, M.K.; Han, S-H.; Yeon, S.K.; Choi, J.W.; Jang, B.K.; Song, H.J.; Kang, Y.G.; Kim, J.W.; Lee, J.; Kim, D.J.; Hwang, O.; Park, K.D. Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson’s disease therapy. J. Med. Chem., 2014, 57(4), 1473-1487.
[http://dx.doi.org/10.1021/jm401788m] [PMID: 24467268]
(m) Guerrini, A.; Tesei, A.; Ferroni, C.; Paganelli, G.; Zamagni, A.; Carloni, S.; Di Donato, M.; Castoria, G.; Leonetti, C.; Porru, M.; De Cesare, M.; Zaffaroni, N.; Beretta, G.L.; Del Rio, A.; Varchi, G. A new avenue toward androgen receptor pan-antagonists: C2 sterically hindered substitution of hydroxy-propanamides. J. Med. Chem., 2014, 57(17), 7263-7279.
[http://dx.doi.org/10.1021/jm5005122] [PMID: 25121586]
(n) Parent, E.E.; Dence, C.S.; Jenks, C.; Sharp, T.L.; Welch, M.J.; Katzenellenbogen, J.A. Synthesis and biological evaluation of [18F]bicalutamide, 4-[76Br]bromobicalutamide, and 4-[76Br]bromo-thiobicalutamide as non-steroidal androgens for prostate cancer imaging. J. Med. Chem., 2007, 50(5), 1028-1040.
[http://dx.doi.org/10.1021/jm060847r] [PMID: 17328524]
(o) Patai, S.; Rappoport, Z.; Stirling, C. The Chemistry of Sulfones and Sulfoxides; Wiley: New York, 1988.
(p) Kalir, A.; Kalir, H.H. Sulphur-Containing Functional Groups; Wiley: New York, 1993, pp. 957-973.
[http://dx.doi.org/10.1002/9780470034408.ch16 ]
[2]
Carles, L.; Joly, M.; Bonnemoy, F.; Leremboure, M.; Donnadieu, F.; Batisson, I.; Besse-Hoggan, P. Biodegradation and toxicity of a maize herbicide mixture: mesotrione, nicosulfuron and S-metolachlor. J. Hazard. Mater., 2018, 354, 42-53.
[http://dx.doi.org/10.1016/j.jhazmat.2018.04.045] [PMID: 29727789]
[3]
(a) Miyashita, K.; Imanishi, T. Syntheses of natural products having an epoxyquinone structure. Chem. Rev., 2005, 105(12), 4515-4536.
[http://dx.doi.org/10.1021/cr040613k] [PMID: 16351052]
(b) Barrero, A.F.; Alvarez-Manzaneda, E.J.; Herrador, M.M.; Chahboun, R.; Galera, P. Synthesis and antitumoral activities of marine ent-chromazonarol and related compounds. Bioorg. Med. Chem. Lett., 1999, 9(16), 2325-2328.
[http://dx.doi.org/10.1016/S0960-894X(99)00382-0] [PMID: 10476862]
[4]
Frankel, B.A.; Bentley, M.; Kruger, R.G.; McCafferty, D.G. Vinyl sulfones: inhibitors of SrtA, a transpeptidase required for cell wall protein anchoring and virulence in Staphylococcus aureus. J. Am. Chem. Soc., 2004, 126(11), 3404-3405.
[http://dx.doi.org/10.1021/ja0390294] [PMID: 15025450]
[5]
Konduru, N.K.; Dey, S.; Sajid, M.; Owais, M.; Ahmed, N. Synthesis and antibacterial and antifungal evaluation of some chalcone based sulfones and bisulfones. Eur. J. Med. Chem., 2013, 59, 23-30.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.004] [PMID: 23202847]
[6]
(a) Ashton, W.T.; Sisco, R.M.; Dong, H.; Lyons, K.A.; He, H.; Doss, G.A.; Leiting, B.; Patel, R.A.; Wu, J.K.; Marsilio, F.; Thornberry, N.A.; Weber, A.E. Dipeptidyl peptidase IV inhibitors derived from β-aminoacylpiperidines bearing a fused thiazole, oxazole, isoxazole, or pyrazole. Bioorg. Med. Chem. Lett., 2005, 15(9), 2253-2258.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.012] [PMID: 15837304]
(b) Chen, H.; Li, Z.; Han, Y. Synthesis and fungicidal activity against Rhizoctonia solani of 2-alkyl (Alkylthio)-5-pyrazolyl-1,3,4-oxadiazoles (Thiadiazoles). J. Agric. Food Chem., 2000, 48(11), 5312-5315.
[http://dx.doi.org/10.1021/jf991065s] [PMID: 11087478]
(c) Vicentini, C.B.; Mares, D.; Tartari, A.; Manfrini, M.; Forlani, G. Synthesis of pyrazole derivatives and their evaluation as photosynthetic electron transport inhibitors. J. Agric. Food Chem., 2004, 52(7), 1898-1906.
[http://dx.doi.org/10.1021/jf035115b] [PMID: 15053526]
(d) Waldrep, T.W.; Beck, J.R.; Lynch, M.P.; Wright, F.L. Synthesis and herbicidal activity of 1-aryl-5-halo and 1-aryl-5-(trifluoromethyl)-1H-pyrazole-4-carboxamides. J. Agric. Food Chem., 1990, 38, 541-544.
[http://dx.doi.org/10.1021/jf00092a045]
(e) Clark, R.D. Synthesis and QSAR of herbicidal 3-pyrazolyl α,α,α-trifluorotolyl ethers. J. Agric. Food Chem., 1996, 44, 3643-3652.
[http://dx.doi.org/10.1021/jf9601978]
[7]
Ovenden, S.P.B.; Capon, R.J. Echinosulfonic acids A-C and echinosulfone A: novel bromoindole sulfonic acids and a sulfone from a southern australian marine sponge, echinodictyum. J. Nat. Prod., 1999, 62(9), 1246-1249.
[http://dx.doi.org/10.1021/np9901027] [PMID: 10514306]
[8]
(a) Surprenant, S.; Chan, W-Y.; Berthelette, C. Efficient synthesis of substituted vinyl ethers using the Julia olefination. Org. Lett., 2003, 5(25), 4851-4854.
[http://dx.doi.org/10.1021/ol035918k] [PMID: 14653690]
(b) Orita, A.; Yaruva, J.; Otera, J. Integrated chemical process: One-pot aromatization of cyclic enones by the double elimination methodology. Angew. Chem. Int. Ed. Engl., 1999, 38(15), 2267-2270.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990802)38:15<2267:AID-ANIE2267>3.0.CO;2-3] [PMID: 10425506]
(c) Orita, A.; Yaruva, J.; Otera, J. Ein integriertes chemisches verfahren: Eintopfaromatisierung von cyclischen enonen durch doppeleliminierung. Angew. Chem., 1999, 111, 2397-2400.
[http://dx.doi.org/10.1002/(SICI)1521-3757(19990802)111:15<2397:AID-ANGE2397>3.0.CO;2-8]
(d) Orita, A.; Yamashita, Y.; Toh, A.; Otera, J. Integrated chemical process: An extremely concise synthesis of vitamin A. Angew. Chem. Int. Ed. Engl., 1997, 36, 779-780.
[http://dx.doi.org/10.1002/anie.199707791]
(e) Otera, J.; Misawa, H.; Sugimoto, K. Mechanistic aspects and profiles of the double elimination reaction of β-substituted sulfones. J. Org. Chem., 1986, 51, 3830-3833.
[http://dx.doi.org/10.1021/jo00370a016]
(f) Orita, A.; Nakano, T.; Yokoyama, T.; Babu, G.; Otera, J. Double elimination protocol for access to pyridine-containing arylene-ethynylenes. Chem. Lett., 2004, 33, 1298-1299.
[http://dx.doi.org/10.1246/cl.2004.1298]
(g) Orita, A.; Otera, J. Elimination strategy for aromatic acetylenes. Chem. Rev., 2006, 106(12), 5387-5412.
[http://dx.doi.org/10.1021/cr050560m] [PMID: 17165692]
(h) Shao, G.; Orita, A.; Nishijima, K.; Ishimaru, K.; Takezaki, M.; Wakamatsu, K.; Gleiter, R.; Otera, J. Synthesis and spectroscopic studies of arylethynylsilanes. Chem. Asian J., 2007, 2(4), 489-498.
[http://dx.doi.org/10.1002/asia.200700007] [PMID: 17441186]
[9]
(a) Xiao, F.; Chen, H.; Xie, H.; Chen, S.; Yang, L.; Deng, G-J. Iodine-catalyzed regioselective 2-sulfonylation of indoles with sodium sulfinates. Org. Lett., 2014, 16(1), 50-53.
[http://dx.doi.org/10.1021/ol402987u] [PMID: 24328422]
(b) Cullen, S.C.; Shekhar, S.; Nere, N.K. Cu-catalyzed couplings of aryl iodonium salts with sodium trifluoromethanesulfinate. J. Org. Chem., 2013, 78(23), 12194-12201.
[http://dx.doi.org/10.1021/jo401868x] [PMID: 24180634]
(c) Liang, S.; Zhang, R-Y.; Xi, L-Y.; Chen, S-Y.; Yu, X-Q. Sulfonylation of five-membered heterocycles via an S(N)Ar reaction. J. Org. Chem., 2013, 78(23), 11874-11880.
[http://dx.doi.org/10.1021/jo401828b] [PMID: 24251813]
(d) Zhou, X.; Luo, J.; Liu, J.; Peng, S.; Deng, G-J. Pd-catalyzed desulfitative Heck coupling with dioxygen as the terminal oxidant. Org. Lett., 2011, 13(6), 1432-1435.
[http://dx.doi.org/10.1021/ol200101x] [PMID: 21323384]
(e) Maloney, K.M.; Kuethe, J.T.; Linn, K. A practical, one-pot synthesis of sulfonylated pyridines. Org. Lett., 2011, 13(1), 102-105.
[http://dx.doi.org/10.1021/ol102629c] [PMID: 21126054]
(f) Wei, W.; Liu, X-X.; Yang, D-S.; Dong, R-M.; Cui, Y.; Yuan, F.; Wang, H. Direct difunctionalization of alkenes with sulfinic acids and NBS leading to β-bromo sulfones. Tetrahedron Lett., 2015, 56, 1808-1811.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.043]
(g) Kaczorowska, K.; Kolarska, Z.; Mitka, K.; Kowalski, P. Oxidation of sulfides to sulfoxides. part 2: Oxidation by hydrogen peroxide. Tetrahedron, 2005, 61, 8315-8327.
[http://dx.doi.org/10.1016/j.tet.2005.05.044]
(h) Wei, W.; Wen, J-W.; Yang, D-S.; Jing, H-J.; You, J-M.; Wang, H. Direct difunctionalization of alkynes with sulfinic acids and molecular iodine: A simple and convenient approach to (E)-β-iodovinyl sulfones. RSC Advances, 2015, 5, 4416-4419.
[http://dx.doi.org/10.1039/C4RA13998D]
(i) Rao, W-H.; Zhan, B-B.; Chen, K.; Ling, P-X.; Zhang, Z-Z.; Shi, B-F. Pd(II)-catalyzed direct sulfonylation of unactivated C(sp3)–H bonds with sodium sulfinates. Org. Lett., 2015, 17(14), 3552-3555.
[http://dx.doi.org/10.1021/acs.orglett.5b01634] [PMID: 26110825]
(j) Johnson, M.W.; Bagley, S.W.; Mankad, N.P.; Bergman, R.G.; Mascitti, V.; Toste, F.D. Application of fundamental organometallic chemistry to the development of a gold-catalyzed synthesis of sulfinate derivatives. Angew. Chem. Int. Ed. Engl., 2014, 53(17), 4404-4407.
[http://dx.doi.org/10.1002/anie.201400037] [PMID: 24652820]
(k) Richards-Taylor, C.S.; Blakemore, D.C.; Willis, M.C. One-pot three-component sulfone synthesis exploiting palladium-catalysed aryl halide aminosulfonylation. Chem. Sci. (Camb.), 2014, 5, 222-228.
[http://dx.doi.org/10.1039/C3SC52332B]
(l) Umierski, N.; Manolikakes, G. Metal-free synthesis of diaryl sulfones from arylsulfinic acid salts and diaryliodonium salts. Org. Lett., 2013, 15(1), 188-191.
[http://dx.doi.org/10.1021/ol303248h] [PMID: 23252771]
(m) Chen, C.; Xu, X-H.; Yang, B.; Qing, F-L. Copper-catalyzed direct trifluoromethylthiolation of benzylic C-H bonds via nondirected oxidative C(sp3)-H activation. Org. Lett., 2014, 16(12), 3372-3375.
[http://dx.doi.org/10.1021/ol501400u] [PMID: 24892973]
(n) Xiao, F-H.; Chen, S-Q.; Tian, J-X.; Huang, H-W.; Liu, Y-J.; Deng, G-J. Chemoselective cross-coupling reaction of sodium sulfinates with phenols under aqueous conditions. Green Chem., 2016, 18, 1538-1546.
[http://dx.doi.org/10.1039/C5GC02292D]
(o) Deeming, A.S.; Russell, C.J.; Willis, M.C. Palladium(II)-catalyzed synthesis of sulfinates from boronic acids and DABSO: A redox-neutral, phosphine-free transformation. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 747-750.
[http://dx.doi.org/10.1002/anie.201508370] [PMID: 26596861]
(p) Wen, J.; Shi, W.; Zhang, F.; Liu, D.; Tang, S.; Wang, H.; Lin, X-M.; Lei, A. Electrooxidative tandem cyclization of activated alkynes with sulfinic acids to access sulfonated indenones. Org. Lett., 2017, 19(12), 3131-3134.
[http://dx.doi.org/10.1021/acs.orglett.7b01256] [PMID: 28541702]
(q) Wei, W.; Li, J.; Yang, D.; Wen, J.; Jiao, Y.; You, J.; Wang, H. Copper-catalyzed highly selective direct hydrosulfonylation of alkynes with arylsulfinic acids leading to vinyl sulfones. Org. Biomol. Chem., 2014, 12(12), 1861-1864.
[http://dx.doi.org/10.1039/C3OB42522C] [PMID: 24519394]
(r) Browne, M.F.; Shriner, R.L. Model compounds for comparison with lignin.* I. preparation and properties of 8-methoxy-6-methylflavanone and 2′-hydroxy-3′-methoxy-5′-methylchalcone. J. Org. Chem., 1957, 22, 1320-1322.
[http://dx.doi.org/10.1021/jo01362a007]
(s) Wei, W.; Cui, H-H.; Yang, D-S.; Liu, X-X.; He, C-L.; Dai, S-C.; Wang, H. Metal-free molecular iodine-catalyzed direct sulfonylation of pyrazolones with sodium sulfinates leading to sulfonated pyrazoles at room temperature. Org. Chem. Front., 2017, 4, 26-30.
[http://dx.doi.org/10.1039/C6QO00403B]
(t) Pinnick, H.W.; Reynolds, M.A. An improved preparation of sulfinate salts and their Michael addition to enones. J. Org. Chem., 1979, 44, 160-161.
[http://dx.doi.org/10.1021/jo01315a043]
(u) Jiang, H.; Tang, X.; Xu, Z.; Wang, H.; Han, K.; Yang, X.; Zhou, Y.; Feng, Y-L.; Yu, X-Y.; Gui, Q. TBAI-catalyzed selective synthesis of sulfonamides and β-aryl sulfonyl enamines: coupling of arenesulfonyl chlorides and sodium sulfinates with tert-amines. Org. Biomol. Chem., 2019, 17(10), 2715-2720.
[http://dx.doi.org/10.1039/C8OB02992J] [PMID: 30775769]
(v) Wei, W.; Wen, J.; Yang, D.; Wu, M.; You, J.; Wang, H. Iron-catalyzed direct difunctionalization of alkenes with dioxygen and sulfinic acids: A highly efficient and green approach to β-ketosulfones. Org. Biomol. Chem., 2014, 12(39), 7678-7681.
[http://dx.doi.org/10.1039/C4OB01369G] [PMID: 25166469]
(w) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Copper-catalyzed direct oxysulfonylation of alkenes with dioxygen and sulfonylhydrazides leading to β-ketosulfones. Chem. Commun. (Camb.), 2013, 49(87), 10239-10241.
[http://dx.doi.org/10.1039/c3cc45803b] [PMID: 24064594]
(x) Wen, J.; Wei, W.; Xue, S.; Yang, D.; Lou, Y.; Gao, C.; Wang, H. Metal-free oxidative spirocyclization of alkynes with sulfonylhydrazides leading to 3-sulfonated azaspiro [4,5] trienones. J. Org. Chem., 2015, 80(10), 4966-4972.
[http://dx.doi.org/10.1021/acs.joc.5b00361] [PMID: 25928832]
(y) Wang, L.; Yue, H.; Yang, D.; Cui, H.; Zhu, M.; Wang, J.; Wei, W.; Wang, H. Metal-free oxidative coupling of aromatic alkenes with thiols leading to (E)-vinyl sulfones. J. Org. Chem., 2017, 82(13), 6857-6864.
[http://dx.doi.org/10.1021/acs.joc.7b00994] [PMID: 28597661]
[10]
(a) Liang, S.; Manolikakes, G. Copper-catalyzed remote C-H functionalization of 8-aminoquinolines with sodium and lithium sulfinates. Adv. Synth. Catal., 2016, 358, 2371-2378.
[http://dx.doi.org/10.1002/adsc.201600388]
(b) Meyer, A.; Lau, V.W.H.; König, B.; Lotsch, B.V. Photocatalytic oxidation of sulfinates to vinyl sulfones with cyanamide-functionalised carbon nitride. Eur. J. Org. Chem., 2017, 2179-2185.
[http://dx.doi.org/10.1002/ejoc.201601637]
(c) Sumunnee, L.; Buathongjan, C.; Pimpasri, C.; Yotphan, S. Iodine/TBHP-promoted one-pot deoxygenation and direct 2-sulfonylation of quinoline N-oxides with sodium sulfinates: facile and regioselective synthesis of 2-sulfonylquinolines. Eur. J. Org. Chem., 2017, 1025-1032.
[http://dx.doi.org/10.1002/ejoc.201601443]
(d) Emmett, E.J.; Hayter, B.R.; Willis, M.C. Palladium-catalyzed three-component diaryl sulfone synthesis exploiting the sulfur dioxide surrogate DABSO. Angew. Chem. Int. Ed. Engl., 2013, 52(48), 12679-12683.
[http://dx.doi.org/10.1002/anie.201305369] [PMID: 24115325]
(e) Shavnya, A.; Hesp, K.D.; Mascitti, V.; Smith, A.C. Palladium-catalyzed synthesis of (hetero)aryl alkyl sulfones from (hetero)aryl boronic acids, unactivated alkyl halides, and potassium metabisulfite. Angew. Chem. Int. Ed. Engl., 2015, 54(46), 13571-13575.
[http://dx.doi.org/10.1002/anie.201505918] [PMID: 26383866]
(f) Pandya, V.G.; Mhaske, S.B. Transition-metal-free C-S bond formation: a facile access to aryl sulfones from sodium sulfinates via arynes. Org. Lett., 2014, 16(14), 3836-3839.
[http://dx.doi.org/10.1021/ol5018646] [PMID: 25003211]
(g) Shyam, P.K.; Jang, H-Y. Synthesis of sulfones and sulfonamides via sulfinate anions: Revisiting the utility of thiosulfonates. J. Org. Chem., 2017, 82(3), 1761-1767.
[http://dx.doi.org/10.1021/acs.joc.6b03016] [PMID: 28078894]
[11]
(a) Anastas, P.T.; Warner, J.C. Green Chemistry Theory and Practice; Oxford University Press: Oxford, 1998.
(b) Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, New York, 2001.
(c) Poliakoff, M.; Fitzpatrick, J.M.; Farren, T.R.; Anastas, P.T. Green chemistry: Science and politics of change. Science, 2002, 297(5582), 807-810.
[http://dx.doi.org/10.1126/science.297.5582.807] [PMID: 12161647]
(d) Xie, L-Y.; Qu, J.; Peng, S; Liu, K.J.; Wang, Z.; Ding, M-H.; Wang, Y.; Cao, Z.; He, W-M. Selectfluor-mediated regioselective nucleophilic functionalization of N-heterocycles under metal- and base-free conditions. Green Chem., 2018, 20, 760-764.
[http://dx.doi.org/10.1039/C7GC03106H]
(e) Peng, L-F.; Wang, B-H.; Wang, M.; Tang, Z.L.; Jiang, Y-Z.; Jiao, Y-C.; Xu, X-H. A one-pot method for the synthesis of phenylalkynyl-substituted terminal alkynes by deprotection/stannylation followed by a migita-kosugistille coupling. J. Chem. Res., 2018, 42, 235-238.
[http://dx.doi.org/10.3184/174751918X15258743466204]
(f) Liu, K-J.; Jiang, S.; Lu, L-H.; Tang, L.L.; Tang, S-S.; Tang, H-S.; Tang, Z.; He, W-M.; Xu, X-H. Bis(methoxypropyl) ether-promoted oxidation of aromatic alcohols into aromatic carboxylic acids and aromatic ketones with O2 under metal- and base-free conditions. Green Chem., 2018, 20, 3038-3043.
[http://dx.doi.org/10.1039/C8GC00223A]
(g) Lancaster, M. Green Chemistry: An Introductory Text;; RSC Publishing:Cambridge, 2002.
(h) Wu, C.; Lu, L-H.; Peng, A-Z.; Jia, G-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W-M.; Xu, X. Ultrasound-promoted brønsted acid ionic liquid-catalyzed hydrothiocyanation of activated alkynes under minimal solvent conditions. Green Chem., 2018, 20, 3683-3688.
[http://dx.doi.org/10.1039/C8GC00491A]
(i) Lu, L-H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W-M. Sustainable routes for quantitative green selenocyanation of activated alkynes; , 2019.
[http://dx.doi.org/10.1016/j.cclet.2019.04.033]
(j) Bao, W-H.; He, M.; Wang, J-T.; Peng, X.; Sung, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W-M. Iodine-catalyzed odorless synthesis of S-thiocarbamates with sulfonyl chlorides as a sulfur source. J. Org. Chem., 2019, 84(10), 6065-6071.
[http://dx.doi.org/10.1021/acs.joc.9b00178] [PMID: 30999750]
(k) Peng, L-F.; Lei, J-Y.; Wu, L.; Tang, Z-L.; Luo, Z-P.; Jiao, Y-C.; Xu, XH. One-pot transformation of Me3Si-/Ph2P(O)-protected ethynes to unsymmetrical arylethynes. J.Chem.Res., 2018, 42, 271-273.
[http://dx.doi.org/10.3184/174751918X15269925671284]
(l) Bao, W-H.; Wu, C.; Wang, J-T.; Xia, W.; Chen, P.; Tang, Z.; Xu, X.; He, W-M. Molecular iodine-mediated synthesis of thiocarbamates from thiols, isocyanides and water under metal-free conditions. Org. Biomol. Chem., 2018, 16(37), 8403-8407.
[http://dx.doi.org/10.1039/C8OB01820K] [PMID: 30215086]
(m) Lu, L-H.; Zhou, S-J.; He, W-B.; Xia, W.; Chen, P.; Yu, X.; Xu, X.; He, W-M. Metal-free difunctionalization of alkynes leading to alkenyl dithiocyanates and alkenyl diselenocyanates at room temperature. Org. Biomol. Chem., 2018, 16(46), 9064-9068.
[http://dx.doi.org/10.1039/C8OB02368A] [PMID: 30456395]
(n) Chacko, P.; Shivashankar, K. Nano structured spinel Co3O4-catalyzed four component reaction: A novel synthesis of Ugi adducts from aryl alcohols as a key reagent. Chin. Chem. Lett., 2017, 28, 1619-1624.
[http://dx.doi.org/10.1016/j.cclet.2017.04.015]
(o) Peng, L-F.; Zhang, S-W.; Wang, B-H.; Xun, M-S.; Tang, Z-L.; Jiao, Y-C.; Xu, X-H. Synthesis of cyclic phenyl polyynes: Ph2pdeprotection/ intramolecular eglington coupling cyclization. Youji Huaxue., 2018, 38, 519-525.
[http://dx.doi.org/10.6023/cjoc201708011]
(p) Xie,, L-Y.; Peng, S.; Liu, F.; Liu, Y-F.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W-M. Clean preparation of quinolin-2-yl substituted ureas in water. ACS Sustain. Chem. & Eng., 2019, 7, 7193-7199.
[http://dx.doi.org/10.1021/acssuschemeng.9b00200]
(q) Wu, C.; Xiao, H-J.; Wang, S-W.; Tang, M-S.; Tang, Z-L.; Xia, W.; Li, W-F.; Cao, Z.; He, W-M. Natural deep eutectic solvent-catalyzed selenocyanation of activated alkynes via an intermolecular H-bonding activation process. ACS Sustain. Chem. & Eng., 2019, 7, 2169-2175.
[http://dx.doi.org/10.1021/acssuschemeng.8b04877]
(r) Peng, L-F.; Peng, C.; Wang, M.; Tang, Z-L.; Jiao, Y-C.; Xu, X-H. Phosphoryl protecting group enabled facile synthesis of unsymmetrical 1,3- diynes by selective hay coupling. Youji Huaxue., 2018, 38, 3048-3055.
[http://dx.doi.org/10.6023/cjoc201805009]
(s) Wang, Z.; Yang, L.; Liu, H-L.; Bao, W-H.; Tan, Y-Z.; Wang, M.; Tang, Z.; He, W-M. Selective synthesis of quaternary carbon propargylamines from amines, alkynes, and alkynes under neat condition. Youji Huaxue., 2018, 38, 2639-2647.
[http://dx.doi.org/10.6023/cjoc201805033]
(t) Wu, C.; Wang, J.; Zhang, X-Y.; Jia, G-K.; Cao, Z.; Tang, Z.; Yu, X.; Xu, X.; He, W-M. Palladium-catalyzed selective synthesis of 3,4- dihydroquinazolines from electron-rich arylamines, electron-poor arylamines and glyoxalates. Org. Biomol. Chem., 2018, 16(27), 5050-5054.
[http://dx.doi.org/10.1039/C8OB01005F] [PMID: 29956708]
(u) Liu, K-J.; Zeng, X-L.; Zhang, Y.; Wang, Y.; Xiao, X-S.; Yue, H.; Wang, M.; Tang, Z.; He, W-M. Palladium-catalyzed reductive coupling of nitroarenes with phenols- leading to N-cyclohexylanilines. Synthesis, 2018, 50, 4637-4644.
[http://dx.doi.org/10.1055/s-0037-1610231]
(v) Peng, L-F.; Hu, Z-F.; Tang, Z-L.; Jiao, Y-C.; Xu, X-H. Recent progress in transition metal catalyzed cross coupling of nitroarenes Chin. Chem. Lett., 2019, 30, 1481-1487.
[http://dx.doi.org/10.1016/j.cclet.2019.04.008]
[12]
(a) Yi, R-N.; Wang, Z-J.; Liang, Z-W.; Xiao, M.; Xu, X-H.; Li, N-B. Expeditious and highly efficient synthesis of propargylamines using a Pd-Cu nanowires catalyst under solvent-free conditions. Appl. Organomet. Chem., 2019, 33, e4917
[http://dx.doi.org/10.1002/aoc.4917]
(b) Xie, L-Y.; Duan, Y.; Lu, L-H.; Li, Y-J.; Peng, S.; Wu, C.; Liu, K-J.; Wang, Z.; He, W-M. Fast, base-free and aqueous synthesis of quinolin-2(1H)-ones under ambient conditions. ACS Sustain. Chem.& Eng., 2017, 5, 10407-10412.
[http://dx.doi.org/10.1021/acssuschemeng.7b02442]
(c) Xie, L-Y.; Peng, S.; Lu, L-H.; Hu, J.; Bao, W-H.; Zeng, F.; Tang, Z.; Xu, X.; He, W-M. Brønsted acidic ionic liquid-promoted amidation of quinoline N-oxides with nitriles. ACS Sustain. Chem.& Eng., 2018, 6, 7989-7994.
[http://dx.doi.org/10.1021/acssuschemeng.8b01358]
(d) Peng, L-F.; Li, R-Z.; Tang, Z-L.; Chen, J-Y.; Yi, R-N.; Xu, X-H. Cesium-catalyzed highly regioselective synthesis of (Z)-vinylic selenosulfides via thioselenation of alkynes with unsymmetrical diorganoyl dichalcogenides. Tetrahedron, 2017, 73, 3099-3105.
[http://dx.doi.org/10.1016/j.tet.2017.04.009]
(e) Peng, L-F.; Hu, Z-F.; Lu, Q-C.; Tang, Z-L.; Jiao, Y-C.; Xu, X-H. DESs: Green solvents for transition metal catalyzed organic reactions. Chin. Chem. Lett., 2019, 30, 2151-2156.
[http://dx.doi.org/10.1016/j.cclet.2019.05.063]
(f) Wei, W.; Wen, J.; Yang, D.; Guo, M.; Wang, Y.; You, J.; Wang, H. Direct and metal-free arylsulfonylation of alkynes with sulfonylhydrazides for the construction of 3-sulfonated coumarins. Chem. Commun. (Camb.), 2015, 51(4), 768-771.
[http://dx.doi.org/10.1039/C4CC08117J] [PMID: 25421259]
(g) Wei, W.; Wen, J-W.; Yang, D-S.; Du, J.; You, J-M.; Wang, H. Catalyst-free direct arylsulfonylation of N-arylacrylamides with sulfinic acids: A convenient and efficient route to sulfonated oxindoles. Green Chem., 2014, 16, 2988-2991.
[http://dx.doi.org/10.1039/C4GC00231H]
(h) Sun, M.; Jiang, J.; Chen, J-L.; Yang, Q.; Yu, X-Y. Deep eutectic solvent promoted hydrothiocyanation of alkynoates leading to Z-3-thiocyanatoacrylates. Tetrahedron, 2019.
[http://dx.doi.org/10.1016/j.tet.2019.07.014]
[13]
(a) Herrerías, C.I.; Yao, X.; Li, Z.; Li, C-J. Reactions of C-H bonds in water. Chem. Rev., 2007, 107(6), 2546-2562.
[http://dx.doi.org/10.1021/cr050980b] [PMID: 17439184]
(b) Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
(c) Butler, R.N.; Coyne, A.G. Water: nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110(10), 6302-6337.
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
(d) Lindström, U.M. Stereoselective organic reactions in water. Chem. Rev., 2002, 102(8), 2751-2772.
[http://dx.doi.org/10.1021/cr010122p] [PMID: 12175267]
(e) Bai, C.; Li, A.; Yao, X.; Liu, H.; Li, Y. Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived Co catalysts. Green Chem., 2016, 18, 1061-1069.
[http://dx.doi.org/10.1039/C5GC02082D]
[14]
Islam, S.M.; Molla, R.A.; Roy, A.S.; Ghosh, K.; Salam, N.; Iqubal, M.A.; Tuhina, K. Aerobic oxidation and oxidative bromination in aqueous medium using polymer anchored oxovanadium complex. J. Organomet. Chem., 2014, 761, 169-178.
[http://dx.doi.org/10.1016/j.jorganchem.2014.03.009]
[15]
Maryami, M.; Nasrollahzadeh, M.; Mehdipour, E.; Sajadi, S.M. Preparation of the Ag/RGO nanocomposite by use of abutilon hirtum leaf extract: A recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Int. J. Hydrogen Energy, 2016, 41, 21236-21245.
[http://dx.doi.org/10.1016/j.ijhydene.2016.09.130]
[16]
(a) Taira, T.; Yanagimoto, T.; Sakai, K.; Sakai, H.; Endo, A.; Imura, T. Synthesis of surface-active N-heterocyclic carbene ligand and its Pd-catalyzed aqueous mizoroki-heck reaction. Tetrahedron, 2016, 72, 4117-4122.
[http://dx.doi.org/10.1016/j.tet.2016.05.053]
(b) Jagtap, S.; Deshpande, R. True water soluble palladium-catalyzed heck reactions in aqueous-organic biphasic media. Tetrahedron Lett., 2013, 54, 2733-2736.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.067]
[17]
(a) Sarmah, G.; Bora, U. Simple aminobenzoic acid promoted palladium catalyzed room temperature Suzuki-Miyaura cross-coupling reaction in aqueous media. Tetrahedron Lett., 2015, 56, 2906-2909.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.052]
(b) Yang, F.; Chi, C.; Dong, S.; Wang, C-X.; Jia, X-L.; Ren, L.; Zhang, Y-H.; Zhang, L-Q.; Li, Y-F. Pd/PdO nanoparticles supported on carbon nanotubes: a highly effective catalyst for promoting Suzuki reaction in water. Catal. Today, 2015, 256, 186-192.
[http://dx.doi.org/10.1016/j.cattod.2015.02.026]
(c) Bumagin, N.A.; Veselov, I.S.; Belov, D.S. An effective activation of palladium phosphine complexes in aqueous phase reactions of hetero-aromatic boronic acids with aryl halides. Chem. Heterocycl. Compd., 2014, 50, 19-25.
[http://dx.doi.org/10.1007/s10593-014-1443-1]
(d) Shen, L.; Huang, S.; Nie, Y.; Lei, F. An efficient microwave-assisted Suzuki reaction using a new pyridine-pyrazole/Pd(II) species as catalyst in aqueous media. Molecules, 2013, 18(2), 1602-1612.
[http://dx.doi.org/10.3390/molecules18021602] [PMID: 23353128]
[18]
(a) Ghosh, J.; Biswas, P.; Sarkar, T.; Drew, M.G.B.; Bandyopadhyay, C. A one-pot three-component reaction in aqueous micellar medium: an easy route to chromeno[2,3-b]quinolinedione. Tetrahedron Lett., 2014, 55, 2924-2928.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.072]
(b) Srinivas, V.; Koketsu, M. Synthesis of indole-2-, 3-, or 5-substituted propargylamines via gold(III)-catalyzed three component reaction of aldehyde, alkyne, and amine in aqueous medium. Tetrahedron, 2013, 69, 8025-8033.
[http://dx.doi.org/10.1016/j.tet.2013.06.098]
(c) Chawla, R.; Singh, A.K.; Yadav, L.D.S.K. 2S2O8-Mediated aerobic oxysulfonylation of olefins into β-keto sulfones in aqueous media. Eur. J. Org. Chem., 2014, 10, 2032-2036.
[http://dx.doi.org/10.1002/ejoc.201301833]
(d) Singh, M.; Yadav, L.D.S.; Singh, R.K.P. Direct radical sulfonylation at α-C(sp3)-H of THF with sodium sulfinates in aqueous medium. Tetrahedron Lett., 2019, 60, 810-813.
[http://dx.doi.org/10.1016/j.tetlet.2019.02.021]
(e) Chawla, R.; Kapoor, R.; Singh, A.K.; Yadav, L.D.S. Green Chem., 2012, 14, 1308-1313.
[http://dx.doi.org/10.1039/c2gc16664j]
(f) Smith, J.D.; Ansari, T.N.; Andersson, M.P.; Yadagiri, D.; Ibrahim, F.; Liang, S-Z.; Hammond, G.B.; Gallou, F.; Handa, S. Micelle-enabled clean and selective sulfonylation of polyfluoroarenes in water under mild conditions. Green Chem., 2018, 20, 1784-1790.
[http://dx.doi.org/10.1039/C7GC03514D]
[19]
Li, W-Y.; Yin, G-X.; Huang, L.; Xiao, Y.; Fu, Z-M.; Xin, X.; Liu, F.; Li, Z-Z.; He, W-M. Regioselective and stereoselective sulfonylation of alkynylcarbonyl compounds in water. Green Chem., 2016, 18, 4879-4883.
[http://dx.doi.org/10.1039/C6GC01196A]
[20]
Lu, G-P.; Cai, C.; Chen, F.; Ye, R-L.; Zhou, B-J. Facile sulfa-Michael reactions with sodium arylsulfinates in water: the promotion of water on the reaction. ACS Sustain. Chem.& Eng., 2016, 4, 1804-1809.
[http://dx.doi.org/10.1021/acssuschemeng.5b01784]
[21]
Xiong, Y-S.; Weng, J.; Lua, G. Manganese(III)-mediated and -catalyzed decarboxylative hydroxysulfonylation of arylpropiolic acids with sodium sulfinates in water. Adv. Synth. Catal., 2018, 360, 1611-1616.
[http://dx.doi.org/10.1002/adsc.201701209]
[22]
Li, L-X.; Dong, D-Q.; Hao, S-H.; Wang, Z-L. Direct sulfonylation of pyrazolones with sodium sulfinates catalyzed by TBAI in water. Tetrahedron Lett., 2018, 59, 1517-1520.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.023]
[23]
Kumar, N.; Kumar, A. Amino acid-catalyzed direct synthesis of β-keto sulfones via aerobic difunctionalization of terminal alkynes in an aqueous medium. ACS Sustain. Chem.& Eng., 2019, 7, 9182-9188.
[http://dx.doi.org/10.1021/acssuschemeng.8b06566]
[24]
Li, B.; Li, Y-Q.; Yu, L-Q.; Wu, X-Y.; Wei, W-G. Metal-free sulfonylation of quinones with sulfonyl hydrazides in water: Facile access to mono-sulfonylated hydroquinones. Tetrahedron, 2017, 73, 2760-2765.
[http://dx.doi.org/10.1016/j.tet.2017.03.066]
[25]
Kim, Y.J.; Choo, M.H.; Kim, D.Y. Potassium iodide-mediated radical arylsulfonylation/1,2-carbon migration sequences for the synthesis of β-sulfonated cyclic ketones. Tetrahedron Lett., 2018, 59, 3863-3866.
[http://dx.doi.org/10.1016/j.tetlet.2018.09.027]
[26]
Bao, W-H.; Ying, W-W.; Xu, X-D.; Zhou, G-D.; Meng, X-X.; Wei, W-T.; Liu, Y-Y.; Li, Q. Radical Heck-type reaction of styrenes with sulfonyl hydrazides on water at room temperature. Tetrahedron Lett., 2019, 60, 55-58.
[http://dx.doi.org/10.1016/j.tetlet.2018.11.059]
[27]
Guo, Y.; Wang, G.; Wei, L.; Wan, J-P. Domino C-H sulfonylation and pyrazole annulation for fully substituted pyrazole synthesis in water using hydrophilic enaminones. J. Org. Chem., 2019, 84(5), 2984-2990.
[http://dx.doi.org/10.1021/acs.joc.8b02897] [PMID: 30714367]
[28]
Xie, L-Y.; Peng, S.; Tan, J-X.; Sun, R-X.; Yu, X-Y.; Dai, N-N.; Tang, Z-L.; Xu, X-H.; He, W-M. Waste-minimized protocol for the synthesis of sulfonylated N-heteroaromatics in water. ACS Sustain. Chem.& Eng., 2018, 6, 16976-16981.
[http://dx.doi.org/10.1021/acssuschemeng.8b04339]
[29]
Bao, P-L.; Wang, L-L.; Liu, Q-S.; Yang, D-S.; Wang, H.; Zhao, X-H.; Yue, H-L.; Wei, W. Direct coupling of haloquinolines and sulfonyl chlorides leading to sulfonylated quinolines in water. Tetrahedron Lett., 2019, 60, 214-218.
[http://dx.doi.org/10.1016/j.tetlet.2018.12.016]
[30]
Wu, C.; Yang, P.; Fu, Z.; Peng, Y.; Wang, X.; Zhang, Z.; Liu, F.; Li, W.; Li, Z.; He, W. Regio- and stereoselective hydrosulfonation of alkynylcarbonyl compounds with sulfinic acid in water. J. Org. Chem., 2016, 81(22), 10664-10671.
[http://dx.doi.org/10.1021/acs.joc.6b01549] [PMID: 27934477]
[31]
Wei, W.; Cui, H-H.; Yang, D-S.; Yue, H-L.; He, C-L.; Zhang, Y-L.; Wang, H. Visible-light-enabled spirocyclization of alkynes leading to 3-sulfonyl and 3-sulfenyl azaspiro[4,5]trienones. Green Chem., 2017, 19, 5608-5613.
[http://dx.doi.org/10.1039/C7GC02330H]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 4
Year: 2020
Published on: 27 July, 2020
Page: [271 - 281]
Pages: 11
DOI: 10.2174/1570179417666200316124107
Price: $65

Article Metrics

PDF: 23
HTML: 2