An Overview of Reforming Technologies and the Effect of Parameters on the Catalytic Performance of Mesoporous Silica/Alumina Supported Nickel Catalysts for Syngas Production by Methane Dry Reforming

Author(s): M.A. Saad*, N.H. Abdurahman, Rosli Mohd Yunus, Mohammed Kamil, Omar I. Awad

Journal Name: Recent Innovations in Chemical Engineering
Formerly: Recent Patents on Chemical Engineering

Volume 13 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Synthetic gas - a combination of (H2) and (CO) - is an important chemical intermediate for the production of liquid hydrocarbon, olefin, gasoline, and other valuable chemicals. Several reforming methods that use steam, carbon dioxide, and oxygen in the presence of various catalytic systems have been extensively investigated, and this paper reviews the recent research on the state-of-the-art of reforming technologies and the effect of parameters on the catalytic activity of mesoporous silica/alumina supported nickel catalysts for syngas production by methane dry reforming. First, we provide an overview of reforming technologies, including methane dry reforming, steam methane reforming, partial oxidation of CH4, and auto thermal reforming of CH4. Then, we review the literature on dry reforming catalysts. Next, we describe recent findings on the effect of parameters on the catalytic activity of mesoporous silica/alumina supported nickel catalysts for syngas production. Finally, we make proposals for future research. This study can help achieve a better understanding of the reforming technologies and the effects of parameters on catalytic performance for syngas production, thus contributing to the development of green technologies.

Keywords: Syngas, methane dry reforming, mesoporous, silica, alumina, nickel-catalyst.

[1]
Lavoie J-M. Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation. Front Chem 2014; 2: 81.
[http://dx.doi.org/10.3389/fchem.2014.00081]
[2]
Er-Rbib H, Bouallou C, Werkoff F. Dry reforming of methane-review of feasibility studies. Chem Eng 2012; 29: 2-3.
[3]
Sharma BK, Sharma MP, Roy SK, et al. Fischer-Tropsch synthesis with Co/SiO2-Al2O3 catalyst and steady-state modeling using artificial neural networks. Fuel 1998; 77(15): 1763-8.
[http://dx.doi.org/10.1016/S0016-2361(98)00110-0]
[4]
Xiong H, Moyo M, Motchelaho MA, et al. Fischer-Tropsch synthesis: Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. J Catal 2014; 311: 80-7.
[http://dx.doi.org/10.1016/j.jcat.2013.11.007]
[5]
Baliban RC, Elia JA, Weekman V, Floudas CA. Process synthesis of hybrid coal, biomass, and natural gas to liquids via Fischer-Tropsch synthesis, ZSM-5 catalytic conversion, methanol synthesis, methanol-to-gasoline, and methanol-to-olefins/distillate technologies. Comput Chem Eng 2012; 47: 29-56.
[http://dx.doi.org/10.1016/j.compchemeng.2012.06.032]
[6]
Zeng Y, Ma H, Zhang H, Ying W, Fang D. Impact of heating rate and solvent on Ni-based catalysts prepared by solution combustion method for syngas methanation. Pol J Chem Technol 2014; 16(4): 95-100.
[http://dx.doi.org/10.2478/pjct-2014-0076]
[7]
Parthasarathy P, Narayanan KS. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield- A review. Renew Energy 2014; 66: 570-9.
[http://dx.doi.org/10.1016/j.renene.2013.12.025]
[8]
Mostafavi E, Mahinpey N, Rahman M, Sedghkerdar MH, Gupta R. High-purity hydrogen production from ash-free coal by catalytic steam gasification integrated with dry-sorption CO2 capture. Fuel 2016; 178: 272-82.
[http://dx.doi.org/10.1016/j.fuel.2016.03.026]
[9]
Talkhoncheh SK, Haghighi M. Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina. J Nat Gas Sci Eng 2015; 23: 16-25.
[http://dx.doi.org/10.1016/j.jngse.2015.01.020]
[10]
Al-Zareer M, Dincer I, Rosen MA. Effects of various gasification parameters and operating conditions on syngas and hydrogen production. Chem Eng Res Des 2016; 115: 1-18.
[http://dx.doi.org/10.1016/j.cherd.2016.09.009]
[11]
Li W, Ren J, Zhao X-Y, Takarada TH. 2 and syngas production from catalytic cracking of pig manure and compost pyrolysis vapor over Ni-based catalysts. Pol J Chem Technol 2018; 20(3): 8-14.
[http://dx.doi.org/10.2478/pjct-2018-0032]
[12]
Choudhary VR, Mondal KC. CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Appl Energy 2006; 83(9): 1024-32.
[http://dx.doi.org/10.1016/j.apenergy.2005.09.008]
[13]
Shimura K, Yoshida H. Semiconductor photocatalysts for non-oxidative coupling, dry reforming and steam reforming of methane. Catal Surv Asia 2014; 18(1): 24-33.
[http://dx.doi.org/10.1007/s10563-014-9165-z]
[14]
Jang W-J, Jeong DW, Shim JO, et al. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application. Appl Energy 2016; 173: 80-91.
[http://dx.doi.org/10.1016/j.apenergy.2016.04.006]
[15]
Asencios YJ, Assaf EM. Combination of dry reforming and partial oxidation of methane on NiO-MgO-ZrO2 catalyst: Effect of nickel content. Fuel Process Technol 2013; 106: 247-52.
[http://dx.doi.org/10.1016/j.fuproc.2012.08.004]
[16]
Kaiwen L, Bin Y, Tao Z. Economic analysis of hydrogen production from steam reforming process: A literature review. Energy Sources B Econ Plan Policy 2018; 13(2): 109-15.
[http://dx.doi.org/10.1080/15567249.2017.1387619]
[17]
Setiabudi HD, Chong CC, Abed S, Teh L, Chin S. Comparative study of Ni-Ce loading method: Beneficial effect of ultrasonic-assisted impregnation method in CO2 reforming of CH4 over Ni-Ce/SBA-15. J Environ Chem Eng 2018; 6(1): 745-53.
[http://dx.doi.org/10.1016/j.jece.2018.01.001]
[18]
Abatzoglou N, Fauteux‐Lefebvre C. Review of catalytic syngas production through steam or dry reforming and partial oxidation of studied liquid compounds. Wiley Interdiscip Rev Energy Environ 2016; 5(2): 169-87.
[http://dx.doi.org/10.1002/wene.167]
[19]
Sehested J. Four challenges for nickel steam-reforming catalysts. Catal Today 2006; 111(1-2): 103-10.
[http://dx.doi.org/10.1016/j.cattod.2005.10.002]
[20]
Voldsund M, Jordal K, Anantharaman R. Hydrogen production with CO2 capture. Int J Hydrogen Energy 2016; 41(9): 4969-92.
[http://dx.doi.org/10.1016/j.ijhydene.2016.01.009]
[21]
Saad MA, Kamil M, Abdurahman N, Yunus RM, Awad OI. an overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions. Processes (Basel) 2019; 7(7): 470.
[http://dx.doi.org/10.3390/pr7070470]
[22]
Salkuyeh YK, Adams TA. Combining coal gasification, natural gas reforming, and external carbonless heat for efficient production of gasoline and diesel with CO2 capture and sequestration. Energy Convers Manage 2013; 74: 492-504.
[http://dx.doi.org/10.1016/j.enconman.2013.07.023]
[23]
Zhang RJ, Xia GF, Li MF, Yu W, Hong N, Li DD. Effect of support on the performance of Ni-based catalysts in methane dry reforming. J Fuel Chem Technol 2015; 43(11): 1359-65.
[http://dx.doi.org/10.1016/S1872-5813(15)30040-2]
[24]
Sutthiumporn K, Kawi S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression. Int J Hydrogen Energy 2011; 36(22): 14435-46.
[http://dx.doi.org/10.1016/j.ijhydene.2011.08.022]
[25]
Alipour Z, Rezaei M, Meshkani F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J Ind Eng Chem 2014; 20(5): 2858-63.
[http://dx.doi.org/10.1016/j.jiec.2013.11.018]
[26]
Bianchini A, Pellegrini M, Saccani C. Solar steam reforming of natural gas integrated with a gas turbine power plant. Sol Energy 2013; 96: 46-55.
[http://dx.doi.org/10.1016/j.solener.2013.06.030]
[27]
Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN. Catalyst design for dry reforming of methane: Analysis review. Renew Sustain Energy Rev 2018; 82: 2570-85.
[http://dx.doi.org/10.1016/j.rser.2017.09.076]
[28]
Hossain MA, Ayodele BV, Cheng CK, Khan MR. Syngas production from catalytic CO2 reforming of CH4 over CaFe2O4 supported Ni and Co catalysts: Full factorial design screening. Bull Chem React Eng Catal 2018; 13(1): 57-73.
[http://dx.doi.org/10.9767/bcrec.13.1.1197.57-73]
[29]
Chen C, et al. Synthesis of mesoporous Ni-La-Si mixed oxides for CO2 reforming of CH4 with a high H2 selectivity. Fuel Process Technol 2019; 185: 56-67.
[http://dx.doi.org/10.1016/j.fuproc.2018.11.017]
[30]
de Caprariis B, et al. Rh, Ru and Pt ternary perovskites type oxides BaZr (1-x) MexO3 for methane dry reforming. Appl Catal A Gen 2016; 517: 47-55.
[http://dx.doi.org/10.1016/j.apcata.2016.02.029]
[31]
Souza MM, Schmal M. Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Appl Catal A Gen 2005; 281(1-2): 19-24.
[http://dx.doi.org/10.1016/j.apcata.2004.11.007]
[32]
Budiman AW, Song S-H, Chang T-S, Shin C-H, Choi M-J. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development. Catal Surv Asia 2012; 16(4): 183-97.
[http://dx.doi.org/10.1007/s10563-012-9143-2]
[33]
Pakhare D, Spivey J. A review of dry (CO 2) reforming of methane over noble metal catalysts. Chem Soc Rev 2014; 43(22): 7813-37.
[http://dx.doi.org/10.1039/C3CS60395D]
[34]
Usman M, Daud WW, Abbas HF. Dry reforming of methane: Influence of process parameters—A review. Renew Sustain Energy Rev 2015; 45: 710-44.
[http://dx.doi.org/10.1016/j.rser.2015.02.026]
[35]
Abdullah B, Ghani NAA, Vo D-VN. Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 2017; 162: 170-85.
[http://dx.doi.org/10.1016/j.jclepro.2017.05.176]
[36]
Ayodele BV, Hossain SS, Lam SS, Osazuwa OU, Khan MR, Cheng CK. Syngas production from CO2 reforming of methane over neodymium sesquioxide supported cobalt catalyst. J Nat Gas Sci Eng 2016; 34: 873-85.
[http://dx.doi.org/10.1016/j.jngse.2016.07.059]
[37]
Ayodele BV, Khan MR, Cheng CK. Catalytic performance of ceria-supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane. Int J Hydrogen Energy 2016; 41(1): 198-207.
[http://dx.doi.org/10.1016/j.ijhydene.2015.10.049]
[38]
Ayodele BV, Cheng CK. Process modelling, thermodynamic analysis and optimization of dry reforming, partial oxidation and auto-thermal methane reforming for hydrogen and syngas production. Chem Prod Proc Mod 2015; 10(4): 211-20.
[http://dx.doi.org/10.1515/cppm-2015-0027]
[39]
Sheu EJ, Mokheimer EM, Ghoniem AF. A review of solar methane reforming systems. Int J Hydrogen Energy 2015; 40(38): 12929-55.
[http://dx.doi.org/10.1016/j.ijhydene.2015.08.005]
[40]
Serrano-Lotina A, Daza L. Influence of the operating parameters over dry reforming of methane to syngas. Int J Hydrogen Energy 2014; 39(8): 4089-94.
[http://dx.doi.org/10.1016/j.ijhydene.2013.05.135]
[41]
Arora S, Prasad R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts. RSC Advances 2016; 6(110): 108668-88.
[http://dx.doi.org/10.1039/C6RA20450C]
[42]
Zhang J, Wang H, Dalai AK. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4. Appl Catal A Gen 2008; 339(2): 121-9.
[http://dx.doi.org/10.1016/j.apcata.2008.01.027]
[43]
Liang M, Tian L, Shakouri M, Hu Y, Wang H. Development of shaped NiCoMg/γ-Al2O3 catalyst with commercial support for CO2 reforming of CH4. Catal Today 2017; 291: 76-85.
[http://dx.doi.org/10.1016/j.cattod.2017.02.048]
[44]
Ross JR. Natural gas reforming and CO2 mitigation. Catal Today 2005; 100(1-2): 151-8.
[http://dx.doi.org/10.1016/j.cattod.2005.03.044]
[45]
Mann D, Rice S. Autothermal reforming of natural gas to synthesis gas KBR 2031. Sandia National Laboratories 2007.
[46]
Haro P, Johnsson F, Thunman H. Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment. Energy 2016; 101: 380-9.
[http://dx.doi.org/10.1016/j.energy.2016.02.037]
[47]
Barelli L, Bidini G, Ottaviano A. Part load operation of SOFC/GT hybrid systems: Stationary analysis. Int J Hydrogen Energy 2012; 37(21): 16140-50.
[http://dx.doi.org/10.1016/j.ijhydene.2012.08.015]
[48]
Go KS, Son SR, Kim SD, Kang KS, Park CS. Hydrogen production from two-step steam methane reforming in a fluidized bed reactor. Int J Hydrogen Energy 2009; 34(3): 1301-9.
[http://dx.doi.org/10.1016/j.ijhydene.2008.11.062]
[49]
Haryanto A, Fernando SD, To SF, Steele PH, Pordesimo L, Adhikari S. Hydrogen production through the water - gas shift reaction: Thermodynamic equilibrium versus experimental results over supported Ni catalysts. Energy Fuels 2009; 23(6): 3097-102.
[http://dx.doi.org/10.1021/ef801076r]
[50]
Nguyen TH, Łamacz A, Krztoń A, et al. Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst II: Global kinetics of methane total oxidation, dry reforming and partial oxidation. Appl Catal B 2015; 165: 389-98.
[http://dx.doi.org/10.1016/j.apcatb.2014.10.019]
[51]
Basile A, Curcio S, Bagnato G, Liguori S, Jokar S, Iulianelli A. Water gas shift reaction in membrane reactors: Theoretical investigation by artificial neural networks model and experimental validation. Int J Hydrogen Energy 2015; 40(17): 5897-906.
[52]
Song X, Guo Z. Technologies for direct production of flexible H2/CO synthesis gas. Energy Convers Manage 2006; 47(5): 560-9.
[http://dx.doi.org/10.1016/j.enconman.2005.05.012]
[53]
York AP, Xiao T, Green ML. Brief overview of the partial oxidation of methane to synthesis gas. Top Catal 2003; 22(3-4): 345-58.
[http://dx.doi.org/10.1023/A:1023552709642]
[54]
Zhu Q, Zhao X, Deng Y. Advances in the partial oxidation of methane to synthesis gas. J Nat Gas Chem 2004; 13(4): 191-203.
[55]
Palma V, Ricca A, Ciambelli P. Structured catalysts for methane auto-thermal reforming in a compact thermal integrated reaction system. Appl Therm Eng 2013; 61(1): 128-33.
[http://dx.doi.org/10.1016/j.applthermaleng.2013.03.038]
[56]
Wang Z, Cao X-M, Zhu J, Hu P. Activity and coke formation of nickel and nickel carbide in dry reforming: A deactivation scheme from density functional theory. J Catal 2014; 311: 469-80.
[http://dx.doi.org/10.1016/j.jcat.2013.12.015]
[57]
Song X, Guo Z. Technologies for direct production of flexible H2/CO synthesis gas. Energy Convers Manage 2006; 47(5): 560-9.
[http://dx.doi.org/10.1016/j.enconman.2005.05.012]
[58]
Argyle M, Bartholomew C. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015; 5(1): 145-269.
[http://dx.doi.org/10.3390/catal5010145]
[59]
Kothari R, Buddhi D, Sawhney R. Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sustain Energy Rev 2008; 12(2): 553-63.
[http://dx.doi.org/10.1016/j.rser.2006.07.012]
[60]
Nagaoka K, Takanabe K, Aika K-I. Influence of the reduction temperature on catalytic activity of Co/TiO2 (anatase-type) for high pressure dry reforming of methane. Appl Catal A Gen 2003; 255(1): 13-21.
[http://dx.doi.org/10.1016/S0926-860X(03)00631-8]
[61]
Sepehri S, Rezaei M, Garbarino G, Busca G. Preparation and characterization of mesoporous nanocrystalline La-, Ce-, Zr-, Sr-containing NiAl2O3 methane autothermal reforming catalysts. Int J Hydrogen Energy 2016; 41(21): 8855-62.
[http://dx.doi.org/10.1016/j.ijhydene.2016.03.139]
[62]
Ewbank JL, Kovarik L, Kenvin CC, Sievers C. Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane. Green Chem 2014; 16(2): 885-96.
[http://dx.doi.org/10.1039/C3GC41782D]
[63]
Ohno T, Masuda T, Ochibe S, et al. Effect of the reduction condition on the catalytic activity for steam reforming process using Ni doped LaAlO3 nano-particles. Adv Powder Technol 2016; 27(1): 179-83.
[http://dx.doi.org/10.1016/j.apt.2015.11.013]
[64]
Kim J-H, Suh DJ, Park T-J, Kim K-L. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts. Appl Catal A Gen 2000; 197(2): 191-200.
[http://dx.doi.org/10.1016/S0926-860X(99)00487-1]
[65]
Lv X, Chen J-F, Tan Y, Zhang Y. A highly dispersed nickel supported catalyst for dry reforming of methane. Catal Commun 2012; 20: 6-11.
[http://dx.doi.org/10.1016/j.catcom.2012.01.002]
[66]
Sierra G, Batiot-Dupeyrat C, Barrault J, Mondragón F. Dual active-site mechanism for dry methane reforming over Ni/La2O3 produced from LaNiO3 perovskite. Ind Eng Chem Res 2008; 47(23): 9272-8.
[http://dx.doi.org/10.1021/ie800281t]
[67]
Ruckenstein E, Wang H. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts. J Catal 2002; 205(2): 289-93.
[http://dx.doi.org/10.1006/jcat.2001.3458]
[68]
Naeem MA, Al-Fatesh AS, Khan WU, Abasaeed AE, Fakeeha AH. Syngas production from dry reforming of methane over nano Ni polyol catalysts. Int J Chem Eng Appl 2013; 4(5): 315-20.
[http://dx.doi.org/10.7763/IJCEA.2013.V4.317]
[69]
Nikoo MK, Amin N. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol 2011; 92(3): 678-91.
[http://dx.doi.org/10.1016/j.fuproc.2010.11.027]
[70]
Palma V, Ricca A, Meloni E, Martino M, Miccio M, Ciambelli P. Experimental and numerical investigations on structured catalysts for methane steam reforming intensification. J Clean Prod 2016; 111: 217-30.
[http://dx.doi.org/10.1016/j.jclepro.2015.09.004]
[71]
Campanati M, Fornasari G, Vaccari A. Fundamentals in the preparation of heterogeneous catalysts. Catal Today 2003; 77(4): 299-314.
[http://dx.doi.org/10.1016/S0920-5861(02)00375-9]
[72]
Das T, Deo G. Effects of metal loading and support for supported cobalt catalyst. Catal Today 2012; 198(1): 116-24.
[http://dx.doi.org/10.1016/j.cattod.2012.04.028]
[73]
Shiraz MHA, Rezaei M, Meshkani F. Microemulsion synthesis method for preparation of mesoporous nanocrystalline γ-Al2O3 powders as catalyst carrier for nickel catalyst in dry reforming reaction. Int J Hydrogen Energy 2016; 41(15): 6353-61.
[http://dx.doi.org/10.1016/j.ijhydene.2016.03.017]
[74]
Arbag H, Yasyerli S, Yasyerli N, Dogu T, Dogu G. Coke minimization in dry reforming of methane by Ni based mesoporous alumina catalysts synthesized following different routes: Effects of W and Mg. Top Catal 2013; 56(18-20): 1695-707.
[http://dx.doi.org/10.1007/s11244-013-0105-3]
[75]
Fakeeha AH, Naeem MA, Khan WU, Al-Fatesh AS. Syngas production via CO2 reforming of methane using Co-Sr-Al catalyst. J Ind Eng Chem 2014; 20(2): 549-57.
[http://dx.doi.org/10.1016/j.jiec.2013.05.013]
[76]
García-Vargas JM, Valverde JL, de Lucas-Consuegra A, Gómez-Monedero B, Sánchez P, Dorado F. Precursor influence and catalytic behaviour of Ni/CeO2 and Ni/SiC catalysts for the tri-reforming process. Appl Catal A Gen 2012; 431: 49-56.
[http://dx.doi.org/10.1016/j.apcata.2012.04.016]
[77]
El Hassan N, Kaydouh MN, Geagea H, et al. Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15. Appl Catal A Gen 2016; 520: 114-21.
[http://dx.doi.org/10.1016/j.apcata.2016.04.014]
[78]
Singh S, Kumar R, Setiabudi HD, Nanda S, Vo D-VN. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Appl Catal A Gen 2018; 559: 57-74.
[http://dx.doi.org/10.1016/j.apcata.2018.04.015]
[79]
Yasyerli S, Filizgok S, Arbag H, Yasyerli N, Dogu G. Ru incorporated Ni-MCM-41 mesoporous catalysts for dry reforming of methane: Effects of Mg addition, feed composition and temperature. Int J Hydrogen Energy 2011; 36(8): 4863-74.
[http://dx.doi.org/10.1016/j.ijhydene.2011.01.120]
[80]
Oemar U, Kathiraser Y, Mo L, Ho X, Kawi S. CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: Mechanism and kinetic modelling. Catal Sci Technol 2016; 6(4): 1173-86.
[http://dx.doi.org/10.1039/C5CY00906E]
[81]
Świrk K, Gálvez ME, Motak M, Grzybek T, Rønning M, Da Costa P. Syngas production from dry methane reforming over yttrium-promoted nickel-KIT-6 catalysts. Int J Hydrogen Energy 2019; 44(1): 274-86.
[http://dx.doi.org/10.1016/j.ijhydene.2018.02.164]
[82]
Paksoy AI, Caglayan BS, Aksoylu AE. A study on characterization and methane dry reforming performance of Co-Ce/ZrO2 catalyst. Appl Catal B 2015; 168: 164-74.
[http://dx.doi.org/10.1016/j.apcatb.2014.12.038]
[83]
Liu D, Quek XY, Cheo WNE, Lau R, Borgna A, Yang Y. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal-support interaction. J Catal 2009; 266(2): 380-90.
[http://dx.doi.org/10.1016/j.jcat.2009.07.004]
[84]
Gutiérrez L-F, Hamoudi S, Belkacemi K. Synthesis of gold catalysts supported on mesoporous silica materials: Recent developments. Catalysts 2011; 1(1): 97-154.
[http://dx.doi.org/10.3390/catal1010097]
[85]
Deshmane VG, Abrokwah RY, Kuila D. Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steam reforming of methanol. J Mol Catal Chem 2015; 408: 202-13.
[http://dx.doi.org/10.1016/j.molcata.2015.07.023]
[86]
González-Peña V, Márquez-Alvarez C, Sastre E, Pérez-Pariente J. 06-P-23-Improved thermal stability of mesoporous alumina support of catalysts for the isomerization of light paraffins. Stud Surf Sci Catal 2001; 135: 204.
[http://dx.doi.org/10.1016/S0167-2991(01)81400-2]
[87]
Tao K, Shi L, Ma Q, et al. Methane reforming with carbon dioxide over mesoporous nickel-alumina composite catalyst. Chem Eng J 2013; 221: 25-31.
[http://dx.doi.org/10.1016/j.cej.2013.01.073]
[88]
Aljishi A, Veilleux G, Lalinde JAH, Kopyscinski J. The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation. Appl Catal A Gen 2018; 549: 263-72.
[http://dx.doi.org/10.1016/j.apcata.2017.10.012]
[89]
Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J Am Chem Soc 2000; 122(48): 11925-33.
[http://dx.doi.org/10.1021/ja002245h]
[90]
Omoregbe O, Danh HT, Nguyen-Huy C, et al. Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters. Int J Hydrogen Energy 2017; 42(16): 11283-94.
[91]
Van Der Voort P, Benjelloun M, Vansant EF. Rationalization of the synthesis of SBA-16: Controlling the micro-and mesoporosity. J Phys Chem B 2002; 106(35): 9027-32.
[http://dx.doi.org/10.1021/jp0261152]
[92]
Chotirach M, Tungasmita S, Tungasmita DN, Tantayanon S. Titanium nitride promoted Ni-based SBA-15 catalyst for dry reforming of methane. Int J Hydrogen Energy 2018; 43(46): 21322-32.
[http://dx.doi.org/10.1016/j.ijhydene.2018.09.205]
[93]
Li Z, Li M, Bian Z, Kathiraser Y, Kawi S. Design of highly stable and selective core/yolk-shell nanocatalysts-A review. Appl Catal B 2016; 188: 324-41.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.067]
[94]
Liu K, Zhang J-J, Cheng F-F, Zheng T-T, Wang C, Zhu J-J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 2011; 21(32): 12034-40.
[http://dx.doi.org/10.1039/c1jm10749f]
[95]
Daoura O, Kaydouh M-N, El-Hassan N, Massiani P, Launay F, Boutros M. Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 (by CO2). J CO2 Utilization 2018; vol. 24: 112-9.
[http://dx.doi.org/10.1016/j.jcou.2017.12.010]
[96]
Al-Fatesh A, Fakeeha A. Effects of calcination and activation temperature on dry reforming catalysts. J Saudi Chem Soc 2012; 16(1): 55-61.
[http://dx.doi.org/10.1016/j.jscs.2010.10.020]
[97]
Valderrama G, Danh HT, Nguyen-Huy C, et al. Dry reforming of methane over Ni perovskite type oxides. Catal Today 2005; 107: 785-91.
[http://dx.doi.org/10.1016/j.cattod.2005.07.010]
[98]
Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S. CO2 dry-reforming of methane over La 0.8 Sr 0.2 Ni 0.8 M 0.2 O 3 perovskite (M= Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression. Int J Hydrogen Energy 2012; 37(15): 11195-207.
[99]
Therdthianwong S, Therdthianwong A, Siangchin C, Yongprapat S. Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2. Int J Hydrogen Energy 2008; 33(3): 991-9.
[http://dx.doi.org/10.1016/j.ijhydene.2007.11.029]
[100]
Foo SY, Cheng CK, Nguyen T-H, Adesina AA. Kinetic study of methane CO2 reforming on Co-Ni/Al2O3 and Ce-Co-Ni/Al2O3 catalysts. Catal Today 2011; 164(1): 221-6.
[http://dx.doi.org/10.1016/j.cattod.2010.10.092]
[101]
Amin MH, Putla S, Hamid SBA, Bhargava SK. Understanding the role of lanthanide promoters on the structure-activity of nanosized Ni/γ-Al2O3 catalysts in carbon dioxide reforming of methane. Appl Catal A Gen 2015; 492: 160-8.
[http://dx.doi.org/10.1016/j.apcata.2014.12.038]
[102]
Sokolov S, Kondratenko EV, Pohl M-M, Rodemerck U. Effect of calcination conditions on time on-stream performance of Ni/La2O3-ZrO2 in low-temperature dry reforming of methane. Int J Hydrogen Energy 2013; 38(36): 16121-32.
[http://dx.doi.org/10.1016/j.ijhydene.2013.10.013]
[103]
Dantas SC, Escritori JC, Soares RR, Hori CE. Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem Eng J 2010; 156(2): 380-7.
[http://dx.doi.org/10.1016/j.cej.2009.10.047]
[104]
Fuertes AB. Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials. Micr Mes Mat 2004; 67(2-3): 273-81.
[http://dx.doi.org/10.1016/j.micromeso.2003.11.012]
[105]
Erdogan B, Arbag H, Yasyerli N. SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane. Int J Hydrogen Energy 2018; 43(3): 1396-405.
[http://dx.doi.org/10.1016/j.ijhydene.2017.11.127]
[106]
Grams J, Potrzebowska N, Goscianska J, Michalkiewicz B, Ruppert AM. Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. Int J Hydrogen Energy 2016; 41(20): 8656-67.
[http://dx.doi.org/10.1016/j.ijhydene.2015.12.146]
[107]
Huang X, Ji C, Wang C, et al. Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4. Catal Today 2017; 281: 241-9.
[http://dx.doi.org/10.1016/j.cattod.2016.02.064]
[108]
HUO MM. Lin L, Xin Z, Zhang YH, Li JL. Synthesis of Ni-based catalysts supported on nitrogen-incorporated SBA-16 and their catalytic performance in the reforming of methane with carbon dioxide. J Fuel Chem Technol 2017; 45(2): 172-81.
[http://dx.doi.org/10.1016/S1872-5813(17)30012-9]
[109]
Li B, Su W, Lin X, Wang X. Catalytic performance and characterization of Neodymium-containing mesoporous silica supported nickel catalysts for methane reforming to syngas. Int J Hydrogen Energy 2017; 42(17): 12197-209.
[http://dx.doi.org/10.1016/j.ijhydene.2017.03.159]
[110]
Li B, Lin X, Luo Y, Yuan X, Wang X. Design of active and stable bimodal nickel catalysts for methane reforming with CO2. Fuel Process Technol 2018; 176: 153-66.
[http://dx.doi.org/10.1016/j.fuproc.2018.03.032]
[111]
Mourhly A, Kacimi M, Halim M, Arsalane S. New low cost mesoporous silica (MSN) as a promising support of Ni-catalysts for high-hydrogen generation via dry reforming of methane (DRM). Int J Hydrogen Energy 2018; 1-11.
[http://dx.doi.org/10.1016/j.ijhydene.2018.05.093]
[112]
Albarazi A, Beaunier P, Da Costa P. Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: On the effect of promotion by Ce0. 75Zr0. 25O2 mixed oxide. Int J Hydrogen Energy 2013; 38(1): 127-3.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 4
Year: 2020
Page: [303 - 322]
Pages: 20
DOI: 10.2174/2405520413666200313130420
Price: $65

Article Metrics

PDF: 13
HTML: 2