Using a Heat Diffusion Model to Detect Potential Drug Resistance Genes of Mycobacterium tuberculosis

Author(s): Ze-Jia Cui, Wei-Tong Zhang, Qiang Zhu*, Qing-Ye Zhang*, Hong-Yu Zhang

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the oldest known and most dangerous diseases. Although the spread of TB was controlled in the early 20th century using antibiotics and vaccines, TB has again become a threat because of increased drug resistance. There is still a lack of effective treatment regimens for a person who is already infected with multidrug-resistant Mtb (MDR-Mtb) or extensively drug-resistant Mtb (XDRMtb). In the past decades, many research groups have explored the drug resistance profiles of Mtb based on sequence data by GWAS, which identified some mutations that were significantly linked with drug resistance, and attempted to explain the resistance mechanisms. However, they mainly focused on several significant mutations in drug targets (e.g. rpoB, katG). Some genes which are potentially associated with drug resistance may be overlooked by the GWAS analysis.

Objective: In this article, our motivation is to detect potential drug resistance genes of Mtb using a heat diffusion model.

Methods: All sequencing data, which contained 127 samples of Mtb, i.e. 34 ethambutol-, 65 isoniazid-, 53 rifampicin- and 45 streptomycin-resistant strains. The raw sequence data were preprocessed using Trimmomatic software and aligned to the Mtb H37Rv reference genome using Bowtie2. From the resulting alignments, SAMtools and VarScan were used to filter sequences and call SNPs. The GWAS was performed by the PLINK package to obtain the significant SNPs, which were mapped to genes. The P-values of genes calculated by GWAS were transferred into a heat vector. The heat vector and the Mtb protein-protein interactions (PPI) derived from the STRING database were inputted into the heat diffusion model to obtain significant subnetworks by HotNet2. Finally, the most significant (P < 0.05) subnetworks associated with different phenotypes were obtained. To verify the change of binding energy between the drug and target before and after mutation, the method of molecular dynamics simulation was performed using the AMBER software.

Results: We identified significant subnetworks in rifampicin-resistant samples. Excitingly, we found rpoB and rpoC, which are drug targets of rifampicin. From the protein structure of rpoB, the mutation location was extremely close to the drug binding site, with a distance of only 3.97 Å. Molecular dynamics simulation revealed that the binding energy of rpoB and rifampicin decreased after D435V mutation. To a large extent, this mutation can influence the affinity of drug-target binding. In addition, topA and pyrG were reported to be linked with drug resistance, and might be new TB drug targets. Other genes that have not yet been reported are worth further study.

Conclusion: Using a heat diffusion model in combination with GWAS results and protein-protein interactions, the significantly mutated subnetworks in rifampicin-resistant samples were found. The subnetwork not only contained the known targets of rifampicin (rpoB, rpoC), but also included topA and pyrG, which are potentially associated with drug resistance. Together, these results offer deeper insights into drug resistance of Mtb, and provides potential drug targets for finding new antituberculosis drugs.

Keywords: Mycobacterium tuberculosis, drug resistance, protein-protein interactions, heat diffusion model, HotNet2 algorithm, subnetworks.

[1]
van Zyl, L.; du Plessis, J.; Viljoen, J. Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis (Edinb.), 2015, 95(6), 629-638.
[http://dx.doi.org/10.1016/j.tube.2014.12.006] [PMID: 26616847]
[2]
Shaw, D.J.; Robb, K.; Vetter, B.V.; Tong, M.; Molle, V.; Hunt, N.T.; Hoskisson, P.A. Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability. Sci. Rep., 2017, 7(1), 4714.
[http://dx.doi.org/10.1038/s41598-017-05042-4] [PMID: 28680153]
[3]
World Health Organization (WHO). 2018. Available from: https://www.who.int/tb/publications/global_report/en/
[4]
Lu, L.L.; Chung, A.W.; Rosebrock, T.R.; Ghebremichael, M.; Yu, W.H.; Grace, P.S.; Schoen, M.K.; Tafesse, F.; Martin, C.; Leung, V.; Mahan, A.E.; Sips, M.; Kumar, M.P.; Tedesco, J.; Robinson, H.; Tkachenko, E.; Draghi, M.; Freedberg, K.J.; Streeck, H.; Suscovich, T.J.; Lauffenburger, D.A.; Restrepo, B.I.; Day, C.; Fortune, S.M.; Alter, G. A Functional role for antibodies in tuberculosis. Cell, 2016, 167(2), 433-443.e14.
[http://dx.doi.org/10.1016/j.cell.2016.08.072] [PMID: 27667685]
[5]
Sergeev, R.S.; Kavaliou, I.; Sataneuski, U.; Gabrielian, A.; Rosenthal, A.; Tartakovsky, M. Genome-wide analysis of MDR and XDR Tuberculosis from Belarus: Machine-learning approach. IEEE/ACM Trans Comput. Biol. Bioinform., 2019, 16(4), 1398-1408.
[http://dx.doi.org/10.1109/TCBB.2017.2720669]
[6]
Miotto, P.; Cirillo, D.M.; Migliori, G.B. Drug resistance in Mycobacterium tuberculosis: Molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest, 2015, 147(4), 1135-1143.
[http://dx.doi.org/10.1378/chest.14-1286] [PMID: 25846529]
[7]
Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[8]
Zhang, Y.; Yew, W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis: Update 2015. Int. J. Tuberc. Lung Dis., 2015, 19(11), 1276-1289.
[http://dx.doi.org/10.5588/ijtld.15.0389] [PMID: 26467578]
[9]
Migliori, G.B.; Centis, R.; D’Ambrosio, L.; Spanevello, A.; Borroni, E.; Cirillo, D.M.; Sotgiu, G. Totally drug-resistant and extremely drug-resistant tuberculosis: The same disease? Clin. Infect. Dis., 2012, 54(9), 1379-1380.
[http://dx.doi.org/10.1093/cid/cis128] [PMID: 22492321]
[10]
Zumla, A.; Abubakar, I.; Raviglione, M.; Hoelscher, M.; Ditiu, L.; McHugh, T.D.; Squire, S.B.; Cox, H.; Ford, N.; McNerney, R.; Marais, B.; Grobusch, M.; Lawn, S.D.; Migliori, G.B.; Mwaba, P.; O’Grady, J.; Pletschette, M.; Ramsay, A.; Chakaya, J.; Schito, M.; Swaminathan, S.; Memish, Z.; Maeurer, M.; Atun, R. Drug-resistant tuberculosis-current dilemmas, unanswered questions, challenges, and priority needs. J. Infect. Dis., 2012, 205(Suppl. 2), S228-S240.
[http://dx.doi.org/10.1093/infdis/jir858] [PMID: 22476720]
[11]
Phelan, J.; Coll, F.; McNerney, R.; Ascher, D.B.; Pires, D.E.; Furnham, N.; Coeck, N.; Hill-Cawthorne, G.A.; Nair, M.B.; Mallard, K.; Ramsay, A.; Campino, S.; Hibberd, M.L.; Pain, A.; Rigouts, L.; Clark, T.G. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med., 2016, 14, 31.
[http://dx.doi.org/10.1186/s12916-016-0575-9] [PMID: 27005572]
[12]
Papaventsis, D.; Casali, N.; Kontsevaya, I.; Drobniewski, F.; Cirillo, D.M.; Nikolayevskyy, V. Whole genome sequencing of Mycobacterium tuberculosis for detection of drug resistance: A systematic review. Clin. Microbiol. Infect., 2017, 23(2), 61-68.
[http://dx.doi.org/10.1016/j.cmi.2016.09.008] [PMID: 27665704]
[13]
Vandin, F.; Clay, P.; Upfal, E.; Raphael, B.J. Discovery of mutated subnetworks associated with clinical data in cancer. Pac. Symp. Biocomput., 2012, 55-66.
[PMID: 22174262]
[14]
Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15), 2114-2120.
[http://dx.doi.org/10.1093/bioinformatics/btu170] [PMID: 24695404]
[15]
Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 2012, 9(4), 357-359.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[16]
Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 genome project data processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16), 2078-2079.
[http://dx.doi.org/10.1093/bioinformatics/btp352] [PMID: 19505943]
[17]
Koboldt, D.C.; Zhang, Q.; Larson, D.E.; Shen, D.; McLellan, M.D.; Lin, L.; Miller, C.A.; Mardis, E.R.; Ding, L.; Wilson, R.K. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res., 2012, 22(3), 568-576.
[http://dx.doi.org/10.1101/gr.129684.111] [PMID: 22300766]
[18]
Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; Sham, P.C. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 2007, 81(3), 559-575.
[http://dx.doi.org/10.1086/519795] [PMID: 17701901]
[19]
Harismendy, O.; Bansal, V.; Bhatia, G.; Nakano, M.; Scott, M.; Wang, X.; Dib, C.; Turlotte, E.; Sipe, J.C.; Murray, S.S.; Deleuze, J.F.; Bafna, V.; Topol, E.J.; Frazer, K.A. Population sequencing of two endocannabinoid metabolic genes identifies rare and common regulatory variants associated with extreme obesity and metabolite level. Genome Biol., 2010, 11(11), R118.
[http://dx.doi.org/10.1186/gb-2010-11-11-r118] [PMID: 21118518]
[20]
Leiserson, M.D.; Vandin, F.; Wu, H.T.; Dobson, J.R.; Eldridge, J.V.; Thomas, J.L.; Papoutsaki, A.; Kim, Y.; Niu, B.; McLellan, M.; Lawrence, M.S.; Gonzalez-Perez, A.; Tamborero, D.; Cheng, Y.; Ryslik, G.A.; Lopez-Bigas, N.; Getz, G.; Ding, L.; Raphael, B.J. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet., 2015, 47(2), 106-114.
[http://dx.doi.org/10.1038/ng.3168] [PMID: 25501392]
[21]
von Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res., 2003, 31(1), 258-261.
[http://dx.doi.org/10.1093/nar/gkg034] [PMID: 12519996]
[22]
Franceschini, A. STRINGdb package vignette. Nucleic Acids Res., 2013, (Database issue), D808-D815.
[PMID: 23203871]
[23]
Kolár, M.; Berka, K.; Jurecka, P.; Hobza, P. On the reliability of the AMBER force field and its empirical dispersion contribution for the description of noncovalent complexes. ChemPhysChem, 2010, 11(11), 2399-2408.
[http://dx.doi.org/10.1002/cphc.201000109] [PMID: 20629063]
[24]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[25]
Weis, A.; Katebzadeh, K.; Söderhjelm, P.; Nilsson, I.; Ryde, U. Ligand affinities predicted with the MM/PBSA method: Dependence on the simulation method and the force field. J. Med. Chem., 2006, 49(22), 6596-6606.
[http://dx.doi.org/10.1021/jm0608210] [PMID: 17064078]
[26]
Lou, Z.; Zhang, X. Protein targets for structure-based anti-Mycobacterium tuberculosis drug discovery. Protein Cell, 2010, 1(5), 435-442.
[http://dx.doi.org/10.1007/s13238-010-0057-3] [PMID: 21203958]
[27]
Coll, F.; McNerney, R.; Preston, M.D.; Guerra-Assunção, J.A.; Warry, A.; Hill-Cawthorne, G.; Mallard, K.; Nair, M.; Miranda, A.; Alves, A.; Perdigão, J.; Viveiros, M.; Portugal, I.; Hasan, Z.; Hasan, R.; Glynn, J.R.; Martin, N.; Pain, A.; Clark, T.G. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med., 2015, 7(1), 51.
[http://dx.doi.org/10.1186/s13073-015-0164-0] [PMID: 26019726]
[28]
Conde, M.B.; Lapa, E.; Silva, J.R. New regimens for reducing the duration of the treatment of drug-susceptible pulmonary tuberculosis. Drug Dev. Res., 2011, 72(6), 501-508.
[http://dx.doi.org/10.1002/ddr.20456] [PMID: 22267888]
[29]
Comas, I.; Borrell, S.; Roetzer, A.; Rose, G.; Malla, B.; Kato-Maeda, M.; Galagan, J.; Niemann, S.; Gagneux, S. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet., 2011, 44(1), 106-110.
[http://dx.doi.org/10.1038/ng.1038] [PMID: 22179134]
[30]
Brandis, G.; Wrande, M.; Liljas, L.; Hughes, D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol. Microbiol., 2012, 85(1), 142-151.
[http://dx.doi.org/10.1111/j.1365-2958.2012.08099.x] [PMID: 22646234]
[31]
Koch, A.; Mizrahi, V.; Warner, D.F. The impact of drug resistance on Mycobacterium tuberculosis physiology: What can we learn from rifampicin? Emerg. Microbes Infect., 2014, 3(3)e17
[http://dx.doi.org/10.1038/emi.2014.17] [PMID: 26038512]
[32]
Ramaswamy, S.; Musser, J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis., 1998, 79(1), 3-29.
[http://dx.doi.org/10.1054/tuld.1998.0002] [PMID: 10645439]
[33]
Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 2001, 104(6), 901-912.
[http://dx.doi.org/10.1016/S0092-8674(01)00286-0] [PMID: 11290327]
[34]
Unissa, A.N.; Hanna, L.E. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis (Edinb.), 2017, 105, 96-107.
[http://dx.doi.org/10.1016/j.tube.2017.04.008] [PMID: 28610794]
[35]
Lin, W.; Mandal, S.; Degen, D.; Liu, Y.; Ebright, Y.W.; Li, S.; Feng, Y.; Zhang, Y.; Mandal, S.; Jiang, Y.; Liu, S.; Gigliotti, M.; Talaue, M.; Connell, N.; Das, K.; Arnold, E.; Ebright, R.H. Structural Basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol. Cell, 2017, 66(2), 169-179.
[http://dx.doi.org/10.1016/j.molcel.2017.03.001] [PMID: 28392175]
[36]
Kanaya, S.; Yamada, Y.; Kudo, Y.; Ikemura, T. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: Gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene, 1999, 238(1), 143-155.
[http://dx.doi.org/10.1016/S0378-1119(99)00225-5] [PMID: 10570992]
[37]
Qian, W.; Yang, J.R.; Pearson, N.M.; Maclean, C.; Zhang, J. Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet., 2012, 8(3)e1002603
[http://dx.doi.org/10.1371/journal.pgen.1002603] [PMID: 22479199]
[38]
de Vos, M.; Müller, B.; Borrell, S.; Black, P.A.; van Helden, P.D.; Warren, R.M.; Gagneux, S.; Victor, T.C. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother., 2013, 57(2), 827-832.
[http://dx.doi.org/10.1128/AAC.01541-12] [PMID: 23208709]
[39]
Liu, L.F.; Wang, J.C. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. USA, 1987, 84(20), 7024-7027.
[http://dx.doi.org/10.1073/pnas.84.20.7024] [PMID: 2823250]
[40]
Drlica, K.; Franco, R.J.; Steck, T.R. Rifampin and rpoB mutations can alter DNA supercoiling in Escherichia coli. J. Bacteriol., 1988, 170(10), 4983-4985.
[http://dx.doi.org/10.1128/jb.170.10.4983-4985.1988] [PMID: 2844734]
[41]
Long, C.W.; Pardee, A.B. Cytidine triphosphate synthetase of Escherichia coli B. I. Purification and kinetics. J. Biol. Chem., 1967, 242(20), 4715-4721.
[PMID: 4862983]
[42]
Mori, G.; Chiarelli, L.R.; Esposito, M.; Makarov, V.; Bellinzoni, M.; Hartkoorn, R.C.; Degiacomi, G.; Boldrin, F.; Ekins, S.; de Jesus Lopes Ribeiro, A.L.; Marino, L.B.; Centárová, I.; Svetlíková, Z.; Blaško, J.; Kazakova, E.; Lepioshkin, A.; Barilone, N.; Zanoni, G.; Porta, A.; Fondi, M.; Fani, R.; Baulard, A.R.; Mikušová, K.; Alzari, P.M.; Manganelli, R.; de Carvalho, L.P.; Riccardi, G.; Cole, S.T.; Pasca, M.R. Thiophenecarboxamide derivatives activated by EthA kill Mycobacterium tuberculosis by inhibiting the CTP synthetase pyrG. Chem. Biol., 2015, 22(7), 917-927.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.016] [PMID: 26097035]
[43]
Trauner, A.; Borrell, S.; Reither, K.; Gagneux, S. Evolution of drug resistance in tuberculosis: Recent progress and implications for diagnosis and therapy. Drugs, 2014, 74(10), 1063-1072.
[http://dx.doi.org/10.1007/s40265-014-0248-y] [PMID: 24962424]
[44]
Li, Y.; Kuwahara, H.; Yang, P. PGCN: Disease gene prioritization by disease and gene embedding through graph convolutional neural networks. bioRxiv, 2019.532226
[http://dx.doi.org/10.1101/532226]
[45]
Li, Y.; Huang, C.; Ding, L.; Li, Z.; Pan, Y.; Gao, X. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods, 2019, 166, 4-21.
[http://dx.doi.org/10.1016/j.ymeth.2019.04.008] [PMID: 31022451]
[46]
Xia, Z.; Li, Y.; Zhang, B.; Li, Z.; Hu, Y.; Chen, W.; Gao, X. DeeReCT-PolyA: A robust and generic deep learning method for PAS identification. Bioinformatics, 2019, 35(14), 2371-2379.
[http://dx.doi.org/10.1093/bioinformatics/bty991] [PMID: 30500881]
[47]
Umarov, R.; Kuwahara, H.; Li, Y.; Gao, X.; Solovyev, V. Promoter analysis and prediction in the human genome using sequence-based deep learning models. Bioinformatics, 2019, 35(16), 2730-2737.
[http://dx.doi.org/10.1093/bioinformatics/bty1068] [PMID: 30601980]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 8
Year: 2020
Published on: 23 September, 2020
Page: [711 - 717]
Pages: 7
DOI: 10.2174/0929866527666200313113157
Price: $65

Article Metrics

PDF: 25
HTML: 1