Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Effects of Succinic Acid Supplementation on Stable Cell Line Growth, Aggregation, and IgG and IgA Production

Author(s): Victoria Argentova*, Teimur Aliev, Dmitry Dolgikh and Mikhail Kirpichnikov

Volume 21, Issue 10, 2020

Page: [990 - 996] Pages: 7

DOI: 10.2174/1389201021666200312130957

Price: $65

Abstract

Background: Immunoglobulin (Ig) G is the most commonly used therapeutic antibodies. Recently, the interest in IgA antibodies to treat respiratory infectious diseases has been increasing. The reason for the inefficient use of IgA is recombinant antibody aggregation in cell culture, affecting the longevity and productivity of cell lines. Lactate is an important metabolite that affects the cultivation of stable cell lines producing monoclonal antibodies.

Methods: In the present study, we investigated whether different combinations of succinic acid and micro-additives affect lactate production, which correlates with productivity. The effect of succinic acid substitution on productivity of cells producing IgG/IgA was analyzed using the static culture method in a six-well plate. Lactate was measured in supernatant of cell culture indirectly by using the activity of Lactate Dehydrogenase (LDH).A low lactate level was observed in cultivation medium supplemented with succinic acid or asparagine combined with some inorganic salts.

Results: The results also demonstrated the effect of component supplementation on homogeneity, longevity, and productivity of cell culture. Supplementation of succinic acid eliminated cell aggregation and improved homogeneity of stable cell lines producing IgG and, especially, IgA.

Conclusion: Overall, succinic acid supplementation to the culture medium has potential biotechnological applications in the production IgG and IgA.

Keywords: IgG, IgA, lactate, monoclonal antibody, productivity, succinic acid.

« Previous
Graphical Abstract
[1]
Durocher, Y.; Butler, M. Expression systems for therapeutic glycoprotein production. Curr. Opin. Biotechnol., 2009, 20(6), 700-707.
[http://dx.doi.org/10.1016/j.copbio.2009.10.008] [PMID: 19889531]
[2]
Turner, T.M.; Jones, L.P.; Tompkins, S.M.; Tripp, R.A. A novel influenza virus hemagglutinin-Respiratory Syncytial Virus (RSV) fusion protein subunit vaccine against influenza and RSV. J. Virol., 2013, 87(19), 10792-10804.
[http://dx.doi.org/10.1128/JVI.01724-13] [PMID: 23903841]
[3]
Wang, W. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm., 2005, 289(1-2), 1-30.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.014] [PMID: 15652195]
[4]
Cromwell, M.E.; Hilario, E.; Jacobson, F. Protein aggregation and bioprocessing. AAPS J., 2006, 8(3), E572-E579.
[http://dx.doi.org/10.1208/aapsj080366] [PMID: 17025275]
[5]
Vázquez-Rey, M.; Lang, D.A.; Lang, D.A. Aggregates in monoclonal antibody manufacturing processes. Biotechnol. Bioeng., 2011, 108(7), 1494-1508.
[http://dx.doi.org/10.1002/bit.23155] [PMID: 21480193]
[6]
Gabrielson, J.P.; Brader, M.L.; Pekar, A.H.; Mathis, K.B.; Winter, G.; Carpenter, J.F.; Randolph, T.W. Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size-exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. J. Pharm. Sci., 2007, 96(2), 268-279.
[http://dx.doi.org/10.1002/jps.20760] [PMID: 17080424]
[7]
Ahn, W.S.; Antoniewicz, M.R. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab. Eng., 2011, 13(5), 598-609.
[http://dx.doi.org/10.1016/j.ymben.2011.07.002] [PMID: 21821143]
[8]
Carinhas, N.; Duarte, T.M.; Barreiro, L.C.; Carrondo, M.J.T.; Alves, P.M.; Teixeira, A.P. Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition. Biotechnol. Bioeng., 2013, 110(12), 3244-3257.
[http://dx.doi.org/10.1002/bit.24983] [PMID: 23794452]
[9]
Sengupta, N.; Rose, S.T.; Morgan, J.A. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol. Bioeng., 2011, 108(1), 82-92.
[http://dx.doi.org/10.1002/bit.22890] [PMID: 20672285]
[10]
Martínez, V.S.; Dietmair, S.; Quek, L.E.; Hodson, M.P.; Gray, P.; Nielsen, L.K. Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. Bioeng., 2013, 110(2), 660-666.
[http://dx.doi.org/10.1002/bit.24728] [PMID: 22991240]
[11]
Altamirano, C.; Illanes, A.; Becerra, S.; Cairó, J.J.; Gòdia, F. Considerations on the lactate consumption by CHO cells in the presence of galactose. J. Biotechnol., 2006, 125(4), 547-556.
[http://dx.doi.org/10.1016/j.jbiotec.2006.03.023] [PMID: 16822573]
[12]
Altamirano, C.; Illanes, A.; Canessa, R.; Becerra, S. Specific nutrient supplementation of defined serum-free medium for the improvement of CHO cells growth and t-PA production. Electron. J. Biotechnol., 2006, 9, 61-68.
[http://dx.doi.org/10.2225/vol9-issue1-fulltext-8]
[13]
Chen, P.; Harcum, S.W. Effects of amino acid additions on ammonium stressed CHO cells. J. Biotechnol., 2005, 117(3), 277-286.
[http://dx.doi.org/10.1016/j.jbiotec.2005.02.003] [PMID: 15862358]
[14]
Altamirano, C.; Paredes, C.; Illanes, A.; Cairó, J.J.; Gòdia, F. Strategies for fed-batch cultivation of t-PA producing CHO cells: Substitution of glucose and glutamine and rational design of culture medium. J. Biotechnol., 2004, 110(2), 171-179.
[http://dx.doi.org/10.1016/j.jbiotec.2004.02.004] [PMID: 15121336]
[15]
Bort, J.A.H.; Stern, B.; Borth, N. CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution. Biotechnol. J., 2010, 5(10), 1090-1097.
[http://dx.doi.org/10.1002/biot.201000095] [PMID: 20931603]
[16]
Cruz, H.J.; Freitas, C.M.; Alves, P.M.; Moreira, J.L.; Carrondo, M.J. Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enzyme Microb. Technol., 2000, 27(1-2), 43-52.
[http://dx.doi.org/10.1016/S0141-0229(00)00151-4] [PMID: 10862901]
[17]
Lao, M.S.; Toth, D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnol. Prog., 1997, 13(5), 688-691.
[http://dx.doi.org/10.1021/bp9602360] [PMID: 9336989]
[18]
Kurano, N.; Leist, C.; Messi, F.; Kurano, S.; Fiechter, A. Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products. J. Biotechnol., 1990, 15(1-2), 113-128.
[http://dx.doi.org/10.1016/0168-1656(90)90055-G] [PMID: 1366684]
[19]
Altamirano, C.; Paredes, C.; Cairó, J.J.; Gòdia, F. Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol. Prog., 2000, 16(1), 69-75.
[http://dx.doi.org/10.1021/bp990124j] [PMID: 10662492]
[20]
Genzel, Y.; Ritter, J.B.; König, S.; Alt, R.; Reichl, U. Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol. Prog., 2005, 21(1), 58-69.
[http://dx.doi.org/10.1021/bp049827d] [PMID: 15903241]
[21]
Chee Furng Wong, D.; Tin Kam Wong, K.; Tang Goh, L.; Kiat Heng, C.; Gek Sim Yap, M. Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol. Bioeng., 2005, 89(2), 164-177.
[http://dx.doi.org/10.1002/bit.20317] [PMID: 15593097]
[22]
Argentova, V.V.; Aliev, T.K.; Zarubaev, V.V.; Klotchenko, S.A.; Shtro, A.A.; Sergeeva, M.V.; Toporova, V.A.; Dolgikh, D.A.; Sveshnikov, P.G.; Vasin, V.A.; Kirpichnikov, M.P. In vitro antiviral activity of recombinant antibodies of IgG and IgA isotypes to hemagglutinin of the influenza A virus. Mol. Biol. (Mosk.), 2017, 51(6), 927-937.
[PMID: 29271957]
[23]
Eggert, M.W.; Byrne, M.E.; Chambers, R.P. Impact of high pyruvate concentration on kinetics of rabbit muscle lactate dehydrogenase. Appl. Biochem. Biotechnol., 2011, 165(2), 676-686.
[http://dx.doi.org/10.1007/s12010-011-9287-y] [PMID: 21625872]
[24]
Slivac, I.; Blajić, V.; Radošević, K.; Kniewald, Z.; Gaurina Srček, V. Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth. Cytotechnology, 2010, 62(6), 585-594.
[http://dx.doi.org/10.1007/s10616-010-9312-y] [PMID: 21069459]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy