HIV Genetic Diversity – Superpower of a Formidable Virus

Author(s): Chringma Sherpa, Jason W. Rausch, Stuart F. J. Le Grice

Journal Name: Current HIV Research

Volume 18 , Issue 2 , 2020

Become EABM
Become Reviewer

[1]
Kearney M, Maldarelli F, Shao W, et al. Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals. J Virol 2009; 83(6): 2715-27.
[http://dx.doi.org/10.1128/JVI.01960-08] [PMID: 19116249]
[2]
Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995; 69(8): 5087-94.
[http://dx.doi.org/10.1128/JVI.69.8.5087-5094.1995] [PMID: 7541846]
[3]
Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988; 242: 1171-3.
[http://dx.doi.org/10.1126/science.2460925] [PMID: 2460925]
[4]
Schlub TE, Smyth RP, Grimm AJ, Mak J, Davenport MP. Accurately measuring recombination between closely related HIV-1 genomes. PLOS Comput Biol 2010; 6(4): e1000766
[http://dx.doi.org/10.1371/journal.pcbi.1000766] [PMID: 20442872]
[5]
Hu WS, Temin HM. Retroviral recombination and reverse transcription. Science 1990; 250: 1227-33.
[http://dx.doi.org/10.1126/science.1700865]
[6]
Phillips RE, Rowland-Jones S, Nixon DF, et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 1991; 354(6353): 453-9.
[http://dx.doi.org/10.1038/354453a0] [PMID: 1721107]
[7]
Yu Q, König R, Pillai S, et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 2004; 11(5): 435-42.
[http://dx.doi.org/10.1038/nsmb758] [PMID: 15098018]
[8]
[9]
Bandera A, Gori A, Clerici M, Sironi M. Phylogenies in ART: HIV reservoirs, HIV latency and drug resistance. Curr Opin Pharmacol 2019; 48: 24-32.
[http://dx.doi.org/10.1016/j.coph.2019.03.003] [PMID: 31029861]
[10]
Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 2009; 15(8): 893-900.
[http://dx.doi.org/10.1038/nm.1972] [PMID: 19543283]
[11]
von Stockenstrom S, Odevall L, Lee E, et al. Longitudinal Genetic Characterization Reveals That Cell Proliferation Maintains a Persistent HIV Type 1 DNA Pool During Effective HIV Therapy. J Infect Dis 2015; 212(4): 596-607.
[http://dx.doi.org/10.1093/infdis/jiv092] [PMID: 25712966]
[12]
Panel on Antiretroviral Guidelines for Adults and Adolescents D of H and HS. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV 2019. http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf
[13]
Carr JK, Salminen MO, Koch C, et al. Full-length sequence and mosaic structure of a human immunodeficiency virus type 1 isolate from Thailand. J Virol 1996; 70: 5935-43.
[14]
Gao F, Robertson DL, Morrison SG, et al. The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol 1996; 70: 7013-29.
[15]
Li Y, Han Y, Xie J, et al. CRF01_AE subtype is associated with X4 tropism and fast HIV progression in Chinese patients infected through sexual transmission. AIDS 2014; 28(4): 521-30.
[http://dx.doi.org/10.1097/QAD.0000000000000125] [PMID: 24472744]
[16]
Gottlieb GS, Nickle DC, Jensen MA, et al. Dual HIV-1 infection associated with rapid disease progression. Lancet 2004; 363(9409): 619-22.
[http://dx.doi.org/10.1016/S0140-6736(04)15596-7] [PMID: 14987889]
[17]
Rangsin R, Chiu J, Khamboonruang C, Sirisopana N, Eiumtrakul S, Brown AE, et al. The Natural History of HIV-1 Infection in Young Thai Men After Seroconversion. J Acquir Immune Defic Syndr 2004; 36(1): 622-9.
[18]
Ng OT, Lin L, Laeyendecker O, et al. Increased rate of CD4+ T-cell decline and faster time to antiretroviral therapy in HIV-1 subtype CRF01_AE infected seroconverters in Singapore. PLoS One 2011; 6(1): e15738-8.
[http://dx.doi.org/10.1371/journal.pone.0015738] [PMID: 21298051]
[19]
Rangsin R, Piyaraj P, Sirisanthana T, Sirisopana N, Short O, Nelson KE. The natural history of HIV-1 subtype E infection in young men in Thailand with up to 14 years of follow-up. AIDS 2007; 21(Suppl. 6): S39-46.
[http://dx.doi.org/10.1097/01.aids.0000299409.29528.23] [PMID: 18032937]
[20]
Chang D, Sanders-Buell E, Bose M, et al. Molecular epidemiology of a primarily MSM acute HIV-1 cohort in Bangkok, Thailand and connections within networks of transmission in Asia. J Int AIDS Soc 2018; 21(11): e25204-4.
[http://dx.doi.org/10.1002/jia2.25204] [PMID: 30601598]
[21]
Li X, Liu H, Liu L, et al. Tracing the epidemic history of HIV-1 CRF01_AE clusters using near-complete genome sequences. Sci Rep 2017; 7(1): 4024.
[http://dx.doi.org/10.1038/s41598-017-03820-8] [PMID: 28642469]
[22]
Angelis K, Albert J, Mamais I, et al. Global Dispersal Pattern of HIV Type 1 Subtype CRF01_AE: A Genetic Trace of Human Mobility Related to Heterosexual Sexual Activities Centralized in Southeast Asia. J Infect Dis 2015; 211(11): 1735-44.
[http://dx.doi.org/10.1093/infdis/jiu666] [PMID: 25512631]
[23]
Samleerat T, Hongjaisee S, Phiayura P, Sirirungsi W. HIV-1 coreceptor usage in perinatally infected Thai children. J Med Virol 2017; 89(8): 1412-8.
[http://dx.doi.org/10.1002/jmv.24790] [PMID: 28198557]
[24]
Phuphuakrat A, Phawattanakul S, Pasomsub E, Kiertiburanakul S, Chantratita W, Sungkanuparph S. Coreceptor tropism determined by genotypic assay in HIV-1 circulating in Thailand, where CRF01_AE predominates. HIV Med 2014; 15(5): 269-75.
[http://dx.doi.org/10.1111/hiv.12108] [PMID: 24215399]
[25]
Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR. Change in coreceptor use correlates with disease progression in HIV-1--infected individuals. J Exp Med 1997; 185(4): 621-8.
[http://dx.doi.org/10.1084/jem.185.4.621] [PMID: 9034141]
[26]
Shen H-S, Yin J, Leng F, et al. HIV coreceptor tropism determination and mutational pattern identification. Sci Rep 2016; 6: 21280.
[http://dx.doi.org/10.1038/srep21280] [PMID: 26883082]
[27]
Regoes RR, Bonhoeffer S. The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol 2005; 13(6): 269-77.
[http://dx.doi.org/10.1016/j.tim.2005.04.005] [PMID: 15936659]
[28]
Nakayama EE, Saito A, Sultana T, et al. Naturally Occurring Mutations in HIV-1 CRF01_AE Capsid Affect Viral Sensitivity to Restriction Factors. AIDS Res Hum Retroviruses 2018; 34(4): 382-92.
[http://dx.doi.org/10.1089/aid.2017.0212] [PMID: 29325426]
[29]
Komoto S, Tsuji S, Lee B-J, et al. Higher frequency of premature stop codon mutations at vpu gene of human immunodeficiency virus type 1 CRF01_AE compared with those of other subtypes. Microbes Infect 2005; 7(2): 139-47.
[http://dx.doi.org/10.1016/j.micinf.2004.09.017] [PMID: 15715990]
[30]
Yebra G, Holguín A. Mutation Vif-22H, which allows HIV-1 to use the APOBEC3G hypermutation to develop resistance, could appear more quickly in certain non-B variants. J Antimicrob Chemother 2011; 66(4): 941-2.
[http://dx.doi.org/10.1093/jac/dkr012] [PMID: 21393191]
[31]
Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger E, Haseltine W. A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 1986; 321(6068): 412-7.
[http://dx.doi.org/10.1038/321412a0] [PMID: 3012355]
[32]
Malim MH, Hauber J, Le S-Y, Maizel JV, Cullen BR. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 1989; 338(6212): 254-7.
[http://dx.doi.org/10.1038/338254a0] [PMID: 2784194]
[33]
Hammarskjöld ML, Heimer J, Hammarskjöld B, Sangwan I, Albert L, Rekosh D. Regulation of human immunodeficiency virus env expression by the rev gene product. J Virol 1989; 63(5): 1959-66.
[http://dx.doi.org/10.1128/JVI.63.5.1959-1966.1989] [PMID: 2704072]
[34]
Hadzopoulou-Cladaras M, Felber BK, Cladaras C, Athanassopoulos A, Tse A, Pavlakis GN. The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J Virol 1989; 63: 1265-74.
[35]
Sherpa C, Jackson PEH, Gray LR, et al. Evolution of the HIV-1 Rev Response Element during Natural Infection Reveals Nucleotide Changes That Correlate with Altered Structure and Increased Activity over Time. J Virol 2019; 93(11): e02102-18.
[http://dx.doi.org/10.1128/JVI.02102-18] [PMID: 30867301]
[36]
Jackson PE, Tebit DM, Rekosh D, Hammarskjold M-L. Rev-RRE Functional Activity Differs Substantially Among Primary HIV-1 Isolates. AIDS Res Hum Retroviruses 2016; 32(9): 923-34.
[http://dx.doi.org/10.1089/aid.2016.0047] [PMID: 27147495]
[37]
Sherpa C, Rausch JW, Le Grice SFJ, Hammarskjold M-L, Rekosh D. The HIV-1 Rev response element (RRE) adopts alternative conformations that promote different rates of virus replication. Nucleic Acids Res 2015; 43(9): 4676-86.
[http://dx.doi.org/10.1093/nar/gkv313] [PMID: 25855816]
[38]
Legiewicz M, Badorrek CS, Turner KB, et al. Resistance to RevM10 inhibition reflects a conformational switch in the HIV-1 Rev response element. Proc Natl Acad Sci USA 2008; 105(38): 14365-70.
[http://dx.doi.org/10.1073/pnas.0804461105] [PMID: 18776047]
[39]
Sloan EA, Kearney MF, Gray LR, et al. Limited Nucleotide Changes in the Rev Response Element (RRE) during HIV-1 Infection Alter Overall Rev-RRE Activity and Rev Multimerization. J Virol 2013; 87: 11173-86.http://dx.doi.org/https://doi.org/10.1128/JVI.01392-13
[40]
Wonderlich ER, Leonard JA, Collins KL. HIV immune evasion disruption of antigen presentation by the HIV Nef protein. Adv Virus Res 2011; 80: 103-27.
[http://dx.doi.org/10.1016/B978-0-12-385987-7.00005-1] [PMID: 21762823]
[41]
Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 2012; 37(3): 377-88.
[http://dx.doi.org/10.1016/j.immuni.2012.08.010] [PMID: 22999944]
[42]
Eriksson S, Graf EH, Dahl V, et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog 2013; 9(2): e1003174
[http://dx.doi.org/10.1371/journal.ppat.1003174] [PMID: 23459007]
[43]
Finzi D, Hermankova M, Pierson T, et al. Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral Therapy. Science 1997; 278: 1295-300.http://dx.doi.org/https://doi.org/10.1126/science.278.5341.1295
[44]
Finzi D, Blankson J, Siliciano JD, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 1999; 5(5): 512-7.
[http://dx.doi.org/10.1038/8394] [PMID: 10229227]
[45]
Crooks AM, Bateson R, Cope AB, et al. Precise Quantitation of the Latent HIV-1 Reservoir: Implications for Eradication Strategies. J Infect Dis 2015; 212(9): 1361-5.
[http://dx.doi.org/10.1093/infdis/jiv218] [PMID: 25877550]
[46]
Chun T-W, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997; 387(6629): 183-8.
[http://dx.doi.org/10.1038/387183a0] [PMID: 9144289]
[47]
Chun TW, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 1997; 94(24): 13193-7.
[http://dx.doi.org/10.1073/pnas.94.24.13193] [PMID: 9371822]
[48]
Maldarelli F, Wu X, Su L, et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 2014; 345: 179-83.
[http://dx.doi.org/10.1126/science.1254194]
[49]
Wagner TA, McLaughlin S, Garg K, et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 2014; 345(6196): 570-3.
[http://dx.doi.org/10.1126/science.1256304] [PMID: 25011556]
[50]
Berry CC, Gillet NA, Melamed A, Gormley N, Bangham CRM, Bushman FD. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics 2012; 28(6): 755-62.
[http://dx.doi.org/10.1093/bioinformatics/bts004] [PMID: 22238265]
[51]
Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity 2008; 29(6): 848-62.
[http://dx.doi.org/10.1016/j.immuni.2008.11.002] [PMID: 19100699]
[52]
Cohn LB, Silva IT, Oliveira TY, et al. HIV-1 integration landscape during latent and active infection. Cell 2015; 160(3): 420-32.
[http://dx.doi.org/10.1016/j.cell.2015.01.020] [PMID: 25635456]
[53]
Boltz VF, Rausch J, Shao W, et al. Ultrasensitive single-genome sequencing: accurate, targeted, next generation sequencing of HIV-1 RNA. Retrovirology 2016; 13(1): 87.
[http://dx.doi.org/10.1186/s12977-016-0321-6] [PMID: 27998286]
[54]
Hiener B, Eden J-S, Horsburgh BA, Palmer S. Amplification of Near Full-length HIV-1 Proviruses for Next-Generation Sequencing. J Vis Exp 2018; (140):
[http://dx.doi.org/10.3791/58016] [PMID: 30394382]
[55]
Einkauf KB, Lee GQ, Gao C, et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J Clin Invest 2019; 129(3): 988-98.
[http://dx.doi.org/10.1172/JCI124291] [PMID: 30688658]
[56]
Patro SC, Brandt LD, Bale MJ, Halvas EK, Joseph KW, Shao W, et al. Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors. Proc Natl Acad Sci 2019; 116: 25891-9.
[57]
Burton DR, Pyati J, Koduri R, et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 1994; 266: 1024-7.
[58]
Muster T, Guinea R, Trkola A, et al. Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J Virol 1994; 68(6): 4031-4.
[http://dx.doi.org/10.1128/JVI.68.6.4031-4034.1994] [PMID: 7514684]
[59]
Walker LM, Huber M, Doores KJ, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011; 477(7365): 466-70.
[http://dx.doi.org/10.1038/nature10373] [PMID: 21849977]
[60]
Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31(35): 3502-18.
[http://dx.doi.org/10.1016/j.vaccine.2013.05.018] [PMID: 23707164]
[61]
Deal CE, Balazs AB. Vectored antibody gene delivery for the prevention or treatment of HIV infection. Curr Opin HIV AIDS 2015; 10(3): 190-7.
[http://dx.doi.org/10.1097/COH.0000000000000145] [PMID: 25700206]
[62]
Abdel-Motal UM, Harbison C, Han T, et al. Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer. Gene Ther 2014; 21(9): 802-10.
[http://dx.doi.org/10.1038/gt.2014.56] [PMID: 24965083]
[63]
Abdel-Motal UM, Sarkis PTN, Han T, et al. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro. PLoS One 2011; 6(10): e26473-3.
[http://dx.doi.org/10.1371/journal.pone.0026473] [PMID: 22031835]
[64]
Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2011; 481(7379): 81-4.
[http://dx.doi.org/10.1038/nature10660] [PMID: 22139420]
[65]
Balazs AB, Ouyang Y, Hong CM, et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 2014; 20(3): 296-300.
[http://dx.doi.org/10.1038/nm.3471] [PMID: 24509526]
[66]
Shingai M, Donau OK, Plishka RJ, et al. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J Exp Med 2014; 211(10): 2061-74.
[http://dx.doi.org/10.1084/jem.20132494] [PMID: 25155019]
[67]
Saunders KO, Pegu A, Georgiev IS, et al. Sustained Delivery of a Broadly Neutralizing Antibody in Nonhuman Primates Confers Long-Term Protection against Simian/Human Immunodeficiency Virus Infection. J Virol 2015; 89: 5895-903.http://dx.doi.org/ https://doi.org/10.1128/JVI.00210-15
[68]
Martinez-Navio JM, Fuchs SP, Pedreño-López S, Rakasz EG, Gao G, Desrosiers RC. Host Anti-antibody Responses Following Adeno-associated Virus-mediated Delivery of Antibodies Against HIV and SIV in Rhesus Monkeys. Mol Ther 2016; 24(1): 76-86.
[http://dx.doi.org/10.1038/mt.2015.191] [PMID: 26444083]
[69]
Lewis AD, Chen R, Montefiori DC, Johnson PR, Clark KR. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol 2002; 76(17): 8769-75.
[http://dx.doi.org/10.1128/JVI.76.17.8769-8775.2002] [PMID: 12163597]
[70]
Johnson PR, Schnepp BC, Zhang J, et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 2009; 15(8): 901-6.
[http://dx.doi.org/10.1038/nm.1967] [PMID: 19448633]
[71]
Gardner MR, Fetzer I, Kattenhorn LM, et al. Anti-drug Antibody Responses Impair Prophylaxis Mediated by AAV-Delivered HIV-1 Broadly Neutralizing Antibodies. Mol Ther 2019; 27(3): 650-60.
[http://dx.doi.org/10.1016/j.ymthe.2019.01.004] [PMID: 30704961]
[72]
Martinez-Navio JM, Fuchs SP, Pantry SN, et al. Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression. Immunity 2019; 50(3): 567-75.
[http://dx.doi.org/10.1016/j.immuni.2019.02.005] [PMID: 30850342]
[73]
Brady JM, Baltimore D, Balazs AB. Antibody gene transfer with adeno-associated viral vectors as a method for HIV prevention. Immunol Rev 2017; 275(1): 324-33.
[http://dx.doi.org/10.1111/imr.12478] [PMID: 28133808]
[74]
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Mol Ther Methods Clin Dev 2016; 3: 16068.
[http://dx.doi.org/10.1038/mtm.2016.68] [PMID: 28197421]
[75]
National Institute of Health UD of H and HS. NIH launches new collaboration to develop gene-based cures for sickle cell disease and HIV on global scale. 2019.https://www.nih.gov/news-events/news-releases/nih-launches-new-collaboration-develop-gene-based-cures-sickle-cell-disease-hiv-global-scale


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 2
Year: 2020
Page: [69 - 73]
Pages: 5
DOI: 10.2174/1570162X1802200311104204

Article Metrics

PDF: 24
HTML: 6
EPUB: 1
PRC: 1