Realizing the Potential of Blueberry as Natural Inhibitor of Metastasis and Powerful Apoptosis Inducer: Tapping the Treasure Trove for Effective Regulation of Cell Signaling Pathways

Author(s): Sundas Fayyaz*, Rukset Attar, Baojun Xu, Uteuliyev Y. Sabitaliyevich, Aima Adylova, Mourad Fares, Muhammad Z. Qureshi, Ilhan Yaylim*, Nada Alaaeddine

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 15 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Blueberries belong to the genus Vaccinium of the family Ericaceae. Rapidly accumulating experimentally verified data is uncovering the tremendous pharmacological properties of biologically active constituents of blueberries against different diseases. Our rapidly evolving knowledge about the multifaceted nature of cancer has opened new horizons to search for different strategies to target multiple effectors of oncogenic networks to effectively inhibit cancer onset and progression. Excitingly, whole blueberry powder and various bioactive constituents (pterostilbene, malvidin-3-galactoside) of blueberries have been shown to efficiently inhibit metastasis in animal models. These results are encouraging and future studies must focus on the identification of cell signaling pathways effectively modulated by blueberries in different cancers. It seems exciting to note that researchers are focusing on metastasis inhibitory effects of blueberry; however, to reap full benefits, it is necessary to take a step back and critically re-interpret the mechanisms used by active components of blueberry to inhibit or prevent metastasis. JAK/STAT, TGF/SMAD, Notch, SHH/GLI, and Wnt/ β-Catenin have been shown to be directly involved in the regulation of metastasis. However, because of limited studies, it is difficult to critically assess the true potential of blueberry. Loss of apoptosis, metastasis and deregulation of signaling pathways are branching trajectories of molecular oncology. Accordingly, we have to emphasize on these essential facets to realistically claim blueberry as "Superfood". Different clinical trials have been conducted to gather clinical evidence about the chemopreventive role of blueberry or its bioactive components in cancer patients. But it seems clear that because of the lack of sufficient proof-of-concept studies, we cannot extract significant information about the transition of blueberry into the next phases of clinical trials. Overview of the existing scientific evidence revealed visible knowledge gaps and a better understanding of the targets of blueberry will be helpful in efficient and meaningful translation of laboratory findings to clinically effective therapeutics.

Keywords: Blueberry, metastasis inhibition, anti-cancer, signaling pathways, apoptosis, molecular oncology.

[1]
Perk, A.A.; Shatynska-Mytsyk, I.; Gerçek, Y.C.; Boztaş, K.; Yazgan, M.; Fayyaz, S.; Farooqi, A.A. Rutin mediated targeting of signaling machinery in cancer cells. Cancer Cell Int., 2014, 14(1), 124.
[http://dx.doi.org/10.1186/s12935-014-0124-6]
[2]
Yen, Y.H.; Farooqi, A.A.; Li, K.T.; Butt, G.; Tang, J.Y.; Wu, C.Y.; Cheng, Y.B.; Hou, M.F.; Chang, H.W. Methanolic extracts of Solieria robusta inhibits proliferation of oral cancer Ca9-22 cells via apoptosis and oxidative stress. Molecules, 2014, 19(11), 18721-18732.
[http://dx.doi.org/10.3390/molecules191118721 ] [PMID: 25405289]
[3]
Farooqi, A.A.; Wu, S.J.; Chang, Y.T.; Tang, J.Y.; Li, K.T.; Ismail, M.; Liaw, C.C.; Li, R.N.; Chang, H.W. Activation and inhibition of ATM by phytochemicals: Awakening and sleeping the guardian angel naturally. Arch. Immunol. Ther. Exp. (Warsz.), 2015, 63(5), 357-366.
[http://dx.doi.org/10.1007/s00005-015-0346-x ] [PMID: 26089209]
[4]
Lin, X.; Farooqi, A.A.; Ismail, M. Recent progress in fungus-derived bioactive agents for targeting of signaling machinery in cancer cells. Drug Des. Devel. Ther., 2015, 9, 1797-1804.
[PMID: 25848216]
[5]
Jabeen, S.; Qureshi, M.Z.; Attar, R.; Aslam, A.; Kanwal, S.; Khalid, S.; Qureshi, J.M.; Aras Perk, A.; Farooqi, A.A.; Ismail, M. How sesquiterpenes modulate signaling cascades in cancers. Cell. Mol. Biol., 2016, 62(7), 110-117.
[PMID: 27453282]
[6]
Fayyaz, S.; Aydin, T.; Cakir, A.; Gasparri, M.L.; Panici, P.B.; Farooqi, A.A. Oleuropein mediated targeting of signaling network in cancer. Curr. Top. Med. Chem., 2016, 16(22), 2477-2483.
[http://dx.doi.org/10.2174/1568026616666160212123706 ] [PMID: 26873189]
[7]
Wang, H.R.; Tang, J.Y.; Wang, Y.Y.; Farooqi, A.A.; Yen, C.Y.; Yuan, S.F.; Huang, H.W.; Chang, H.W. Manoalide preferentially provides antiproliferation of oral cancer cells by oxidative stress-mediated apoptosis and DNA damage. Cancers (Basel), 2019, 11(9), E1303.
[http://dx.doi.org/10.3390/cancers11091303 ] [PMID: 31487907]
[8]
Shahwar, D.; Iqbal, M.J.; Nisa, M.U.; Todorovska, M.; Attar, R.; Sabitaliyevich, U.Y.; Farooqi, A.A.; Ahmad, A.; Xu, B. Natural product mediated regulation of death receptors and intracellular machinery: Fresh from the pipeline about TRAIL-mediated signaling and natural TRAIL sensitizers. Int. J. Mol. Sci., 2019, 20(8), E2010.
[http://dx.doi.org/10.3390/ijms20082010 ] [PMID: 31022877]
[9]
Farooqi, A.A.; Qureshi, M.Z.; Khalid, S.; Attar, R.; Martinelli, C.; Sabitaliyevich, U.Y.; Nurmurzayevich, S.B.; Taverna, S.; Poltronieri, P.; Xu, B. Regulation of cell signaling pathways by berberine in different cancers: Searching for missing pieces of an incomplete jig-saw puzzle for an effective cancer therapy. Cancers (Basel), 2019, 11(4), E478.
[http://dx.doi.org/10.3390/cancers11040478 ] [PMID: 30987378]
[10]
Qureshi, M.Z.; Attar, R.; Romero, M.A.; Sabitaliyevich, U.Y.; Nurmurzayevich, S.B.; Ozturk, O.; Wakim, L.H.; Lin, X.; Ozbey, U.; Yelekenova, A.B.; Farooqi, A.A. Regulation of signaling pathways by β-elemene in cancer progression and metastasis. J. Cell. Biochem., 2019, 120(8), 12091-12100.
[http://dx.doi.org/10.1002/jcb.28624 ] [PMID: 30912190]
[11]
Farhan, M.; Malik, A.; Ullah, M.F.; Afaq, S.; Faisal, M.; Farooqi, A.A.; Biersack, B.; Schobert, R.; Ahmad, A. Garcinol sensitizes NSCLC cells to standard therapies by regulating EMT-modulating miRNAs. Int. J. Mol. Sci., 2019, 20(4), E800.
[http://dx.doi.org/10.3390/ijms20040800 ] [PMID: 30781783]
[12]
Farooqi, A.A.; Ahmad, A. Gaze through the clinical lens: Molecular and clinical advancements of botanicals. Future Med. Chem., 2019, 11(2), 75-77.
[http://dx.doi.org/10.4155/fmc-2018-0371 ] [PMID: 30648441]
[13]
Ozbey, U.; Attar, R.; Romero, M.A.; Alhewairini, S.S.; Afshar, B.; Sabitaliyevich, U.Y.; Hanna-Wakim, L.; Ozcelik, B.; Farooqi, A.A. Apigenin as an effective anticancer natural product: Spotlight on TRAIL, WNT/β-catenin, JAK-STAT pathways, and microRNAs. J. Cell. Biochem., 2018, 120(2), 1060-1067.
[http://dx.doi.org/10.1002/jcb.27575 ] [PMID: 30278099]
[14]
Farooqi, A.A.; Attar, R.; Yaylim, I.; Qureshi, M.Z.; Todorovska, M.; Karatoprak, G.Ş.; Najafi, S.; Sabitaliyevich, U.Y.; Zhenisovna, T.G.; De Sousa, D.P.; Lin, X. Piperlongumine as anticancer agent: The story so far about killing many birds with one stone. Cell. Mol. Biol., 2018, 64(11), 102-107.
[http://dx.doi.org/10.14715/cmb/2018.64.11.19 ] [PMID: 30213297]
[15]
Farooqi, A.A.; Jabeen, S.; Attar, R.; Yaylim, I.; Xu, B. Quercetin-mediated regulation of signal transduction cascades and microRNAs: Natural weapon against cancer. J. Cell. Biochem., 2018, 119(12), 9664-9674.
[http://dx.doi.org/10.1002/jcb.27488 ] [PMID: 30187968]
[16]
Farooqi, A.A.; Shu, C.W.; Huang, H.W.; Wang, H.R.; Chang, Y.T.; Fayyaz, S.; Yuan, S.F.; Tang, J.Y.; Chang, H.W. TRAIL, Wnt, sonic hedgehog, TGFβ, and miRNA signalings are potential targets for oral cancer therapy. Int. J. Mol. Sci., 2017, 18(7), E1523.
[http://dx.doi.org/10.3390/ijms18071523 ] [PMID: 28708091]
[17]
Lin, X.; Qureshi, M.Z.; Romero, M.A.; Yaylim, I.; Arif, S.; Ucak, I.; Fayyaz, S.; Farooqi, A.A.; Mansoor, Q.; Ismail, M. Signaling networks in TMPRSS2-ERG positive prostate cancers: Do we need a Pied Piper or sharpshooter to deal with “at large” fused oncoprotein. Cell. Mol. Biol., 2017, 63(2), 1-8.
[http://dx.doi.org/10.14715/cmb/2017.63.2.1 ] [PMID: 28364793]
[18]
Farooqi, A.A.; Li, Y.; Sarkar, F.H. The biological complexity of RKIP signaling in human cancers. Exp. Mol. Med., 2015, 47, e185.
[http://dx.doi.org/10.1038/emm.2015.70 ] [PMID: 26403261]
[19]
Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193.
[http://dx.doi.org/10.1038/s41580-018-0089-8 ] [PMID: 30655609]
[20]
Zhong, H.H.; Wang, H.Y.; Li, J.; Huang, Y.Z. TRAIL-based gene delivery and therapeutic strategies. Acta Pharmacol. Sin., 2019, 40(11), 1373-1385.
[http://dx.doi.org/10.1038/s41401-019-0287-8 ] [PMID: 31444476]
[21]
Seyrek, K.; Richter, M.; Lavrik, I.N. Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ., 2019, 26(6), 981-993.
[http://dx.doi.org/10.1038/s41418-019-0317-6 ] [PMID: 30903104]
[22]
Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature, 2019, 571(7766), 489-499.
[http://dx.doi.org/10.1038/s41586-019-1411-0 ] [PMID: 31341302]
[23]
Nakade, S.; Yamamoto, T.; Sakuma, T. Cancer induction and suppression with transcriptional control and epigenome editing technologies. J. Hum. Genet., 2018, 63(2), 187-194.
[http://dx.doi.org/10.1038/s10038-017-0377-8 ] [PMID: 29215091]
[24]
Timp, W.; Feinberg, A.P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer, 2013, 13(7), 497-510.
[http://dx.doi.org/10.1038/nrc3486 ] [PMID: 23760024]
[25]
Rodríguez-Paredes, M.; Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat. Med., 2011, 17(3), 330-339.
[http://dx.doi.org/10.1038/nm.2305 ] [PMID: 21386836]
[26]
Bushweller, J.H. Targeting transcription factors in cancer - from undruggable to reality. Nat. Rev. Cancer, 2019, 19(11), 611-624.
[http://dx.doi.org/10.1038/s41568-019-0196-7 ] [PMID: 31511663]
[27]
Keller, L.; Pantel, K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat. Rev. Cancer, 2019, 19(10), 553-567.
[http://dx.doi.org/10.1038/s41568-019-0180-2 ] [PMID: 31455893]
[28]
Bu, L.; Baba, H.; Yoshida, N.; Miyake, K.; Yasuda, T.; Uchihara, T.; Tan, P.; Ishimoto, T. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene, 2019, 38(25), 4887-4901.
[http://dx.doi.org/10.1038/s41388-019-0765-y ] [PMID: 30816343]
[29]
Miller, K.; Feucht, W.; Schmid, M. Bioactive compounds of strawberry and blueberry and their potential health effects based on human intervention studies: A brief overview. Nutrients, 2019, 11(7), E1510.
[http://dx.doi.org/10.3390/nu11071510 ] [PMID: 31269727]
[30]
Ma, L.; Sun, Z.; Zeng, Y.; Luo, M.; Yang, J. Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings. Int. J. Mol. Sci., 2018, 19(9), E2785.
[http://dx.doi.org/10.3390/ijms19092785 ] [PMID: 30223619]
[31]
Davidson, K.T.; Zhu, Z.; Balabanov, D.; Zhao, L.; Wakefield, M.R.; Bai, Q.; Fang, Y. Beyond conventional medicine - a look at blueberry, a cancer-fighting superfruit. Pathol. Oncol. Res., 2018, 24(4), 733-738.
[http://dx.doi.org/10.1007/s12253-017-0376-2 ] [PMID: 29285736]
[32]
Cutler, B.R.; Petersen, C.; Anandh Babu, P.V. Mechanistic insights into the vascular effects of blueberries: Evidence from recent studies. Mol. Nutr. Food Res., 2017, 61(6), 1600271.
[http://dx.doi.org/10.1002/mnfr.201600271 ] [PMID: 27558887]
[33]
Marcucci, F.; Stassi, G.; De Maria, R. Epithelial-mesenchymal transition: A new target in anticancer drug discovery. Nat. Rev. Drug Discov., 2016, 15(5), 311-325.
[http://dx.doi.org/10.1038/nrd.2015.13 ] [PMID: 26822829]
[34]
Hunter, K.W.; Amin, R.; Deasy, S.; Ha, N.H.; Wakefield, L. Genetic insights into the morass of metastatic heterogeneity. Nat. Rev. Cancer, 2018, 18(4), 211-223.
[http://dx.doi.org/10.1038/nrc.2017.126 ] [PMID: 29422598]
[35]
Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer, 2016, 16(4), 201-218.
[http://dx.doi.org/10.1038/nrc.2016.25 ] [PMID: 27009393]
[36]
Wang, Y.; Lin, J.; Tian, J.; Si, X.; Jiao, X.; Zhang, W.; Gong, E.; Li, B. Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. J. Agric. Food Chem., 2019, 67(2), 625-636.
[http://dx.doi.org/10.1021/acs.jafc.8b06209 ] [PMID: 30586992]
[37]
Vuong, T.; Mallet, J.F.; Ouzounova, M.; Rahbar, S.; Hernandez-Vargas, H.; Herceg, Z.; Matar, C. Role of a polyphenol-enriched preparation on chemoprevention of mammary carcinoma through cancer stem cells and inflammatory pathways modulation. J. Transl. Med., 2016, 14, 13.
[http://dx.doi.org/10.1186/s12967-016-0770-7 ] [PMID: 26762586]
[38]
Kanaya, N.; Adams, L.; Takasaki, A.; Chen, S. Whole blueberry powder inhibits metastasis of triple negative breast cancer in a xenograft mouse model through modulation of inflammatory cytokines. Nutr. Cancer, 2014, 66(2), 242-248.
[http://dx.doi.org/10.1080/01635581.2014.863366 ] [PMID: 24364759]
[39]
Adams, L.S.; Kanaya, N.; Phung, S.; Liu, Z.; Chen, S. Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice. J. Nutr., 2011, 141(10), 1805-1812.
[http://dx.doi.org/10.3945/jn.111.140178 ] [PMID: 21880954]
[40]
Baba, A.B.; Kowshik, J.; Krishnaraj, J.; Sophia, J.; Dixit, M.; Nagini, S. Blueberry inhibits invasion and angiogenesis in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinogenesis in hamsters via suppression of TGF-β and NF-κB signaling pathways. J. Nutr. Biochem., 2016, 35, 37-47.
[http://dx.doi.org/10.1016/j.jnutbio.2016.06.002 ] [PMID: 27371785]
[41]
Baba, A.B.; Nivetha, R.; Chattopadhyay, I.; Nagini, S. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway. Food Chem. Toxicol., 2017, 109(Pt 1), 534-543.
[http://dx.doi.org/10.1016/j.fct.2017.09.054 ] [PMID: 28974439]
[42]
Fayyaz, S.; Javed, Z.; Attar, R.; Farooqi, A.A.; Yaylim, I.; Ahmad, A. MicroRNA regulation of TRAIL mediated signaling in different cancers: Control of micro steering wheels during the journey from bench-top to the bedside. Semin. Cancer Biol., 2019, 58, 56-64.
[http://dx.doi.org/10.1016/j.semcancer.2019.01.007 ] [PMID: 30716480]
[43]
Farooqi, A.A.; Gadaleta, C.D.; Ranieri, G.; Fayyaz, S.; Marech, I. Restoring TRAIL induced apoptosis using naturopathy. Hercules joins hand with nature to triumph over Lernaean Hydra. Curr. Genomics, 2017, 18(1), 27-38.
[http://dx.doi.org/10.2174/1389202917666160803150023 ] [PMID: 28503088]
[44]
Farooqi, A.A.; Gadaleta, C.D.; Ranieri, G.; Fayyaz, S.; Marech, I. New frontiers in promoting TRAIL-mediated cell death: Focus on natural sensitizers, miRNAs, and nanotechnological advancements. Cell Biochem. Biophys., 2016, 74(1), 3-10.
[http://dx.doi.org/10.1007/s12013-015-0712-7 ] [PMID: 26972296]
[45]
Davidson, K.T.; Zhu, Z.; Bai, Q.; Xiao, H.; Wakefield, M.R.; Fang, Y. Blueberry as a potential radiosensitizer for treating cervical cancer. Pathol. Oncol. Res., 2019, 25(1), 81-88.
[http://dx.doi.org/10.1007/s12253-017-0319-y ] [PMID: 28963664]
[46]
Minker, C.; Duban, L.; Karas, D.; Järvinen, P.; Lobstein, A.; Muller, C.D. Impact of procyanidins from different berries on caspase 8 activation in colon cancer. Oxid. Med. Cell. Longev., 2015, 2015, 154164.
[http://dx.doi.org/10.1155/2015/154164 ] [PMID: 26180579]
[47]
Pan, M.H.; Chang, Y.H.; Badmaev, V.; Nagabhushanam, K.; Ho, C.T. Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. J. Agric. Food Chem., 2007, 55(19), 7777-7785.
[http://dx.doi.org/10.1021/jf071520h ] [PMID: 17696482]
[48]
Kang, Y.J.; Kim, I.Y.; Kim, E.H.; Yoon, M.J.; Kim, S.U.; Kwon, T.K.; Choi, K.S. Paxilline enhances TRAIL-mediated apoptosis of glioma cells via modulation of c-FLIP, survivin and DR5. Exp. Mol. Med., 2011, 43(1), 24-34.
[http://dx.doi.org/10.3858/emm.2011.43.1.003 ] [PMID: 21150246]
[49]
Chen, G.; Xu, Z.; Chang, G.; Hou, J.; Hu, L.; Zhang, Y.; Yu, D.; Li, B.; Chang, S.; Xie, Y.; Zhang, Y.; Wei, R.; Wu, H.; Xiao, W.; Sun, X.; Tao, Y.; Gao, L.; Dai, B.; Shi, J.; Zhu, W. The blueberry component pterostilbene has potent anti-myeloma activity in bortezomib-resistant cells. Oncol. Rep., 2017, 38(1), 488-496.
[http://dx.doi.org/10.3892/or.2017.5675 ] [PMID: 28560392]
[50]
Qi, C.; Li, S.; Jia, Y.; Wang, L. Blueberry anthocyanins induce G2/M cell cycle arrest and apoptosis of oral cancer KB cells through down-regulation methylation of p53. Yi Chuan, 2014, 36(6), 566-573.
[http://dx.doi.org/10.3724/SP.J.1005.2014.0566 ] [PMID: 24929515]
[51]
Tolba, M.F.; Abdel-Rahman, S.Z. Pterostilbine, an active component of blueberries, sensitizes colon cancer cells to 5-fluorouracil cytotoxicity. Sci. Rep., 2015, 5, 15239.
[http://dx.doi.org/10.1038/srep15239 ] [PMID: 26472352]
[52]
Lin, Y.; Li, B.; Zhao, J.; Wei, L.; Wang, Y.; Wang, M.; Dia, V.P.; Meng, X. Combinatorial effect of blueberry extracts and oxaliplatin in human colon cancer cells. J. Cell. Physiol., 2019, 234(10), 17242-17253.
[http://dx.doi.org/10.1002/jcp.28341 ] [PMID: 30784064]
[53]
Farooqi, A.A.; Fuentes-Mattei, E.; Fayyaz, S.; Raj, P.; Goblirsch, M.; Poltronieri, P.; Calin, G.A. Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. Semin. Cancer Biol., 2019, 58, 47-55.
[http://dx.doi.org/10.1016/j.semcancer.2019.02.003 ] [PMID: 30742906]
[54]
Ekmekci, C.G.; Coskunpinar, E.; Avci, H.; Farooqi, A.A.; Orhan, K.S.; Akbas, F. Integrative analysis of mRNA and microRNA expression profiles in laryngeal squamous cell carcinoma. J. Cell. Biochem., 2019, 120(3), 3415-3422.
[http://dx.doi.org/10.1002/jcb.27612 ] [PMID: 30362598]
[55]
Gasparri, M.L.; Besharat, Z.M.; Farooqi, A.A.; Khalid, S.; Taghavi, K.; Besharat, R.A.; Sabato, C.; Papadia, A.; Panici, P.B.; Mueller, M.D.; Ferretti, E. MiRNAs and their interplay with PI3K/AKT/mTOR pathway in ovarian cancer cells: A potential role in platinum resistance. J. Cancer Res. Clin. Oncol., 2018, 144(12), 2313-2318.
[http://dx.doi.org/10.1007/s00432-018-2737-y ] [PMID: 30109500]
[56]
Farooqi, A.A.; Mansoor, Q.; Alaaeddine, N.; Xu, B. MicroRNA regulation of Telomerase Reverse Transcriptase (TERT): Micro machines pull strings of papier-mâché puppets. Int. J. Mol. Sci., 2018, 19(4), E1051.
[http://dx.doi.org/10.3390/ijms19041051 ] [PMID: 29614790]
[57]
Mak, K.K.; Wu, A.T.; Lee, W.H.; Chang, T.C.; Chiou, J.F.; Wang, L.S.; Wu, C.H.; Huang, C.Y.; Shieh, Y.S.; Chao, T.Y.; Ho, C.T.; Yen, G.C.; Yeh, C.T. Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-κB/microRNA 448 circuit. Mol. Nutr. Food Res., 2013, 57(7), 1123-1134.
[http://dx.doi.org/10.1002/mnfr.201200549 ] [PMID: 23504987]
[58]
Rahal, O.M.; Pabona, J.M.; Kelly, T.; Huang, Y.; Hennings, L.J.; Prior, R.L.; Al-Dwairi, A.; Simmen, F.A.; Simmen, R.C. Suppression of Wnt1-induced mammary tumor growth and lower serum insulin in offspring exposed to maternal blueberry diet suggest early dietary influence on developmental programming. Carcinogenesis, 2013, 34(2), 464-474.
[http://dx.doi.org/10.1093/carcin/bgs353 ] [PMID: 23144318]
[59]
Schmidt, B.M.; Erdman, J.W., Jr; Lila, M.A. Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Lett., 2006, 231(2), 240-246.
[http://dx.doi.org/10.1016/j.canlet.2005.02.003 ] [PMID: 16399225]
[60]
Matchett, M.D.; MacKinnon, S.L.; Sweeney, M.I.; Gottschall-Pass, K.T.; Hurta, R.A. Inhibition of matrix metalloproteinase activity in DU145 human prostate cancer cells by flavonoids from lowbush blueberry (Vaccinium angustifolium): Possible roles for protein kinase C and mitogen-activated protein-kinase-mediated events. J. Nutr. Biochem., 2006, 17(2), 117-125.
[http://dx.doi.org/10.1016/j.jnutbio.2005.05.014 ] [PMID: 16111875]
[61]
Kausar, H.; Jeyabalan, J.; Aqil, F.; Chabba, D.; Sidana, J.; Singh, I.P.; Gupta, R.C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., 2012, 325(1), 54-62.
[http://dx.doi.org/10.1016/j.canlet.2012.05.029 ] [PMID: 22659736]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 15
Year: 2020
Page: [1780 - 1786]
Pages: 7
DOI: 10.2174/1871520620666200311103206
Price: $65

Article Metrics

PDF: 51
HTML: 3
EPUB: 1