Physicochemical Characterization of Bioactive Compounds in Nanocarriers

Author(s): Rafaella M. Barros, Maísa S. de Oliveira, Kammila M. N. Costa, Mariana R. Sato, Karen L. M. Santos, Bolívar P. G. de L. Damasceno, Teresa Cuberes, Joáo A. Oshiro-Junior*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 33 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

The encapsulation of bioactive compounds is an emerging technique for finding new medicines since it provides protection against ambient degradation factors before reaching the target site. Nanotechnology provides new methods for encapsulating bioactive compounds and for drug carrier development. Nanocarriers satisfactorily impact the absorption, distribution, metabolism, and excretion rate when compared to conventional carriers. The nanocarrier material needs to be compatible and bind to the drug and be bio-resorbable. In this context, the physicochemical characterization of encapsulated bioactive compounds is fundamental to guarantee the quality, reproducibility, and safety of the final pharmaceutical product. In this review, we present the physicochemical techniques most used today by researchers to characterize bioactive compounds in nanocarriers and the main information provided by each technique, such as morphology, size, degree of crystallinity, long-term stability, the efficacy of drug encapsulation, and the amount released as a function of time.

Keywords: Biological activity, isolated compounds, nanoparticles, nanotechnology, ambient degradation, bioactive compounds.

[1]
Dumbreck S, Flynn A, Nairn M, Wilson M, Treweek S, Mercer SW, et al. Drug-disease and drug-drug interactions : systematic examination of recommendations in 12 UK national clinical guidelines. BMJ Nutrition Prevention & Health 2015; pp. 1-8.
[2]
Zumla A, Chakaya J, Centis R, et al. Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies. Lancet Respir Med 2015; 3(3): 220-34.
[http://dx.doi.org/10.1016/S2213-2600(15)00063-6] [PMID: 25773212]
[3]
Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018; 184: 38-52.
[http://dx.doi.org/10.1016/j.actatropica.2017.09.017] [PMID: 28941731]
[4]
Oshiro-Júnior JA, Alves RC, Hanck-Silva G, et al. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr Med Chem 2020; 27(15): 2494-513.
[http://dx.doi.org/10.2174/0929867325666181009120610] [PMID: 30306849]
[5]
Bray F, Ferlay J, Soerjomataram I. Global Cancer Statistics 2018 : GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2018; 62: 394-424.
[http://dx.doi.org/10.3322/caac.21492]
[6]
Zealand N. New drug treatments versus structured education programmes for type 2 diabetes : comparing cost-eff ectiveness. Lancet Diabetes Endocrinol 2016; 8587: 10-2.
[7]
Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J 2015; 471(3): 307-22.
[http://dx.doi.org/10.1042/BJ20150497] [PMID: 26475449]
[8]
Germershaus O, Lühmann T, Rybak J, Ritzer J, Meinel L, Rybak J, et al. Application of natural and semi-synthetic polymers for the delivery of sensitive drugs Application of natural and semi-synthetic polymers for the delivery of sensitive drugs. Int Mater Rev 2015; 2: 101-31.
[http://dx.doi.org/10.1179/1743280414Y.0000000045]
[9]
Weber T, Kim HU. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 2016; 1(2): 69-79.
[http://dx.doi.org/10.1016/j.synbio.2015.12.002] [PMID: 29062930]
[10]
Shanmugam MK, Lee JH, Chai EZ, et al. Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Semin Cancer Biol 2016; 40-41: 35-47.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.005] [PMID: 27038646]
[11]
Al-rubaye AF, Hameed IH, Kadhim MJA. Review : Uses of Gas Chromatography-Mass Spectrometry (GC-MS) Technique for Analysis of Bioactive Natural Compounds of Some Plants A Review : Uses of Gas Chromatography-Mass Spectrometry (GC-MS) Technique for Analysis of Bioactive Natural Compounds. Inter J Toxicol Pharmacol Res 2017; 1: 81-5.
[12]
Mukherjee PK, Maity N, Nema NK, Sarkar BK. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011; 19(1): 64-73.
[http://dx.doi.org/10.1016/j.phymed.2011.10.003] [PMID: 22115797]
[13]
Gondim BLC, Oshiro-júnior JA, Fernanandes FHA, Nóbrega FP, Castellano LRC, Cláudia A, et al. Plant Extracts Loaded in Nanostructured Drug Delivery Systems for Treating Parasitic and Antimicrobial Diseases. J Venomous Animals Toxis Tropical Dis 2019; 1-12.
[http://dx.doi.org/10.2174/1381612825666190628153755]
[14]
Rezvankhah A, Emam-Djomeh Z, Askari G. Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Dry Technol 2020; 38: 235-58.
[http://dx.doi.org/10.1080/07373937.2019.1653906]
[15]
Ingle AP, Shende S, Gupta I, Rai M. Recent trends in the development of nano-bioactive compounds and delivery systems. Biotechnological Production of Bioactive Compounds 2020; pp. 409-31.
[http://dx.doi.org/10.1016/B978-0-444-64323-0.00014-X]
[16]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[17]
Ahmad M, Mudgil P, Gani A, Hamed F, Masoodi FA, Maqsood S. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem 2019; 270: 95-104.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.024] [PMID: 30174096]
[18]
Remya NS, Mohanan PV. Safety and toxicity concerns of nanosystems. Elsevier Inc. 2018.
[http://dx.doi.org/10.1016/B978-0-323-50922-0.00003-1]
[19]
Schäfer M, Brütting C, Baldwin IT, Kallenbach M. High - throughput quantification of more than 100 primary - and secondary - metabolites, and phytohormones by a single solid - phase extraction based sample preparation with analysis by UHPLC - HESI - MS/MS. Plant Methids 2016; pp. 1-18.
[20]
Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro JA Junior, Chiavacci LA. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 2017; 12: 4991-5011.
[http://dx.doi.org/10.2147/IJN.S133832] [PMID: 28761340]
[21]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14: 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[22]
Sydor AM, Czymmek KJ, Puchner EM, Mennela V. Super- Resolution Microscopy: From Single Molecules to Supramolecular Assemblies 2015. 25730
[23]
Vivek M, Kumar PS, Steffi S, Sudha S. Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects. Avicenna J Med Biotechnol 2011; 3(3): 143-8.
[PMID: 23408653]
[24]
Piazzini V, Lemmi B, D’Ambrosio M, et al. Nanostructured Lipid Carriers as Promising Delivery Systems for Plant Extracts: The Case of Silymarin. Appl Sci (Basel) 2018; 8(7): 1163.
[http://dx.doi.org/10.3390/app8071163]
[25]
Su F, Alam R, Mei Q, et al. Nanostrutured oxygen sen sor- Using Micelles to incorporate a hydrophobic Platinum porphyrin. PLoS One 2012.
[http://dx.doi.org/10.1371/journal.pone.0033390]
[26]
Saghiri MA, Asgar K, Lotfi M, et al. Back-scattered and secondary electron images of scanning electron microscopy in dentistry: a new method for surface analysis. Acta Odontol Scand 2012; 70(6): 603-9.
[http://dx.doi.org/10.3109/00016357.2011.645057] [PMID: 22251068]
[27]
da Silva SB, Amorim M, Fonte P, et al. Natural extracts into chitosan nanocarriers for rosmarinic acid drug delivery. Pharm Biol 2015; 53(5): 642-52.
[http://dx.doi.org/10.3109/13880209.2014.935949] [PMID: 25489634]
[28]
Samrot AV, Sahiti K, Bhavya KS, Suvedhaa B. Synthesis of Plant Latex Based Hybrid Nanocarriers Using Surfactants for Curcumin Delivery. J Cluster Sci 2019; 30: 281-96.
[http://dx.doi.org/10.1007/s10876-018-1472-5]
[29]
Das RK, Kasoju N, Bora U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine (Lond) 2010; 6(1): 153-60.
[http://dx.doi.org/10.1016/j.nano.2009.05.009] [PMID: 19616123]
[30]
Oshiro-Junior JA, Sato MR, Boni FI, et al. Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater Sci Eng C 2020.108110462
[http://dx.doi.org/10.1016/j.msec.2019.110462] [PMID: 31923986]
[31]
Feist A, Echternkamp KE, Schauss J, Yalunin SV, Schäfer S, Ropers C. Quantum coherent interaction of electrons with optical near-fields in an ultrafast electron microscope. Nature 2015; 521: 200-3.
[http://dx.doi.org/10.1038/nature14463] [PMID: 25971512]
[32]
Manea AM, Ungureanu C, Meghea A. Effect of vegetable oils on obtaining lipid nanocarriers for sea buckthorn extract encapsulation. C R Chim 2014; 17: 934-43.
[http://dx.doi.org/10.1016/j.crci.2013.10.020]
[33]
Lacatusu I, Badea N, Badea G, Brasoveanu L, Stan R, Ott C, et al. Ivy leaves extract based - Lipid nanocarriers and their bioefficacy on antioxidant and antitumor activities. RSC Advances 2016; 6: 77243-55.
[http://dx.doi.org/10.1039/C6RA12016D]
[34]
Arana L, Salado C, Vega S, et al. Solid lipid nanoparticles for delivery of Calendula officinalis extract. colloids Surf B Biointerfaces 2015; 135: 18-26.
[35]
Marrese M, Guarino V, Ambrosio L. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering. J Funct Biomater 2017; 8(1): 7.
[http://dx.doi.org/10.3390/jfb8010007] [PMID: 28208801]
[36]
Bonnell D. Scanning Probe Microscopy and Spectroscopy: Theory 2nd ed Techniques, and Applications 2019; 25-7.
[37]
Zhang Y, Yang Y, Tang K, Hu X, Zou G. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J Appl Polym Sci 2008; 107: 891-997.
[http://dx.doi.org/10.1002/app.26402]
[38]
Mohanty C, Sahoo SK. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 2010; 31(25): 6597-611.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.062] [PMID: 20553984]
[39]
Momenkiaei F, Raofie F. Preparation of Curcuma Longa L. Extract Nanoparticles Using Supercritical Solution Expansion. J Pharm Sci 2019; 108(4): 1581-9.
[http://dx.doi.org/10.1016/j.xphs.2018.11.010] [PMID: 30439462]
[40]
Jamil B, Abbasi R, Abbasi S, et al. Encapsulation of cardamom essential oil in chitosan nano-composites: In-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front Microbiol 2016; 7: 1580.
[http://dx.doi.org/10.3389/fmicb.2016.01580] [PMID: 27757108]
[41]
Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 2016; 8(4): 409-27.
[http://dx.doi.org/10.1007/s12551-016-0218-6] [PMID: 28510011]
[42]
Pecora R. Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res 2000; 2: 123-31.
[http://dx.doi.org/10.1023/A:1010067107182]
[43]
Bhattacharyya SS, Paul S, Khuda-Bukhsh AR. Encapsulated plant extract (Gelsemium sempervirens) poly (lactide-co-glycolide) nanoparticles enhance cellular uptake and increase bioactivity in vitro. Exp Biol Med (Maywood) 2010; 235(6): 678-88.
[http://dx.doi.org/10.1258/ebm.2010.009338] [PMID: 20511672]
[44]
Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, et al. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym 2011; 83: 452-61.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.008]
[45]
Piazzini V, Monteforte E, Luceri C, Bigagli E, Bilia AR, Bergonzi MC. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv 2017; 24(1): 380-90.
[http://dx.doi.org/10.1080/10717544.2016.1256002] [PMID: 28165811]
[46]
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - A review (Part 1). Trop J Pharm Res 2013; 12: 255-64.
[47]
Vogel R, Pal AK, Jambhrunkar S, et al. High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing. Sci Rep 2017; 7(1): 17479.
[http://dx.doi.org/10.1038/s41598-017-14981-x] [PMID: 29234015]
[48]
Leelapornpisid P, Chansakaow S, Na-Boonlong S, Jantrawut P. Development of cream containing nanostructured lipid carriers loaded marigold (Tagetes Erecta Linn) flowers extract for anti-wrinkles application. Pharm Sci 2014; 6: 313-4.
[49]
Strasser M, Noriega P, Löbenberg R, Bou-Chacra N, Bacchi EM. Antiulcerogenic potential activity of free and nanoencapsulated Passiflora serratodigitata L. extracts. BioMed Res Int 2014.2014434067
[http://dx.doi.org/10.1155/2014/434067] [PMID: 25126557]
[50]
Zorzi GK, Caregnato F, Moreira JCF, Teixeira HF, Carvalho ELS. Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline satureioides (Lam) D.C.-Asteraceae. AAPS PharmSciTech 2016; 17(4): 844-50.
[http://dx.doi.org/10.1208/s12249-015-0408-8] [PMID: 26361953]
[51]
Feist M. Thermal analysis : basics, applications, and benefit Chem Texts 2015; 1-12.Available at : . https://link.springer.com/article/10.1007/s40828-015-0008-y
[52]
Almeida L, Oshiro Júnior JA, Silva M, et al. Tablet of Ximenia Americana L. Developed from Mucoadhesive Polymers for Future Use in Oral Treatment of Fungal Infections. Polymers (Basel) 2019; 11(2): 379.
[http://dx.doi.org/10.3390/polym11020379] [PMID: 30960363]
[53]
de Assis ACL, Alves LP, Malheiro JPT, et al. Opuntia Ficus-Indica L. Miller (Palma Forrageira) as an Alternative Source of Cellulose for Production of Pharmaceutical Dosage Forms and Biomaterials: Extraction and Characterization. Polymers (Basel) 2019; 11(7): 1124.
[http://dx.doi.org/10.3390/polym11071124] [PMID: 31269671]
[54]
Mura P. Journals & Books Create account Sign in Analytical techniques for characterization of cyclodextrin complexes in the solid state : A review. J Pharm Biomed Anal 2019; 1-3.
[http://dx.doi.org/10.1016/j.jpba.2015.01.058] [PMID: 25743620]
[55]
Kamel KM, Khalil IA, Rateb ME, Elgendy H, Elhawary S. Chitosan-Coated Cinnamon/Oregano-Loaded Solid Lipid Nanoparticles to Augment 5-Fluorouracil Cytotoxicity for Colorectal Cancer: Extract Standardization, Nanoparticle Optimization, and Cytotoxicity Evaluation. J Agric Food Chem 2017; 65(36): 7966-81.
[http://dx.doi.org/10.1021/acs.jafc.7b03093] [PMID: 28813148]
[56]
Jha PK, Jha RK, Rout D, Gnanasekar S, Rana SVS, Hossain M. Potential targetability of multi-walled carbon nanotube loaded with silver nanoparticles photosynthesized from Ocimum tenuiflorum (tulsi extract) in fertility diagnosis. J Drug Target 2017; 25(7): 616-25.
[http://dx.doi.org/10.1080/1061186X.2017.1306534] [PMID: 28294638]
[57]
Grasel F dos S, Behrens MC, Strassburger D, Einloft S, Diz FM, Morrone FB, et al. Synthesis, characterization and in vitro cytotoxicity of acacia mearnsii proanthocyanidin loaded plga microparticles. Braz J Chem Eng 2019; 36: 239-50.
[http://dx.doi.org/10.1590/0104-6632.20190361s20170154]
[58]
Khakestani M, Zahedi P, Bagheri R, Hajiaghaee R. Physical, morphological, and biological studies on PLA/nHA composite nano brous webs containing. Cerne 2019; 134: 1-2.
[59]
Wang T, Wu C, Fan G, Li T, Gong H, Cao F. Ginkgo biloba extracts-loaded starch nano-spheres: Preparation, characterization, and in vitro release kinetics. Int J Biol Macromol 2018; 106: 148-57.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.012] [PMID: 28780415]
[60]
Pourhojat F, Sohrabi M, Shariati S, Mahdavi H, Asadpour L. Evaluation of poly ε-caprolactone electrospun nanofibers loaded with Hypericum perforatum extract as a wound dressing. Res Chem Intermed 2017; 43: 297-320.
[http://dx.doi.org/10.1007/s11164-016-2623-7]
[61]
Klancnik G. Jozef Medved PM. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation Diferenčna termična analiza (DTA) in diferenčna vrstična kalorimetrija (DSC) kot metoda za raziskavo materialov. Materials and Geoenvironment 2010; 57: 127-42.
[62]
Anitha A, Deepagan VG, Divya Rani VV, Menon D, Nair SV, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym 2019; 84(3): 1158-64.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.005]
[63]
Ciobanu M, Pirvu L, Paun G, Savin S, Albu BG, Munteanu C, et al. Development of a new (bio)hybrid matrix based on Althaea officinalis and Betonica officinalis extracts loaded into mesoporous silica nanoparticles for bioactive compounds with therapeutic applications. J Drug Deliv Sci Technol 2019; 51: 605-13.
[http://dx.doi.org/10.1016/j.jddst.2019.03.040]
[64]
Rejinold NS, Muthunarayanan M, Chennazhi KP, Nair SV, Jayakumar R. Curcumin loaded fibrinogen nanoparticles for cancer drug delivery. J Biomed Nanotechnol 2011; 7(4): 521-34.
[http://dx.doi.org/10.1166/jbn.2011.1320] [PMID: 21870456]
[65]
Rachmawati H, Edityaningrum CA, Mauludin R. Molecular inclusion complex of curcumin-β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 2013; 14(4): 1303-12.
[http://dx.doi.org/10.1208/s12249-013-0023-5] [PMID: 23990077]
[66]
Nasrollahzadeh M, Atarod M, Sajjadi M, Sajadi SM, Issaabadi Z. Journals & Books Create account Sign in Chapter 6 - Plant- Mediated Green Synthesis of Nanostructures : Mechanisms , Characterization , and Applications. 2019; 12
[67]
Correia LP, Santana CP, da Silva KMA, et al. Physical and chemical characteristics of Maytenus rigida in different particle sizes using SEM/EDS, TG/DTA and pyrolysis GC-MS. J Therm Anal Calorim 2018; 131: 743-52.
[http://dx.doi.org/10.1007/s10973-016-5999-0]
[68]
Kumar S. Pooja, Trotta F, Rao R. Encapsulation of babchi oil in cyclodextrin-based nanosponges: Physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutcs 2018; 10: 1-18.
[69]
Che Sulaiman IS, Basri M, Fard Masoumi HR, Ashari SE, Ismail M. Design and development of a nanoemulsion system containing extract of: Clinacanthus nutans (L.) leaves for transdermal delivery system by D-optimal mixture design and evaluation of its physicochemical properties. RSC Advances 2016; 6: 67378-88.
[http://dx.doi.org/10.1039/C6RA12930G]
[70]
Vishwakarma GS, Gautam N, Babu JN, Mittal S, Jaitak V. Polymeric Encapsulates of Essential Oils and Their Constituents: A Review of Preparation Techniques, Characterization, and Sustainable Release Mechanisms. Polym Rev (Phila Pa) 2016; 56: 668-701.
[http://dx.doi.org/10.1080/15583724.2015.1123725]
[71]
Mirzaei E, Sarkar S, Rezayat SM, Faridi-Majidi R. Herbal Extract Loaded Chitosan-Based Nanofibers as a Potential Wound-Dressing. J Adv Med Sci App Technol 2016; 2: 141-50.
[http://dx.doi.org/10.18869/nrip.jamsat.2.1.141]
[72]
Hunger M, Weitkamp J. In situ IR, NMR, EPR, and UV/Vis spectroscopy: Tools for new insight into the mechanisms of heterogeneous catalysis. Angew Chem Int Ed Engl 2001; 40(16): 2954-71.
[http://dx.doi.org/10.1002/1521-3773(20010817)40:16<2954:AID-ANIE2954>3.0.CO;2-#] [PMID: 12203619]
[73]
Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: A review. Arab J Chem 2017; 10: S1409-21.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[74]
Schmid F, Beer L. Biological Macromolecules : Spectrophotometry. Concentrations 2001; 2001: 1-4.
[75]
Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ. Nanoparticles applied to plant science: a review. Talanta 2015; 131: 693-705.
[http://dx.doi.org/10.1016/j.talanta.2014.08.050] [PMID: 25281161]
[76]
Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, et al. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids 2013; 2013
[http://dx.doi.org/10.1155/2013/313081]
[77]
Li P, Hur J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Crit Rev Environ Sci Technol 2017; 47: 131-54.
[http://dx.doi.org/10.1080/10643389.2017.1309186]
[78]
Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B Biointerfaces 2010; 80(2): 184-92.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.002] [PMID: 20598513]
[79]
Sunoqrot S, Al-Shalabi E, Messersmith PB. Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomater Sci 2018; 6(10): 2656-66.
[http://dx.doi.org/10.1039/C8BM00587G] [PMID: 30140818]
[80]
Silva-Buzanello RA, Ferro AC, Bona E, et al. Validation of an Ultraviolet-visible (UV-Vis) technique for the quantitative determination of curcumin in poly(L-lactic acid) nanoparticles. Food Chem 2015; 172: 99-104.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.016] [PMID: 25442529]
[81]
Yang X, Zhang W, Zhao Z, et al. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J Inorg Biochem 2017; 167: 36-48.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.023] [PMID: 27898345]
[82]
Oliveira CA, Peres DDA, Graziola F, et al. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur J Pharm Sci 2016; 81: 1-9.
[http://dx.doi.org/10.1016/j.ejps.2015.09.016] [PMID: 26428697]
[83]
Patil AG, Jobanputra AH. Rutin-Chitosan Nanoparticles: Fabrication, Characterization and Application in Dental Disorders. Polym Plast Technol Eng 2015; 54: 202-8.
[http://dx.doi.org/10.1080/03602559.2014.935425]
[84]
Hu B, Wang Y, Xie M, Hu G, Ma F, Zeng X. Polymer nanoparticles composed with gallic acid grafted chitosan and bioactive peptides combined antioxidant, anticancer activities and improved delivery property for labile polyphenols. J Funct Foods 2015; 15: 593-603.
[http://dx.doi.org/10.1016/j.jff.2015.04.009]
[85]
Lakowicz JR, Chowdhury MH, Ray K, et al. Plasmon-controlled fluorescence: A new detection technology. Proc SPIE Int Soc Opt Eng 2006. 6099609909
[http://dx.doi.org/10.1117/12.673106] [PMID: 20953312]
[86]
Hassellöv M, Readman JW, Ranville JF, Tiede K. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 2008; 17(5): 344-61.
[http://dx.doi.org/10.1007/s10646-008-0225-x] [PMID: 18483764]
[87]
Hougaard AB, Lawaetz AJ, Ipsen RH. Front face fluorescence spectroscopy and multi-way data analysis for characterization of milk pasteurized using instant infusion. Food Sci Technol (Campinas) 2013; 53: 331-7.
[88]
Campos EVR, Oliveira JL, Zavala-Betancourt SA, et al. Development of stained polymeric nanocapsules loaded with model drugs: Use of a fluorescent poly(phenyleneethynylene). Colloids Surf B Biointerfaces 2016; 147: 442-9.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.031] [PMID: 27573038]
[89]
Souza MP, Vaz AFM, Correia MTS, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG. Quercetin-Loaded Lecithin/Chitosan Nanoparticles for Functional Food Applications. Food Bioprocess Technol 2014; 7: 1149-59.
[http://dx.doi.org/10.1007/s11947-013-1160-2]
[90]
Montalbán MG, Coburn JM, Lozano-Pérez AA, Cenis JL, Víllora G, Kaplan DL. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials (Basel) 2018; 8(2): 7-13.
[http://dx.doi.org/10.3390/nano8020126] [PMID: 29495296]
[91]
Liu F, Antoniou J, Li Y, Majeed H, Liang R, Ma Y, et al. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocoll 2016; 57: 291-300.
[http://dx.doi.org/10.1016/j.foodhyd.2016.01.024]
[92]
Coskun O. Separation Tecniques. CHROMATOGRAPHY North Clin Istanbul 2016; 3: 156-60.
[93]
Martin M, Guiochon G. Effects of high pressure in liquid chromatography. J Chromatogr A 2005; 1090(1-2): 16-38.
[http://dx.doi.org/10.1016/j.chroma.2005.06.005] [PMID: 16196131]
[94]
Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi MMA. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer. Int J Biol Macromol 2016; 93(Pt A): 242-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.050] [PMID: 27565296]
[95]
Campos DA, Madureira AR, Sarmento B, Pintado MM, Gomes AM. Technological stability of solid lipid nanoparticles loaded with phenolic compounds: Drying process and stability along storage. J Food Eng 2017; 196: 1-10.
[http://dx.doi.org/10.1016/j.jfoodeng.2016.10.009]
[96]
Castro Frabel do Nascimento T, Meza Casa D, Facco Dalmolin L, Cristina de Mattos A, Maissar Khalil N, Mara Mainardes R. Development and Validation of an HPLC Method Using Fluorescence Detection for the Quantitative Determination of Curcumin in PLGA and PLGA-PEG Nanoparticles 2012; 8: 324-33.
[97]
Liu Y, Luo J, Shin Y, et al. Sampling the structure and chemical order in assemblies of ferromagnetic nanoparticles by nuclear magnetic resonance. Nat Commun 2016; 7: 11532.
[http://dx.doi.org/10.1038/ncomms11532] [PMID: 27156575]
[98]
Garrido EMPJ, Cerqueira AS, Chavarria D, Silva T, Borges F, Garrido JMPJ. Microencapsulation of caffeic acid phenethyl ester and caffeic acid phenethyl amide by inclusion in hydroxypropyl-β-cyclodextrin. Food Chem 2018; 254: 260-5.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.007] [PMID: 29548452]
[99]
Aslam N, Pfender M, Neumann P, et al. Nanoscale nuclear magnetic resonance with chemical resolution. Science 2017; 357(6346): 67-71.
[http://dx.doi.org/10.1126/science.aam8697] [PMID: 28572453]
[100]
Hu Z, Feng T, Zeng X, Janaswamy S, Wang H, Campanella O. Structural Characterization and Digestibility of Curcumin Loaded Octenyl Succinic Nanoparticles. Nanomaterials (Basel) 2019; 9(8): 1073.
[http://dx.doi.org/10.3390/nano9081073] [PMID: 31357427]
[101]
Gumireddy A, Christman R, Kumari D, Tiwari A, North EJ, Chauhan H. Preparation, Characterization, and In vitro Evaluation of Curcumin- and Resveratrol-Loaded Solid Lipid Nanoparticles. AAPS Pharm Sci Thech 2019; 20
[102]
Anari E, Akbarzadeh A, Zarghami N. Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif Cells Nanomed Biotechnol 2016; 44(6): 1410-6.
[PMID: 26148177]
[103]
Fang C, Ma Z, Chen L, Li H, Jiang C, Zhang W. Biosynthesis of gold nanoparticles, characterization and their loading with zonisamide as a novel drug delivery system for the treatment of acute spinal cord injury. J Photochem Photobiol B 2019; 190: 72-5.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.011] [PMID: 30502587]
[104]
Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine 2019; 14: 1969-78.
[http://dx.doi.org/10.2147/IJN.S188235] [PMID: 30936697]
[105]
Valsalam S, Agastian P, Arasu MV, et al. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J Photochem Photobiol B 2019; 191: 65-74.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.010] [PMID: 30594044]
[106]
Narendra Kumar HK, Chandra Mohana N, Nuthan BR, Ramesha KP, Rakshith D, Geetha N, et al. Phyto-mediated synthesis of zinc oxide nanoparticles using aqueous plant extract of Ocimum americanum and evaluation of its bioactivity. SN Applied Sciences 2019; 1: 1-9.
[http://dx.doi.org/10.1007/s42452-019-0671-5]
[107]
Subha V, Ramadoss P, Renganathan S. Incorporation of biotransformed silver nanoparticles in plant polysaccarides resin and their effect on sustained drug release. Polym Sci Ser B 2016; 58: 61-72.
[http://dx.doi.org/10.1134/S1560090416010073]
[108]
Caddeo C, Manconi M, Fadda AM, et al. Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation. Colloids Surf B Biointerfaces 2013; 111: 327-32.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.016] [PMID: 23838200]
[109]
Brotherton EE, Hatton FL, Cockram AA, et al. In Situ SAXS Studies During RAFT Aqueous Emulsion Polymerization. J Am Chem Soc 2019; 141(34): 13664-675.
[110]
Homann C, Bolze J, Haase M. Colloidal Crystals of NaYF 4 Up conversion Nanocrystals Studied by Small-Angle X-Ray Scattering (SAXS). Chem Rev 2019; 36: 1-8.
[111]
Oshiro JA, Nasser NJ, Chiari-Andreó BG, Cuberes MT, Chiavacci LA. Study of triamcinolone release and mucoadhesive properties of macroporous hybrid films for oral disease treatment. Biomed Phys Eng Express 2018; 4(3): 4.
[http://dx.doi.org/10.1088/2057-1976/aaa84b]
[112]
Oshiro JA, Scardueli CR, de Oliveira GJPL, Marcantonio RAC, Chiavacci LA. Development of ureasil-polyether membranes for guided bone regeneration. Biomed Phys Eng Express 2017; 3(1): 015019.
[http://dx.doi.org/10.1088/2057-1976/aa56a6]
[113]
Oshiro JA Junior, Mortari GR, de Freitas RM, et al. Assessment of biocompatibility of ureasil-polyether hybrid membranes for future use in implantodontology. International Journal of Polymeric Materials and Polymeric Biomaterials 2016; 65: 647-52.
[http://dx.doi.org/10.1080/00914037.2016.1157796]
[114]
Lachowicz D, Kaczyńska A, Wirecka R, et al. A hybrid system for magnetic hyperthermia and drug delivery: SPION functionalized by curcumin conjugate. Materials (Basel) 2018; 11(12): 2388.
[http://dx.doi.org/10.3390/ma11122388] [PMID: 30486447]
[115]
Murgia S, Bonacchi S, Falchi AM, et al. Drug-loaded fluorescent cubosomes: versatile nanoparticles for potential theranostic applications. Langmuir 2013; 29(22): 6673-9.
[http://dx.doi.org/10.1021/la401047a] [PMID: 23642193]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 33
Year: 2020
Published on: 23 September, 2020
Page: [4163 - 4173]
Pages: 11
DOI: 10.2174/1381612826666200310144533
Price: $65

Article Metrics

PDF: 17
HTML: 3
EPUB: 1
PRC: 1