The Anti-Breast Cancer Potential of Bis-Isatin Scaffolds

Author(s): Hua Guo*, Quan-Ping Diao

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 16 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aim: To develop novel anti-breast cancer agents and discuss the structure-activity relationship of bis-isatin scaffolds.

Background: Breast cancer is the most common invasive cancer and the second leading cause of cancer death in women after lung cancer. Bis-isatin scaffolds possess potential anti-breast cancer activity, and some of them such as Indirubin could induce cancer cells apoptosis via multiply mechanisms.

Objective: The primary objective of this study was to evaluate the potential of bis-isatin scaffolds with alkyl/ether linkers between the two isatin moieties against different human breast cancer cell lines including MCF-7, AU565, MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells.

Methods: The synthesized bis-isatin scaffolds with alkyl/ether linker between the two isatin moieties were evaluated for their in vitro activity against MCF-7, AU565, MDA-MB-231, MDA-MB-435, and MDA-MB-468 human breast cancer cell lines by MTT assay.

Results: All the synthesized compounds (IC50: 38.3-197.6 µM) possess considerable activity against MCF-7, AU565, MDA-MB-231, MDA-MB-435, and MDA-MB-468 human breast cancer cell lines, and the most potent compound 4e (IC50: 38.3-63.5 µM) was no inferior to Cisplatin (IC50: 20.1-38.6 μM) against the five tested human breast cancer cell lines.

Conclusion: All the synthesized bis-isatin scaffolds were active against a panel of breast cancer cell lines, highlighting the significance of exploring the bis-isatin scaffolds to fight against breast cancers. The enriched structure-activity relationship may set up the direction for the rational design and development of novel bis-isatin scaffolds with higher efficiency.

Keywords: Bis-isatin, Breast cancer, Structure-activity relationships, Alkyl/ether linkers, Cisplatin, Nintedanib.

[1]
DeSantis, C.E.; Ma, J.; Goding Sauer, A.; Newman, L.A.; Jemal, A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin., 2017, 67(6), 439-448.
[http://dx.doi.org/10.3322/caac.21412] [PMID: 28972651]
[2]
Chopra, S.; Davies, E.L. Breast cancer. Medicine (Baltimore), 2020, 48(2), 113-118.
[http://dx.doi.org/10.1016/j.mpmed.2019.11.009]
[3]
Sibbering, M.; Courtney, C.A. Management of breast cancer: basic principles. Surgery, 2019, 37(3), 157-163.
[4]
International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. Available on:. https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdf (Available on Sep. 2018).
[5]
Afzal, M.; Ameeduzzafar, ; Alharbi, K.S.; Alruwaili, N.K.; Al-Abassi, F.A.; Al-Malki, A.A.L.; Kazmi, I.; Kumar, V.; Kamal, M.A.; Nadeem, M.S.; Aslam, M.; Anwar, F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin. Cancer Biol., 2019. [In Press]
[http://dx.doi.org/10.1016/j.semcancer.2019.12.016] [PMID: 31870940]
[6]
Hassett, M.J.; Elkin, E.B. What does breast cancer treatment cost and what is it worth? Hematol. Oncol. Clin. North Am., 2013, 27(4), 829-841. ix
[http://dx.doi.org/10.1016/j.hoc.2013.05.011] [PMID: 23915747]
[7]
Raigon-Ponferrada, A.; Recio, M.E.D.; Guerrero-Orriach, J.L.; Malo-Manso, A.; Escalona-Belmonte, J.J.; Aliaga, M.R.; Fernández, A.R.; García, F.J.F.; Conejo, E.A.; Cruz-Mañas, J. Breast cancer and anesthesia. Curr. Pharm. Des., 2019, 25(28), 2998-3004.
[http://dx.doi.org/10.2174/1381612825666190712183436] [PMID: 31309884]
[8]
Oyama, T.; Yasui, Y.; Tanaka, T. Breast cancer chemoprevention: Current perspectives. Curr. Enzym. Inhib., 2009, 5(4), 198-208.
[http://dx.doi.org/10.2174/157340809789630271]
[9]
Karthikeyan, C.; Solomon, V.R.; Lee, H.; Trivedi, P. Design, synthesis and biological evaluation of some isatin-linked chalcones as novel anti-breast cancer agents: A molecular hybridization approach. Biomed. Prevent. Nutrit., 2013, 3, 325-330.
[http://dx.doi.org/10.1016/j.bionut.2013.04.001]
[10]
Jin, X.; Xu, Y.; Yang, X.; Chen, X.; Wu, M.; Guan, J.; Feng, L. Design, synthesis and in vitro anti-microbial evaluation of ethylene/propylene-1H-1,2,3-triazole-4-methylene-tethered isatin-coumarin hybrids. Curr. Top. Med. Chem., 2017, 17(29), 3213-3218.
[PMID: 29243578]
[11]
Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm. (Weinheim), 2020. e1900367
[http://dx.doi.org/10.1002/ardp.201900367] [PMID: 31960987]
[12]
Evdokimov, N.M.; Magedov, I.V.; McBrayer, D.; Kornienko, A. Isatin derivatives with activity against apoptosis-resistant cancer cells. Bioorg. Med. Chem. Lett., 2016, 26(6), 1558-1560.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.015] [PMID: 26883150]
[13]
Hadden, M.K.; Blagg, B.S.J. Dimeric approaches to anti-cancer chemotherapeutics. Anticancer. Agents Med. Chem., 2008, 8(7), 807-816.
[http://dx.doi.org/10.2174/187152008785914743] [PMID: 18855582]
[14]
Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: Potent antimalarial and anticancer agents. J. Med. Chem., 2016, 59(16), 7360-7388.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01380] [PMID: 27010926]
[15]
Ren, Q.C.; Gao, C.; Xu, Z.; Feng, L.S.; Liu, M.L.; Wu, X.; Zhao, F. Bis-coumarin derivatives and their biological activities. Curr. Top. Med. Chem., 2018, 18(2), 101-113.
[http://dx.doi.org/10.2174/1568026618666180221114515] [PMID: 29473509]
[16]
Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem., 2014, 74, 742-750.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.040] [PMID: 24176732]
[17]
Althagafi, I.I.; Abouzied, A.S.; Farghaly, T.A.; Al-Qurashi, N.T.; Alfaifi, M.Y.; Shaaban, M.R.; Aziz, M.R.A. Novel nano-sized bis-indoline derivatives as antitumor agents. J. Heterocycl. Chem., 2019, 56(2), 391-399.
[http://dx.doi.org/10.1002/jhet.3410]
[18]
Zhang, Y.Z.; Du, H.Z.; Liu, H.L.; He, Q.S.; Xu, Z. Isatin dimers and their biological activities. Arch. Pharm. (Weinheim), 2020. e1900299
[http://dx.doi.org/10.1002/ardp.201900299] [PMID: 31985855]
[19]
Chen, L.; Wang, J.; Wu, J.; Zheng, Q.; Hu, J. Indirubin suppresses ovarian cancer cell viabilities through the STAT3 signaling pathway. Drug Des. Devel. Ther., 2018, 12, 3335-3342.
[http://dx.doi.org/10.2147/DDDT.S174613] [PMID: 30323565]
[20]
Fan, Y.L.; Huang, Z.P.; Liu, M. Design, synthesis and antitumor activities of 1,2,3-triazole-diethylene glycol tethered isatin dimers. J. Heterocycl. Chem., 2018, 55(12), 2990-2995.
[http://dx.doi.org/10.1002/jhet.3330]
[21]
Singh, P.; Sharma, P.; Anand, A.; Bedi, P.M.S.; Kaur, T.; Saxena, A.K.; Kumar, V. Azide-alkyne cycloaddition en route to novel 1H-1,2,3-triazole tethered isatin conjugates with in vitro cytotoxic evaluation. Eur. J. Med. Chem., 2012, 55, 455-461.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.057] [PMID: 22818042]
[22]
Jain, R.; Gahlyan, P.; Dwivedi, S.; Konwar, R.; Kumar, S.; Bhandari, M.; Arora, R.; Kakkar, R.; Kuamr, R.; Prasad, A.K. Design, synthesis and evaluation of 1H-1,2,3-triazol-4-yl-methyl tethered 3-pyrrolylisatins as potent anti-breast cancer agents. ChemistrySelect, 2018, 3(19), 5263-5268.
[http://dx.doi.org/10.1002/slct.201800420]
[23]
Kumar, K.; Sagar, S.; Esau, L.; Kaur, M.; Kumar, V. Synthesis of novel 1H-1,2,3-triazole tethered C-5 substituted uracil-isatin conjugates and their cytotoxic evaluation. Eur. J. Med. Chem., 2012, 58, 153-159.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.008] [PMID: 23124212]
[24]
Ma, T.; Chen, R.; Xue, H.; Miao, Z.; Chen, L.; Zhang, H.; Shi, X. Di-isatin heteronuclear compounds and their antibacterial activity. J. Heterocycl. Chem., 2020, 57(1), 503-509.
[http://dx.doi.org/10.1002/jhet.3781]
[25]
Zhang, L.; Zhao, S.; Xu, Z.; Liu, Y. Investigation of the anti-human immunodeficiency virus activity of heteronuclear bis-isatin scaffolds tethered through propyl and butyl. J. Heterocycl. Chem., 2019, 56(10), 2975-2979.
[http://dx.doi.org/10.1002/jhet.3691]
[26]
Xu, Y.; Guan, J.; Xu, Z.; Zhao, S. Design, synthesis and in vitro anti-mycobacterial activities of homonuclear and heteronuclear bis-isatin derivatives. Fitoterapia, 2018, 127, 383-386.
[http://dx.doi.org/10.1016/j.fitote.2018.03.018] [PMID: 29631015]
[27]
Tetraethylene glycol tethered heteronuclear bis-isatin derivatives: Design, synthesis, and in vitro anti-mycobacterial activities. J. Heterocycl. Chem., 2018, 55(9), 2172-2177.
[http://dx.doi.org/10.1002/jhet.3255]
[28]
Diao, Q.P.; Guo, H.; Wang, G.Q. Benzofuran-isatin hybrids: Design, synthesis, and in vitro anti-cancer activities. J. Heterocycl. Chem., 2019, 56(5), 1687-1693.
[http://dx.doi.org/10.1002/jhet.3554]
[29]
Montealegre-Sánchez, L.; Gimenes, S.N.C.; Lopes, D.S.; Teixeira, S.C.; Solano-Redondo, L.; de Melo Rodrigues, V.; Jiménez-Charris, E. Antitumoral potential of Lansbermin-I, a novel disintegrin from porthidium lansbergii lansbergii venom on breast cancer cells. Curr. Top. Med. Chem., 2019, 19(22), 2069-2078.
[http://dx.doi.org/10.2174/1568026619666190806151401] [PMID: 31385773]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 16
Year: 2020
Page: [1499 - 1503]
Pages: 5
DOI: 10.2174/1568026620666200310124416
Price: $65

Article Metrics

PDF: 15
HTML: 1