Microwave-assisted Carbon-carbon and Carbon-heteroatom Cross-coupling Reactions in Organic Synthesis

Author(s): Rammyani Pal, Chhanda Mukhopadhyay*

Journal Name: Current Microwave Chemistry

Volume 7 , Issue 2 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Conventionally, the organic reactions are accomplished by conductive heating with an external heat source like an oil bath. On the contrary, since its inception, the application of microwave irradiation is growing as a suitable alternate heating method in organic synthesis. Microwave heating considerably reduces the reaction time without promoting any side reactions. The fundamental synthetic organic chemistry majorly deals with transition-metal-catalyzed C–C and C–heteroatom bond formation reactions. It is one of the most important methods in contemporary chemistry resulting in a tremendous increment in the applications of these reactions during the last few years. This field has been acknowledged with a number of Nobel Prizes during the last decade (2001, 2005 and 2010). A considerable effort has been done on the continuous development of new ligands and catalysts as well as an increased understanding of the mechanisms for the improvement of the reaction condition. This review focuses on some of the latest developments in the area of cross-coupling reactions aided by microwave irradiation.

Keywords: Bond formation, cross-coupling, catalyst, heterocycle, microwave, organic synthesis.

Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27, 279-282.
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27, 4945-4958.
Larhed, M.; Lindeberg, G.; Hallberg, A. Rapid microwave-assisted Suzuki coupling on solid-phase. Tetrahedron Lett., 1996, 37, 8219-8220.
Kappe, C.O.; Dallinger, D. Controlled microwave heating in modern organic synthesis: highlights from the 2004-2008 literature. Mol. Divers., 2009, 13(2), 71-193.
[http://dx.doi.org/10.1007/s11030-009-9138-8] [PMID: 19381851]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res.,, 2002, 35(9), 717-727.
[http://dx.doi.org/10.1021/ar010074v] [PMID: 12234201]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric Parameters Relevant to Microwave Dielectric Heating. Chem. Soc. Rev., 1998, 27, 213-223.
Appukkuttan, P.; Van der Eycken, E. Recent developments in microwave‐assisted, transition‐metal‐catalysed C–C and C–N bond‐forming reactions. Eur. J. Org. Chem., 2008, 1133-1155.
Appukkuttan, P.; Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted cycloaddition reactions. Chem. Soc. Rev., 2010, 39(5), 1467-1477.
[http://dx.doi.org/10.1039/B815717K] [PMID: 20419202]
Bogdal, D.; Penczek, P.; Pielichowski, J.; Prociak, A. Microwave assisted synthesis, crosslinking, and processing of polymeric materials. Adv. Polym. Sci., 2003, 163, 193-263.
Torborg, C.; Beller, M. Recent applications of palladium‐catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal., 2009, 351, 3027-3043.
Surry, D.S.; Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. (Camb.), 2011, 2(1), 27-50.
[http://dx.doi.org/10.1039/C0SC00331J] [PMID: 22432049]
Beller, M.; Bolm, C. Transition Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004.
Sherry, B.D.; Fürstner, A. The promise and challenge of iron-catalyzed cross coupling. Acc. Chem. Res, 2008, 41(11), 1500-1511.
[http://dx.doi.org/10.1021/ar800039x] [PMID: 18588321]
Crabtree, R.H. The organometallic chemistry of alkanes. Chem. Rev., 1985, 85, 245-269.
Arndtsen, B.A.; Bergman, R.G.; Mobley, T.A.; Peterson, T.H. Selective intermolecular Carbon—Hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res., 1995, 28, 154-162.
Baghbanzadeh, M.; Pilger, C.; Kappe, C.O. Palladium-catalyzed direct arylation of heteroaromatic compounds: improved conditions utilizing controlled microwave heating. J. Org. Chem., 2011, 76(19), 8138-8142.
[http://dx.doi.org/10.1021/jo201516v] [PMID: 21851080]
Shilov, A.E.; Shul’pin, G.B. Activation of Cminus signH Bonds by metal complexes. Chem. Rev., 1997, 97(8), 2879-2932.
[http://dx.doi.org/10.1021/cr9411886] [PMID: 11851481]
Quillen, A.; Nguyen, Q.; Neiser, M.; Lindsay, K.; Rosen, A.; Ramirez, S.; Costan, S.; Johnson, N.; Do, T.D.; Rodriguez, O.; Rivera, D.; Atesin, A.; Ateşin, T.A.; Ma, L. Palladium-Catalyzed direct α-C(sp3) heteroarylation of ketones under microwave irradiation. J. Org. Chem., 2019, 84(12), 7652-7663.
[http://dx.doi.org/10.1021/acs.joc.9b00446] [PMID: 31001979]
Lei, C.; Jin, X.; Zhou, J.S. palladium-catalyzed heteroarylation and concomitant ortho-alkylation of aryl iodides. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13397-13400.
[http://dx.doi.org/10.1002/anie.201507128] [PMID: 26358935]
Garrison, A.T.; Childress, E.S.; Davis, D.C.; Lindsley, C.W. Preparation of 1,5-Dihydropyrazolo[3′,4′:5,6]pyrano[3,4- b]pyridines via a Microwave-Assisted, Palladium-Catalyzed Regioselective C-H Heteroarylation of Electron-Rich Pyrazoles. J. Org. Chem., 2019, 84(9), 5855-5862.
[http://dx.doi.org/10.1021/acs.joc.9b00144] [PMID: 30807155]
Wood, M.R.; Noetzel, M.J.; Melancon, B.J.; Poslusney, M.S.; Nance, K.D.; Hurtado, M.A.; Luscombe, V.B.; Weiner, R.L.; Rodriguez, A.L.; Lamsal, A.; Chang, S.; Bubser, M.; Blobaum, A.L.; Engers, D.W.; Niswender, C.M.; Jones, C.K.; Brandon, N.J.; Wood, M.W.; Duggan, M.E.; Conn, P.J.; Bridges, T.M.; Lindsley, C.W. Discovery of VU0467485/AZ13713945: An M4 PAM Evaluated as a Preclinical Candidate for the Treatment of Schizophrenia. ACS Med. Chem. Lett., 2016, 8(2), 233-238.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00461] [PMID: 28197318]
Sahnoun, S.; Messaoudi, S.; Peyrat, J-F.; Brion, J-D.; Alam, M. Microwave-assisted Pd (OH)2-catalyzed direct C−H arylation of free-(NH2) adenines with aryl halides Tetrahedron Lett, 2008, 49, 7279-7283.
Huang, J.; Huang, Y.; Wang, T.; Huang, Q.; Wang, Z.; Chen, Z. Microwave-assisted Cp*CoIII-Catalyzed C-H activation/double C-N bond formation reactions to thiadiazine 1-oxides. Org. Lett., 2017, 19(5), 1128-1131.
[http://dx.doi.org/10.1021/acs.orglett.7b00120] [PMID: 28212044]
Laclef, S.; Harari, M.; Godeau, J.; Schmitz-Afonso, I.; Bischoff, L.; Hoarau, C.; Levacher, V.; Fruit, C.; Besson, T. Ligand-free Pd-catalyzed and copper-assisted C-H arylation of quinazolin-4-ones with aryl iodides under microwave heating. Org. Lett., 2015, 17(7), 1700-1703.
[http://dx.doi.org/10.1021/acs.orglett.5b00467] [PMID: 25781369]
Drev, M.; Grošelj, U.; Ledinek, B.; Perdih, F.; Svete, J.; Štefane, B.; Požgan, F. Ruthenium(II)-Catalyzed microwave-promoted multiple C-H activation in synthesis of Hexa(heteroaryl)benzenes in water. Org. Lett., 2018, 20(17), 5268-5273.
[http://dx.doi.org/10.1021/acs.orglett.8b02169] [PMID: 30130120]
Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 36, 3437-3440.
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds Chem. Rev., 1995, 95, 2457-2483.
Hall, D.G. Boronic Acids—Preparation and Applications in Organic Synthesis and Medicine, 2nd ed; Wiley-VCH: Weinheim, 2005.
Surry, D.S.; Buchwald, S.L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide.Angew. Chem. Int Ed; , 2008, 47, pp. 6338-6361.
Martin, R.; Buchwald, S.L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res., 2008, 41(11), 1461-1473.
[http://dx.doi.org/10.1021/ar800036s] [PMID: 18620434]
Castro, K.L. d-S.; de Lima, P.G.; e Miranda, L.S.M.; de Souza, R.O.M.A. Microwave assisted Suzuki reaction in N-butylpyridinium salts/water systems. Tetrahedron Lett., 2011, 52, 4168-4171.
Larhed, M.; Hallberg, A. Microwave-promoted palladiumcatalyzed coupling reactions J. Org. Chem., 1996, 61, 9582-9584.
Caddick, S.; Fitzmaurice, R. Microwave enhanced synthesis. Tetrahedron, 2009, 65, 3325-3355.
Harvey, R.G. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity 1st ed Cambridge University Press: Cambridge, England, 1991.
Guengerich, F.P. Metabolism of chemical carcinogens. Carcinogenesis, 2000, 21(3), 345-351.
[http://dx.doi.org/10.1093/carcin/21.3.345] [PMID: 10688854]
Sharma, A.K.; Gowdahalli, K.; Krzeminski, J.; Amin, S. Microwave-assisted Suzuki cross-coupling reaction, a key step in the synthesis of polycyclic aromatic hydrocarbons and their metabolites. J. Org. Chem., 2007, 72(23), 8987-8989.
[http://dx.doi.org/10.1021/jo701665j] [PMID: 17939722]
Jin, Z.; Li, Z.; Huang, R. Muscarine, imidazole, oxazole, thiazole, Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep., 2002, 19(4), 454-476.
[http://dx.doi.org/10.1039/b108923b] [PMID: 12195812]
Flegeau, E.F.; Popkin, M.E.; Greaney, M.F. Regioselective palladium cross-coupling of 2,4-dihalooxazoles: convergent synthesis of trisoxazoles. J. Org. Chem., 2008, 73(8), 3303-3306.
[http://dx.doi.org/10.1021/jo800121y] [PMID: 18335963]
Cao, P.; Qu, J.; Burton, G.; Rivero, R.A. Facile synthesis of 6-aryl 5-N-substituted pyridazinones: microwave-assisted Suzuki-Miyaura cross coupling of 6-chloropyridazinones. J. Org. Chem., 2008, 73(18), 7204-7208.
[http://dx.doi.org/10.1021/jo801097v] [PMID: 18687004]
Harrisson, P.; Morris, J.; Marder, T.B.; Steel, P.G. Microwave-accelerated iridium-catalyzed borylation of aromatic C-H bonds. Org. Lett., 2009, 11(16), 3586-3589.
[http://dx.doi.org/10.1021/ol901306m] [PMID: 19627109]
Cargill, M.R.; Sandford, G.; Tadeusiak, A.J.; Yufit, D.S.; Howard, J.A.K.; Kilickiran, P.; Nelles, G. Palladium-catalyzed C-F activation of polyfluoronitrobenzene derivatives in Suzuki-Miyaura coupling reactions. J. Org. Chem., 2010, 75(17), 5860-5866.
[http://dx.doi.org/10.1021/jo100877j] [PMID: 20704342]
Huang, Z.Y.; Yang, J.F.; Song, K.; Chen, Q.; Zhou, S.L.; Hao, G.F.; Yang, G.F. One-Pot Approach to N-Quinolyl 3′/4′-Biaryl Carboxamides by Microwave-Assisted Suzuki-miyaura coupling and N-Boc deprotection. J. Org. Chem., 2016, 81(20), 9647-9657.
[http://dx.doi.org/10.1021/acs.joc.6b01725] [PMID: 27649420]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16, 4467-4470.
Chinchilla, R.; Najera, C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107(3), 874-922.
[http://dx.doi.org/10.1021/cr050992x] [PMID: 17305399]
Plenio, H. Katalysatoren für die Sonogashira‐Kupplung – unedle Metalle auf dem Vormarsch. Angew. Chem., 2008, 120, 7060-7063.
Huang, H.; Liu, H.; Jiang, H.; Chen, K. Rapid and efficient Pd-catalyzed Sonogashira coupling of aryl chlorides. J. Org. Chem., 2008, 73(15), 6037-6040.
[http://dx.doi.org/10.1021/jo800994f] [PMID: 18598086]
Mehta, V.P.; Sharma, A.; Van der Eycken, E. The first palladium-catalyzed desulfitative Sonogashira-type cross-coupling of (hetero)aryl thioethers with terminal alkynes. Org. Lett., 2008, 10(6), 1147-1150.
[http://dx.doi.org/10.1021/ol800054b] [PMID: 18284248]
Awuah, E.; Capretta, A. Access to flavones via a microwave-assisted, one-pot Sonogashira-carbonylation-annulation reaction. Org. Lett., 2009, 11(15), 3210-3213.
[http://dx.doi.org/10.1021/ol901043q] [PMID: 19580257]
Chatterjee, N.; Sarkar, S.; Pal, R.; Sen, A.K. An approach toward the syntheses of triazolo benzoxazines, triazole quinoxalines, triazolo benzodiazepines, triazolo benzoxazepines, and triazolo benzothiazines via a simple and convenient protocol using basic alumina as solid support. Tetrahedron Lett, 2014, 55, 2261-2265.
Heck, R.F.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37, 2320-2322.
Mizoroki, T.; Mori, K. Ozaki, Arylation of olefin with aryl iodide catalyzed by palladium. A. Bull. Chem. Soc. Jpn., 1971, 44, 581.
de Meijere, A.; Meyer, F.E. Fine feathers make fine birds: The Heck reaction in modern garb. Angew. Chem., 1994, 106, 2473-2506.
Moro, A.V.; Cardoso, F.S.P.; Correia, C.R.D. Highly regio- and stereoselective Heck reaction of allylic esters with arenediazonium salts: application to the synthesis of kavalactones. Org. Lett., 2009, 11(16), 3642-3645.
[http://dx.doi.org/10.1021/ol901416e] [PMID: 19719201]
Lindh, J.; Enquist, P-A.; Pilotti, A.; Nilsson, P.; Larhed, M. Efficient palladium(II) catalysis under air. Base-free oxidative heck reactions at room temperature or with microwave heating. J. Org. Chem., 2007, 72(21), 7957-7962.
[http://dx.doi.org/10.1021/jo701434s] [PMID: 17887706]
Svennebring, A.; Garg, N.; Nilsson, P.; Hallberg, A.; Larhed, M. A one-pot isomerization-arylation of 2,3-epoxycyclohexanone under controlled microwave heating. J. Org. Chem., 2005, 70(12), 4720-4725.
[http://dx.doi.org/10.1021/jo0504619] [PMID: 15932310]
Donets, P.A.; Van der Eycken, E.V. Efficient synthesis of the 3-benzazepine framework via intramolecular Heck reductive cyclization. Org. Lett., 2007, 9(16), 3017-3020.
[http://dx.doi.org/10.1021/ol071079g] [PMID: 17608431]
Wolfe, J.P.; Wagaw, S.; Buchwald, S.L. An improved catalyst system for aromatic carbon− nitrogen bond formation: the possible involvement of bis (phosphine) palladium complexes as key intermediates. J. Am. Chem. Soc, 1996, 118, 7215-72160.
Driver, M.S.; Hartwig, J.F. A Second-Generation catalyst for aryl halide amination: mixed secondary amines from aryl halides and primary amines catalyzed by (DPPF)PdCl2 J. Am. Chem. Soc., 1996, 118, 7217-7218.
Beletskaya, I.P.; Cheprakov, A.V. The complementary competitors: palladium and copper in C−N cross-coupling ceactions. Organometallics, 2012, 31, 7753-7808.
Fischer, C.; Koenig, B. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds. Beilstein J. Org. Chem., 2011, 7, 59-74.
[http://dx.doi.org/10.3762/bjoc.7.10] [PMID: 21286396]
Bonnaterre, F.; Bois-Choussy, M.; Zhu, J. Rapid access to oxindoles by the combined use of an Ugi four-component reaction and a microwave-assisted intramolecular Buchwald-Hartwig amidation reaction. Org. Lett., 2006, 8, 4351-4354.
Poondra, R.R.; Turner, N.J. Microwave-assisted sequential amide bond formation and intramolecular amidation: a rapid entry to functionalized oxindoles. Org. Lett., 2005, 7(5), 863-866.
[http://dx.doi.org/10.1021/ol0473804] [PMID: 15727460]
Wang, T.; Magnin, D.R.; Hamann, L.G. Palladium-catalyzed microwave-assisted amination of 1-bromonaphthalenes and 5- and 8-bromoquinolines. Org. Lett., 2003, 5, 897-900.
King, A.O.; Okukado, N.; Negishi, E-i. J. Chem. Soc. Chem. Commun.,, 1977, 683-684.
Negishi, E.; Wang, G.; Rao, H.; Xu, Z. Alkyne elementometalation-Pd-catalyzed cross-coupling. Toward synthesis of all conceivable types of acyclic alkenes in high yields, efficiently, selectively, economically, and safely: “green” way J. Org. Chem.,, 2010, 75(10), 3151-3182.
[http://dx.doi.org/10.1021/jo1003218] [PMID: 20465291]
Walla, P.; Kappe, C.O. Microwave-assisted Negishi and Kumada cross-coupling reactions of aryl chlorides. Chem. Commun. (Camb.), 2004, (5), 564-565.
[http://dx.doi.org/10.1039/b313887a] [PMID: 14973609]
Wunderlich, S.; Knochel, P. High temperature metalation of functionalized aromatics and heteroaromatics using (tmp)2Zn x 2 MgCl2 x 2 LiCl and microwave irradiation. Org. Lett., 2008, 10(20), 4705-4707.
[http://dx.doi.org/10.1021/ol802118e] [PMID: 18816136]
Lipshutz, B.H.; Frieman, B.A.; Lee, C-T.; Lower, A.; Nihan, D.M.; Taft, B.R. Microwave-assisted heterogeneous cross-coupling reactions catalyzed by nickel-in-charcoal (Ni/C). Chem. Asian J., 2006, 1(3), 417-429.
[http://dx.doi.org/10.1002/asia.200600031] [PMID: 17441078]
Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris (diethylamino) sulfonium difluorotrimethylsilicate. J. Org. Chem, 1988, 53, 918-920.
Nakao, Y.; Imanaka, H.; Sahoo, A.K.; Yada, A.; Hiyama, T. Alkenyl- and aryl[2-(hydroxymethyl)phenyl]dimethylsilanes: an entry to tetraorganosilicon reagents for the silicon-based cross-coupling reaction. J. Am. Chem. Soc., 2005, 127(19), 6952-6953.
[http://dx.doi.org/10.1021/ja051281j] [PMID: 15884929]
Milton, E.J.; Fuentes, J.A.; Clarke, M.L. Palladium-catalysed synthesis of aryl-alkyl ethers using alkoxysilanes as nucleophiles. Org. Biomol. Chem., 2009, 7(12), 2645-2648.
[http://dx.doi.org/10.1039/b907784g] [PMID: 19503941]
Clarke, M. First microwave‐accelerated Hiyama coupling of aryl‐and vinylsiloxane derivatives: clean cross‐coupling of aryl chlorides within minutes. Adv. Synth. Catal., 2005, 347, 303-307.
Zhao, X.; Wu, G.; Yan, C.; Lu, K.; Li, H.; Zhang, Y.; Wang, J. Microwave-assisted, Pd(0)-catalyzed cross-coupling of diazirines with aryl halides. Org. Lett., 2010, 12(23), 5580-5583.
[http://dx.doi.org/10.1021/ol102434v] [PMID: 21067223]
Ding, S.; Le-Nguyen, M.; Xu, T.; Zhang, W. Fluorous benzaldehyde- based synthesis of biaryl-substituted oxazabicyclo [3.3.1] nonanes Green Chem., 2011, 13, 847-849.
Chen, S.; Huang, H.; Liu, X.; Shen, J.; Jiang, H.; Liu, H. Microwave- assisted efficient copper-promoted N-arylation of amines with arylboronic acids. J. Comb. Chem., 2008, 10(3), 358-360.
[http://dx.doi.org/10.1021/cc8000053] [PMID: 18393467]
Kalek, M.; Ziadi, A.; Stawinski, J. Microwave-assisted palladiumcatalyzed cross-coupling of aryl and vinyl halides with Hphosphonate diesters. Org. Lett., 2008, 10(20), 4637-4640.
[http://dx.doi.org/10.1021/ol801935r] [PMID: 18808138]
Baqi, Y.; Müller, C.E. Rapid and efficient microwave-assisted copper(0)-catalyzed ullmann coupling reaction: general access to anilinoanthraquinone derivatives. Org. Lett., 2007, 9(7), 1271-1274.
[http://dx.doi.org/10.1021/ol070102v] [PMID: 17348665]
Azeredo, J.B.; Godoi, M.; Schwab, R.S.; Botteselle, G.V.; Braga, A.L. Synthesis of thiol esters using nano CuO/Ionic liquid as an eco-friendly reductive system under microwave irradiation. Eur. J. Org. Chem., 2013, 2013, 5188-5194.
Saba, S.; Botteselle, G.V.; Godoi, M.; Frizon, T.E.A.; Galetto, F.Z.; Rafique, J.; Braga, A.L. Copper-Catalyzed synthesis of unsymmetrical diorganyl chalcogenides (Te/Se/S) from boronic acids under solvent-free conditions. Molecules, 2017, 22(8), 1367-1380.
[http://dx.doi.org/10.3390/molecules22081367] [PMID: 28820487]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [86 - 98]
Pages: 13
DOI: 10.2174/2213335607666200310121337
Price: $25

Article Metrics

PDF: 25