Characterization of Gemcitabine Loaded Polyhydroxybutyrate Coated Magnetic Nanoparticles for Targeted Drug Delivery

Author(s): Maryam Parsian*, Pelin Mutlu*, Serap Yalcin, Ufuk Gunduz

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Targeted drug delivery is one of the recent hot topics in cancer therapy. Because of having a targeting potential under the magnetic field and a suitable surface for the attachment of different therapeutic moieties, magnetic nanoparticles are widely studied for their applications in medicine.

Objective: Gemcitabine loaded polyhydroxybutyrate coated magnetic nanoparticles (Gem-PHB-MNPs) were synthesized and characterized for the treatment of breast cancer by the targeted drug delivery method.

Methods: The characterization of nanoparticles was confirmed by FTIR, XPS, TEM, and spectrophotometric analyses. The cytotoxicities of drug-free nanoparticles and Gemcitabine loaded nanoparticles were determined with cell proliferation assay using SKBR-3 and MCF-7 breast cancer cell lines.

Results: The release of Gemcitabine from PHB-MNPs indicated a pH-dependent pattern, which is a desirable release characteristic, since the pH of the tumor microenvironment and endosomal structures are acidic, while bloodstream and healthy-tissues are neutral. Drug-free PHB-MNPs were not cytotoxic to the SKBR-3 and MCF- 7 cells, whereas the Gemcitabine loaded PHB-MNPs was about two-fold as cytotoxic with respect to free Gemcitabine. In vitro targeting ability of PHB-MNPs was shown under the magnetic field.

Conclusion: Considering these facts, we may suggest that these nanoparticles can be a promising candidate for the development of a novel targeted drug delivery system for breast cancer.

Keywords: Polyhydroxybutyrate, magnetic nanoparticles, gemcitabine, breast cancer, SKBR-3, MCF-7, targeting drug delivery.

[1]
Maeda, H. The Enhanced Permeability and Retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul., 2001, 41, 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[2]
Sun, C.; Lee, J.S.H.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev., 2008, 60(11), 1252-1265.
[http://dx.doi.org/10.1016/j.addr.2008.03.018] [PMID: 18558452]
[3]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[4]
Barouti, G.; Jaffredo, C.G.; Guillaume, S.M. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog. Polym. Sci., 2017, 73, 1-31.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.05.002]
[5]
Oroujeni, M.; Kaboudin, B.; Xia, W.; Jönsson, P.; Ossipov, D.A. Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery. Prog. Org. Coat., 2018, 114, 154-161.
[http://dx.doi.org/10.1016/j.porgcoat.2017.10.007]
[6]
Musumeci, T.; Cupri, S.; Bonaccorso, A.; Impallomeni, G.; Ballistreri, A.; Puglisi, G.; Pignatello, R. Technology assessment of new biodegradable poly(R-3-hydroxybutyrate- co -1,4-butylene adipate) copolymers for drug delivery. J. Appl. Polym. Sci., 2019, 136, 47233.
[http://dx.doi.org/10.1002/app.47233]
[7]
Piddubnyak, V.; Kurcok, P.; Matuszowicz, A.; Głowala, M.; Fiszer-Kierzkowska, A.; Jedliński, Z.; Juzwa, M.; Krawczyk, Z. Oligo-3-hydroxybutyrates as potential carriers for drug delivery. Biomaterials, 2004, 25(22), 5271-5279.
[http://dx.doi.org/10.1016/j.biomaterials.2003.12.029] [PMID: 15110478]
[8]
Althuri, A.; Mathew, J.; Sindhu, R.; Banerjee, R.; Pandey, A.; Binod, P. Microbial synthesis of poly-3-hydroxybutyrate and its application as targeted drug delivery vehicle. Bioresour. Technol., 2013, 145, 290-296.
[http://dx.doi.org/10.1016/j.biortech.2013.01.106] [PMID: 23415943]
[9]
Hasirci, V.; Lewandrowski, K.; Gresser, J.D.; Wise, D.L.; Trantolo, D.J. Versatility of biodegradable biopolymers: Degradability and an in vivo application. J. Biotechnol., 2001, 86(2), 135-150.
[http://dx.doi.org/10.1016/S0168-1656(00)00409-0] [PMID: 11245902]
[10]
Moorkoth, D.; Nampoothiri, K.M. Production and characterization of poly(3-hydroxy butyrate-co-3 hydroxyvalerate) (PHBV) by a novel halotolerant mangrove isolate. Bioresour. Technol., 2016, 201, 253-260.
[http://dx.doi.org/10.1016/j.biortech.2015.11.046] [PMID: 26684174]
[11]
Anderson, A.J.; Dawes, E.A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev., 1990, 54(4), 450-472.
[http://dx.doi.org/10.1128/MMBR.54.4.450-472.1990] [PMID: 2087222]
[12]
Alagoz, A.S.; Rodriguez-Cabello, J.C.; Hasirci, V. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering. Biomed. Mater., 2018, 13(5), 055010.
[http://dx.doi.org/10.1088/1748-605X/aad139] [PMID: 29974870]
[13]
Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev., 2001, 53(1), 5-21.
[http://dx.doi.org/10.1016/S0169-409X(01)00218-6] [PMID: 11733115]
[14]
Reddy, L.H.; Couvreur, P. Novel approaches to deliver gemcitabine to cancers. Curr. Pharm. Des., 2008, 14(11), 1124-1137.
[http://dx.doi.org/10.2174/138161208784246216] [PMID: 18473859]
[15]
Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of gemcitabine in cancer therapy. Future Oncol., 2005, 1(1), 7-17.
[http://dx.doi.org/10.1517/14796694.1.1.7] [PMID: 16555971]
[16]
Nahire, R.; Haldar, M.K.; Paul, S.; Ambre, A.H.; Meghnani, V.; Layek, B.; Katti, K.S.; Gange, K.N.; Singh, J.; Sarkar, K.; Mallik, S. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials, 2014, 35(24), 6482-6497.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.026] [PMID: 24797878]
[17]
Farrell, J.J.; Elsaleh, H.; Garcia, M.; Lai, R.; Ammar, A.; Regine, W.F.; Abrams, R.; Benson, A.B.; Macdonald, J.; Cass, C.E.; Dicker, A.P.; Mackey, J.R. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology, 2009, 136(1), 187-195.
[http://dx.doi.org/10.1053/j.gastro.2008.09.067] [PMID: 18992248]
[18]
Xiong, Y-C.; Yao, Y-C.; Zhan, X-Y.; Chen, G-Q. Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J. Biomater. Sci. Polym. Ed., 2010, 21(1), 127-140.
[http://dx.doi.org/10.1163/156856209X410283] [PMID: 20040158]
[19]
Parsian, M.; Mutlu, P.; Yalcin, S.; Tezcaner, A.; Gunduz, U. Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery. Int. J. Pharm., 2016, 515(1-2), 104-113.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.015] [PMID: 27725272]
[20]
Parsian, M.; Unsoy, G.; Mutlu, P.; Yalcin, S.; Tezcaner, A.; Gunduz, U. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur. J. Pharmacol., 2016, 784, 121-128.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.016] [PMID: 27181067]
[21]
Yalcin, S.; Unsoy, G.; Mutlu, P.; Khodadust, R.; Gunduz, U. Polyhydroxybutyrate- coated magnetic nanoparticles for doxorubicin delivery: Cytotoxic effect against doxorubicin-resistant breast cancer cell line. Am. J. Ther., 2014, 21(6), 453-461.
[http://dx.doi.org/10.1097/MJT.0000000000000066] [PMID: 25137407]
[22]
Errico, C.; Bartoli, C.; Chiellini, F.; Chiellini, E. Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J. Biomed. Biotechnol., 2009, 2009, 571702.
[http://dx.doi.org/10.1155/2009/571702] [PMID: 19789653]
[23]
Yalcin, S.; Unsoy, G.; Khodadust, R.; Mutlu, P.; Gunduz, U. The cytotoxicity analysis of Phb coated magnetic nanoparticles on sensitive and doxorubicin resistant MCF-7 cell lines. NANOCON, 2012, 23, 1-5.
[24]
Pouton, C.W.; Akhtar, S. Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv. Drug Deliv. Rev., 1996, 18, 133-162.
[http://dx.doi.org/10.1016/0169-409X(95)00092-L]
[25]
Moghimi, S.M.; Hunter, A.C.; Andresen, T.L. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 481-503.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134623] [PMID: 22035254]
[26]
Hong, H.; Zhang, Y.; Sun, J.; Cai, W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today, 2009, 4(5), 399-413.
[http://dx.doi.org/10.1016/j.nantod.2009.07.001] [PMID: 20161038]
[27]
de Barros, A.B.; Tsourkas, A.; Saboury, B.; Cardoso, V.N.; Alavi, A.; de Barros, A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res., 2012, 2(1), 39.
[http://dx.doi.org/10.1186/2191-219X-2-39] [PMID: 22809406]
[28]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 10
Year: 2020
Page: [1233 - 1240]
Pages: 8
DOI: 10.2174/1871520620666200310091026
Price: $65

Article Metrics

PDF: 27
HTML: 2