Research Progress on the Catalytic Enantioselective Synthesis of Axially Chiral Allenes by Chiral Organocatalysts

Author(s): Qing Han Li*, Xin Jiang, Kun Wu, Rui Qiang Luo, Meng Liang, Zhi Hao Zhang, Zhe Yao Huang

Journal Name: Current Organic Chemistry

Volume 24 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Chiral allenes are important structural scaffolds found in many natural products and drugs, and in addition, they also serve as building blocks for many organic transformations. The conventional methods for preparing chiral allenes rely on the resolution of racemic allenes and the chirality transfer between non-racemic propargylic derivatives and nucleophilic reagents. In recent years, the synthesis of chiral allenes by asymmetric catalysis has been achieved fruitful results. Among them, enantioselective synthesis of chiral allenes with chiral organic catalysts is particularly prominent. In this paper, the research progress of enantioselective synthesis of chiral allenes catalyzed by chiral organic catalysts in recent years is reviewed, including various reaction systems and synthesis applications.

Keywords: Chiral allenes, chiral organocatalysts, enantioselective synthesis, asymmetric catalysis, organic acid catalysts, organic base catalysts, bifunctional organic catalysts, research progress.

[1]
Krause, N.; Hashmi, A.S.K., Eds.; Modern allene Chemistry; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619573]
[2]
Bruneau, C.; Renaud, J.L. Allenes and cumulenes in comprehensive organic functional group transformations II; Katritzky, A.R.; Taylor, R.J.K; Cossy, J., Ed.; Elsevier Ltd: Oxford, 2005, Vol. 1, pp. 1019-1081.
[http://dx.doi.org/10.1016/B0-08-044655-8/00020-9]
[3]
Alonso, J.M.; Quirós, M.T.; Muñoz, M.P. Chirality transfer in metal- catalysed intermolecular addition reactions involving allenes. Org. Chem. Front., 2016, 3, 1186-1204.
[http://dx.doi.org/10.1039/C6QO00207B]
[4]
Adams, C.S.; Weatherly, C.D.; Burke, E.G.; Schomaker, J.M. The conversion of allenes to strained three-membered heterocycles. Chem. Soc. Rev., 2014, 43(9), 3136-3163.
[http://dx.doi.org/10.1039/C3CS60416K] [PMID: 24647416]
[5]
Alcaide, B.; Almendros, P.; Aragoncillo, C. Exploiting [2+2] cycloaddition chemistry: achievements with allenes. Chem. Soc. Rev., 2010, 39(2), 783-816.
[http://dx.doi.org/10.1039/B913749A] [PMID: 20111793]
[6]
Campolo, D.; Gastaldi, S.; Roussel, C.; Bertrand, M.P.; Nechab, M. Axial-to-central chirality transfer in cyclization processes. Chem. Soc. Rev., 2013, 42(21), 8434-8466.
[http://dx.doi.org/10.1039/c3cs60182j] [PMID: 23921426]
[7]
Grillet, F.; Brummond, K.M. Enantioselective synthesis of 5,7-bicyclic ring systems from axially chiral allenes using a Rh(I)-catalyzed cyclocarbonylation reaction. J. Org. Chem., 2013, 78(8), 3737-3754.
[http://dx.doi.org/10.1021/jo4002432] [PMID: 23485149]
[8]
Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev., 2005, 105(7), 2829-2872.
[http://dx.doi.org/10.1021/cr020024j] [PMID: 16011326]
[9]
Ma, S.M. Recent advances in the chemistry of allenes. Aldrichim Acta, 2007, 40, 91-102.
[10]
Brasholz, M.; Reissig, H.U.; Zimmer, R. Sugars, alkaloids, and heteroaromatics: exploring heterocyclic chemistry with alkoxyallenes. Acc. Chem. Res., 2009, 42(1), 45-56.
[http://dx.doi.org/10.1021/ar800011h] [PMID: 18921986]
[11]
Ma, S. Electrophilic addition and cyclization reactions of allenes. Acc. Chem. Res., 2009, 42(10), 1679-1688.
[http://dx.doi.org/10.1021/ar900153r] [PMID: 19603781]
[12]
Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Transition metal catalyzed cycloisomerizations of 1,n-allenynes and -allenenes. Chem. Rev., 2011, 111(3), 1954-1993.
[http://dx.doi.org/10.1021/cr100376w] [PMID: 21391568]
[13]
Ye, J.; Ma, S. Palladium-catalyzed cyclization reactions of allenes in the presence of unsaturated carbon-carbon bonds. Acc. Chem. Res., 2014, 47(4), 989-1000.
[http://dx.doi.org/10.1021/ar4002069] [PMID: 24479609]
[14]
Krause, N.; Winter, C. Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. Chem. Rev., 2011, 111(3), 1994-2009.
[http://dx.doi.org/10.1021/cr1004088] [PMID: 21314182]
[15]
Brummond, K.M.; Kerekes, A.D.; Wan, H. Chiral nonracemic α-alkylidene and α-silylidene cyclopentenones from chiral allenes using an intramolecular allenic Pauson-Khand-type cycloaddition. J. Org. Chem., 2002, 67(15), 5156-5163.
[http://dx.doi.org/10.1021/jo016305t] [PMID: 12126400]
[16]
Yu, S.; Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem. Int. Ed. Engl., 2012, 51(13), 3074-3112.
[http://dx.doi.org/10.1002/anie.201101460] [PMID: 22271630]
[17]
Pu, X.; Qi, X.; Ready, J.M. Allenes in asymmetric catalysis: asymmetric ring opening of meso-epoxides catalyzed by allene-containing phosphine oxides. J. Am. Chem. Soc., 2009, 131(30), 10364-10365.
[http://dx.doi.org/10.1021/ja9041127] [PMID: 19722613]
[18]
Cai, F.; Pu, X.; Qi, X.; Lynch, V.; Radha, A.; Ready, J.M. Chiral allene-containing phosphines in asymmetric catalysis. J. Am. Chem. Soc., 2011, 133(45), 18066-18069.
[http://dx.doi.org/10.1021/ja207748r] [PMID: 21972824]
[19]
Röder, A.; Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl., 2004, 43(10), 1196-1216.
[http://dx.doi.org/10.1002/anie.200300628] [PMID: 14991780]
[20]
Rivera-Fuentes, P.; Diederich, F. Allenes in molecular materials. Angew. Chem. Int. Ed. Engl., 2012, 51(12), 2818-2828.
[http://dx.doi.org/10.1002/anie.201108001] [PMID: 22308109]
[21]
Ohigashi, H.; Kawazu, K.; Egawa, H.; Mitsui, T. Antifungal constituent of Sapium japonicum. Agric. Biol. Chem., 1972, 36, 1399-1403.
[http://dx.doi.org/10.1080/00021369.1972.10860406]
[22]
Ogasawara, M. Catalytic enantioselective synthesis of axially chiral allenes. Tetrahedron Asymmetry, 2009, 20, 259-271.
[http://dx.doi.org/10.1016/j.tetasy.2008.11.039]
[23]
Trost, B.M.; Fandrick, D.R.; Dinh, D.C. Dynamic kinetic asymmetric allylic alkylations of allenes. J. Am. Chem. Soc., 2005, 127(41), 14186-14187.
[http://dx.doi.org/10.1021/ja0543705] [PMID: 16218604]
[24]
Liu, Y.; Liu, X.; Hu, H.; Guo, J.; Xia, Y.; Lin, L.; Feng, X. Synergistic kinetic resolution and asymmetric propargyl claisen rearrangement for the synthesis of chiral allenes. Angew. Chem. Int. Ed. Engl., 2016, 55(12), 4054-4058.
[http://dx.doi.org/10.1002/anie.201511776] [PMID: 26889758]
[25]
Nogushi, Y.; Takiyama, H.; Katsuki, T. Kinetic resolution of racemic allenes by using chiral (Salen)manganese(III) complex as a catalyst. Synlett, 1998, 5, 543-545.
[http://dx.doi.org/10.1055/s-1998-1719]
[26]
Sweeney, Z.K.; Salsman, J.L.; Andersen, R.A.; Bergman, R.G. Synthesis of chiral, enantiopure zirconocene imido complexes: highly selective kinetic resolution and stereoinversion of allenes, and evidence for a stepwise cycloaddition/retrocycloaddition reaction mechanism. Angew. Chem. Int. Ed. Engl., 2000, 39(13), 2339-2343.
[http://dx.doi.org/10.1002/1521-3773(20000703)39:13<2339:AID-ANIE2339>3.0.CO;2-W] [PMID: 10941084]
[27]
Nyhlén, J.; Eriksson, L.; Bäckvall, J.E. Synthesis and optical resolution of an allenoic acid by diastereomeric salt formation induced by chiral alkaloids. Chirality, 2008, 20(1), 47-50.
[http://dx.doi.org/10.1002/chir.20479] [PMID: 17966123]
[28]
Manzuna Sapu, C.; Bäckvall, J.E.; Deska, J. Enantioselective enzymatic desymmetrization of prochiral allenic diols. Angew. Chem. Int. Ed. Engl., 2011, 50(41), 9731-9734.
[http://dx.doi.org/10.1002/anie.201103227] [PMID: 21948616]
[29]
Brummond, K.M.; De Forrest, J.E. Synthesizing allenes today (1982- 2006). Synthesis, 2007, 6, 795-818.
[http://dx.doi.org/10.1055/s-2007-965963]
[30]
Ohmiya, H.; Yokobori, U.; Makida, Y.; Sawamura, M. General approach to allenes through copper-catalyzed γ-selective and stereospecific coupling between propargylic phosphates and alkylboranes. Org. Lett., 2011, 13(23), 6312-6315.
[http://dx.doi.org/10.1021/ol202866h] [PMID: 22054013]
[31]
Molander, G.A.; Sommers, E.M.; Baker, S.R. Palladium(0)-catalyzed synthesis of chiral ene-allenes using alkenyl trifluoroborates. J. Org. Chem., 2006, 71(4), 1563-1568.
[http://dx.doi.org/10.1021/jo052201x] [PMID: 16468806]
[32]
Ruchti, J.; Carreira, E.M. Rh-catalyzed stereospecific synthesis of allenes from propargylic benzoates and arylboronic acids. Org. Lett., 2016, 18(9), 2174-2176.
[http://dx.doi.org/10.1021/acs.orglett.6b00793] [PMID: 27088306]
[33]
Uehling, M.R.; Marionni, S.T.; Lalic, G. Asymmetric synthesis of trisubstituted allenes: copper-catalyzed alkylation and arylation of propargylic phosphates. Org. Lett., 2012, 14(1), 362-365.
[http://dx.doi.org/10.1021/ol2031119] [PMID: 22175222]
[34]
Guisán-Ceinos, M.; Heras, V.M.; Yanes, R.R.S; Cardenas, D.J.; Tortosa, M. Copper-catalysed cross-coupling of alkyl Grignard reagents and propargylic ammonium salts: stereospecific synthesis of allenes. Chem. Commun. (Camb.), 2018, 54, 8343-8346.
[http://dx.doi.org/10.1039/C8CC03760D]
[35]
Li, H.; Müller, D.; Guénée, L.; Alexakis, A. Copper-catalyzed enantioselective synthesis of axially chiral allenes. Org. Lett., 2012, 14(23), 5880-5883.
[http://dx.doi.org/10.1021/ol302790e] [PMID: 23146030]
[36]
Lo, V.K-Y.; Zhou, C.Y.; Wong, M.K.; Che, C.M. Silver(I)-mediated highly enantioselective synthesis of axially chiral allenes under thermal and microwave-assisted conditions. Chem. Commun. (Camb.), 2010, 46(2), 213-215.
[http://dx.doi.org/10.1039/B914516H] [PMID: 20024329]
[37]
Periasamy, M.; Reddy, P.O.; Edukondalu, A.; Dalai, M.; Alakonda, L.M.; Udaykumar, B. Zinc salt promoted diastereoselective synthesis of chiral propargylamines using chiral piperazines and their enantioselective conversion into chiral allenes. Eur. J. Org. Chem., 2014, 27, 6067-6076.
[http://dx.doi.org/10.1002/ejoc.201402766]
[38]
Wang, B.; Wang, X.; Yin, X.; Yu, W.; Liao, Y.; Ye, J.; Wang, M.; Liao, J. Cu-catalyzed SN2′ substitution of propargylic phosphates with vinylarene-derived chiral nucleophiles: synthesis of chiral allenes. Org. Lett., 2019, 21(11), 3913-3917.
[http://dx.doi.org/10.1021/acs.orglett.9b00908] [PMID: 31074282]
[39]
Wang, M.; Liu, Z.L.; Zhang, X.; Tian, P.P.; Xu, Y.H.; Loh, T.P. Synthesis of highly substituted racemic and enantioenriched allenylsilanes via copper-catalyzed hydrosilylation of (Z)-2-alken-4-ynoates with silylboronate. J. Am. Chem. Soc., 2015, 137(47), 14830-14833.
[http://dx.doi.org/10.1021/jacs.5b08279] [PMID: 26560851]
[40]
Chu, W.D.; Zhang, L.; Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J.Y.; Wang, J.B. Enantioselective synthesis of trisubstituted allenes via Cu(I)-catalyzed coupling of diazoalkanes with terminal alkynes. J. Am. Chem. Soc., 2016, 138(44), 14558-14561.
[http://dx.doi.org/10.1021/jacs.6b09674] [PMID: 27788320]
[41]
Yu, S.; Ma, S. How easy are the syntheses of allenes? Chem. Commun. (Camb.), 2011, 47(19), 5384-5418.
[http://dx.doi.org/10.1039/c0cc05640e] [PMID: 21409186]
[42]
Kolakowski, R.V.; Manpadi, M.; Zhang, Y.; Emge, T.J.; Williams, L.J. Allene synthesis via C-C fragmentation: method and mechanistic insight. J. Am. Chem. Soc., 2009, 131(36), 12910-12911.
[http://dx.doi.org/10.1021/ja906189h] [PMID: 19737015]
[43]
Ohno, H.; Nagaoka, Y.; Tomioka, K. Modern Allene Chemistry; Krause, N; Hashmi, A.S.K., Ed.; Wiley-VCH: Weinheim, 2004, Vol. 1, pp. 141-181.
[http://dx.doi.org/10.1002/9783527619573.ch4]
[44]
Neff, R.K.; Frantz, D.E. Recent advances in the catalytic syntheses of allenes: a critical assessment. ACS Catal., 2014, 4, 519-528.
[http://dx.doi.org/10.1021/cs401007m]
[45]
Neff, R.K.; Frantz, D.E. Recent applications of chiral allenes in axial-to-central chirality transfer reactions. Tetrahedron, 2015, 71, 7-18.
[http://dx.doi.org/10.1016/j.tet.2014.08.030]
[46]
Zhu, C.; Chu, H.; Li, G.; Ma, S.; Zhang, J. Pd-catalyzed enantioselective Heck reaction of aryl triflates and alkynes. J. Am. Chem. Soc., 2019, 141(49), 19246-19251.
[http://dx.doi.org/10.1021/jacs.9b10883] [PMID: 31747268]
[47]
Romero, L.B.; Buchwald, S.L. Copper hydride catalyzed enantioselective synthesis of axially chiral 1,3-disubstituted allenes. J. Am. Chem. Soc., 2019, 141(35), 13788-13794.
[http://dx.doi.org/10.1021/jacs.9b07582] [PMID: 31423768]
[48]
Crouch, I.T.; Neff, R.K.; Frantz, D.E. Pd-catalyzed asymmetric β-hydride elimination en route to chiral allenes. J. Am. Chem. Soc., 2013, 135(13), 4970-4973.
[http://dx.doi.org/10.1021/ja401606e] [PMID: 23488914]
[49]
Adamson, N.J.; Jeddi, H.; Malcolmson, S.J. Preparation of chiral allenes through Pd-catalyzed intermolecular hydroamination of conjugated enynes: enantioselective synthesis enabled by catalyst design. J. Am. Chem. Soc., 2019, 141(21), 8574-8583.
[http://dx.doi.org/10.1021/jacs.9b02637] [PMID: 31070902]
[50]
Shirakawa, S.; Liu, S.; Kaneko, S. Organocatalyzed asymmetric synthesis of axially, planar, and helical chiral compounds. Chem. Asian J., 2016, 11(3), 330-341.
[http://dx.doi.org/10.1002/asia.201500951] [PMID: 26395547]
[51]
Chu, W.D.; Zhang, Y.; Wang, J.B. Recent advances in catalytic asymmetric synthesis of allenes. Catal. Sci. Technol., 2017, 7, 4570-4579.
[http://dx.doi.org/10.1039/C7CY01319A]
[52]
Dalko, P.I., Ed.; Enantioselective organocatalysis; Wiley-VCH: Weinheim, 2007.
[http://dx.doi.org/10.1002/9783527610945]
[53]
List, B., Ed.; Asymmetric organocatalysis; Springer: Berlin, 2009.
[http://dx.doi.org/10.1007/978-3-642-02815-1]
[54]
List, B. Introduction: organocatalysis. Chem. Rev., 2007, 107, 5413-5145.
[http://dx.doi.org/10.1021/cr078412e]
[55]
Borissov, A.; Davies, T.Q.; Ellis, S.R.; Fleming, T.A.; Richardson, M.S.W.; Dixon, D.J. Organocatalytic enantioselective desymmetrisation. Chem. Soc. Rev., 2016, 45(20), 5474-5540.
[http://dx.doi.org/10.1039/C5CS00015G] [PMID: 27347567]
[56]
Govender, T.; Arvidsson, P.I.; Maguire, G.E.M.; Kruger, H.G.; Naicker, T. Enantioselective organocatalyzed transformations of β-ketoesters. Chem. Rev., 2016, 116(16), 9375-9437.
[http://dx.doi.org/10.1021/acs.chemrev.6b00156] [PMID: 27463615]
[57]
Wei, Y.; Shi, M. Recent advances in organocatalytic asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman reactions. Chem. Rev., 2013, 113(8), 6659-6690.
[http://dx.doi.org/10.1021/cr300192h] [PMID: 23679920]
[58]
Ávila, E.P.; Justo, R.M.S.; Gonçalves, V.P.; Pereira, A.A.; Diniz, R.; Amarante, G.W. Chiral brønsted Acid-catalyzed stereoselective Mannich-type reaction of azlactones with aldimines. J. Org. Chem., 2015, 80(1), 590-594.
[http://dx.doi.org/10.1021/jo5024975] [PMID: 25469764]
[59]
Min, C.; Seidel, D. Asymmetric Brønsted acid catalysis with chiral carboxylic acids. Chem. Soc. Rev., 2017, 46(19), 5889-5902.
[http://dx.doi.org/10.1039/C6CS00239K] [PMID: 28730207]
[60]
Vekariya, R.H.; Patel, H.D. Sulfonated Polyethylene Glycol (PEG-OSO3H) as a polymer supported biodegradable and recyclable catalyst in green organic synthesis: recent advances. RSC Advances, 2015, 5, 49006-49030.
[http://dx.doi.org/10.1039/C5RA06532A]
[61]
Kumar, M.; Busch, D.H.; Subramaniam, B.; Thompson, W.H. Organic acids tunably catalyze carbonic acid decomposition. J. Phys. Chem. A, 2014, 118(27), 5020-5028.
[http://dx.doi.org/10.1021/jp5037469] [PMID: 24933150]
[62]
Gattu, R.; Bagdi, P.R.; Basha, R.S.; Khan, A.T. Khan, Abu T. Camphorsulfonic acid catalyzed one-pot three-component reaction for the synthesis of fused quinoline and benzoquinoline derivatives. J. Org. Chem., 2017, 82(23), 12416-12429.
[http://dx.doi.org/10.1021/acs.joc.7b02159] [PMID: 29052992]
[63]
Haba, O.; Kakuchi, T.; Yokota, K. Enantioselective cyclo- polymerization of benzaldehyde divinyl acetal with a chiral 10-camphorsulfonic acid/zinc dichloride initiating system. Macromolecules, 1993, 26, 1782-1783.
[http://dx.doi.org/10.1021/ma00059a046]
[64]
Liu, C.; Zhu, Q.; Huang, K.W.; Lu, Y. Primary amine/CSA ion pair: a powerful catalytic system for the asymmetric enamine catalysis. Org. Lett., 2011, 13(10), 2638-2641.
[http://dx.doi.org/10.1021/ol200747x] [PMID: 21510614]
[65]
Gorityala, B.K.; Cai, S.; Ma, J.; Liu, X.W. (S)-Camphorsulfonic acid catalyzed highly stereoselective synthesis of pseudoglycosides. Bioorg. Med. Chem. Lett., 2009, 19(11), 3093-3095.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.003] [PMID: 19398332]
[66]
Aebly, A.H.; Rainey, T.J. Pd(II)-catalyzed enantioselective intramolecular oxidative amination utilizing (+)-camphorsulfonic acid. Tetrahedron Lett., 2017, 58, 3795-3799.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.090]
[67]
Maitland, P.; Mills, W.H. Resolution of an allene hydrocarbon into optical antipodes by asymmetric catalysis. J. Chem. Soc., 1936, 36, 987-998.
[http://dx.doi.org/10.1039/jr9360000987]
[68]
Rahman, A.; Lin, X. Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis. Org. Biomol. Chem., 2018, 16(26), 4753-4777.
[http://dx.doi.org/10.1039/C8OB00900G] [PMID: 29893395]
[69]
Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S.B. Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C-C bond formation reactions. Org. Biomol. Chem., 2010, 8(23), 5262-5276.
[http://dx.doi.org/10.1039/c0ob00209g] [PMID: 20820680]
[70]
Yu, J.; Chen, W.J.; Gong, L.Z. Kinetic resolution of racemic 2,3-allenoates by organocatalytic asymmetric 1,3-dipolar cycloaddition. Org. Lett., 2010, 12(18), 4050-4053.
[http://dx.doi.org/10.1021/ol101544c] [PMID: 20715835]
[71]
Zhang, P.; Huang, Q.; Cheng, Y.; Li, R.; Li, P.; Li, W. Remote stereocontrolled construction of vicinal axially chiral tetrasubstituted allenes and heteroatom-functionalized quaternary carbon stereocenters. Org. Lett., 2019, 21(2), 503-507.
[http://dx.doi.org/10.1021/acs.orglett.8b03801] [PMID: 30618261]
[72]
James, T.; van Gemmeren, M.; List, B. Development and applications of disulfonimides in enantioselective organocatalysis. Chem. Rev., 2015, 115(17), 9388-9409.
[http://dx.doi.org/10.1021/acs.chemrev.5b00128] [PMID: 26147232]
[73]
Akiyama, T.; Mori, K. Stronger Brønsted acids: recent progress. Chem. Rev., 2015, 115(17), 9277-9306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00041] [PMID: 26182163]
[74]
Tap, A.; Blond, A.; Wakchaure, V.N.; List, B. Chiral allenes via alkynylogous Mukaiyama aldol reaction. Angew. Chem. Int. Ed. Engl., 2016, 55(31), 8962-8965.
[http://dx.doi.org/10.1002/anie.201603649] [PMID: 27275598]
[75]
Qian, D. Y.; Wu, L.L.; Lin, Z.Y.; Sun, J.W. Organocatalytic synthesis of chiral tetrasubstituted allenes from racemic propargylic alcohols. Nat. Commun., 2017, 8(567), 1-9.
[http://dx.doi.org/10.1038/s41467-017-00251-x]
[76]
Jiang, Y.; Diagne, A.B.; Thomson, R.J.; Schaus, S.E. Enantioselective synthesis of allenes by catalytic traceless Petasis reactions. J. Am. Chem. Soc., 2017, 139(5), 1998-2005.
[http://dx.doi.org/10.1021/jacs.6b11937] [PMID: 28121128]
[77]
Jacobs, T.L.; Dankner, D. Arylallenes. II. Synthesis of diarylallenes. Partial asymmetric synthesis of allenes*1,2. J. Org. Chem., 1957, 22(11), 1424-1427.
[http://dx.doi.org/10.1021/jo01362a030]
[78]
Mödlhammer, U.; Hopf, H. Synthesis of 1,3,4,6-heptatetraene (divinylallene). Angew. Chem. Int. Ed. Engl., 1975, 14, 501-502.
[http://dx.doi.org/10.1002/anie.197505011]
[79]
Liu, H.; Leow, D.; Huang, K.W.; Tan, C.H. Enantioselective synthesis of chiral allenoates by guanidine-catalyzed isomerization of 3-alkynoates. J. Am. Chem. Soc., 2009, 131(21), 7212-7213.
[http://dx.doi.org/10.1021/ja901528b] [PMID: 19422238]
[80]
Mbofana, C.T.; Miller, S.J. Diastereo- and enantioselective addition of anilide-functionalized allenoates to N-acylimines catalyzed by a pyridylalanine-based peptide. J. Am. Chem. Soc., 2014, 136(8), 3285-3292.
[http://dx.doi.org/10.1021/ja412996f] [PMID: 24527787]
[81]
Poulsen, P.H.; Li, Y.; Lauridsen, V.H.; Jørgensen, D.K.B.; Palazzo, T.A.; Meazza, M.; Jørgensen, K.A. Organocatalytic formation of chiral trisubstituted allenes and chiral furan derivatives. Angew. Chem. Int. Ed. Engl., 2018, 57(33), 10661-10665.
[http://dx.doi.org/10.1002/anie.201806238] [PMID: 29917329]
[82]
Zhang, L.; Zhang, Z.J.; Xiao, J.Y.; Song, J. Asymmetric synthesis of allenyl α-amino amides by an isothiourea catalyzed enantioselective [2,3]-sigmatropic rearrangement. Org. Lett., 2018, 20(17), 5519-5522.
[http://dx.doi.org/10.1021/acs.orglett.8b02521] [PMID: 30153032]
[83]
Tan, J.J.; Yasuda, N. Contemporary asymmetric phase transfer catalysis: large-scale industrial applications. Org. Process Res. Dev., 2015, 19, 1731-1746.
[http://dx.doi.org/10.1021/acs.oprd.5b00304]
[84]
Starks, C.M. Phase-transfer catalysis: an overview. ACS Symp. Ser., 1987, 326, 1-7.
[85]
Ooi, T.; Maruoka, K. Recent advances in asymmetric phase-transfer catalysis. Angew. Chem. Int. Ed. Engl., 2007, 46(23), 4222-4266.
[http://dx.doi.org/10.1002/anie.200601737] [PMID: 17525926]
[86]
Hashimoto, T.; Maruoka, K. Recent development and application of chiral phase-transfer catalysts. Chem. Rev., 2007, 107(12), 5656-5682.
[http://dx.doi.org/10.1021/cr068368n] [PMID: 18072806]
[87]
Oku, M.; Arai, S.; Katayama, K.; Shioiri, T. Catalytic synthesis of allenes via isomerization of alkynes under phase-transfer catalyzed conditions. Synlett, 2000, 4, 493-494.
[88]
Hashimoto, T.; Sakata, K.; Tamakuni, F.; Dutton, M.J.; Maruoka, K. Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes. Nat. Chem., 2013, 5(3), 240-244.
[http://dx.doi.org/10.1038/nchem.1567] [PMID: 23422567]
[89]
Rombola, M.; Sumaria, C.S.; Montgomery, T.D.; Rawal, V.H. Development of chiral, bifunctional thiosquaramides: enantioselective Michael additions of barbituric acids to nitroalkenes. J. Am. Chem. Soc., 2017, 139(15), 5297-5300.
[http://dx.doi.org/10.1021/jacs.7b01115] [PMID: 28375610]
[90]
Miyaji, R.; Asano, K.; Matsubara, S. Bifunctional organocatalysts for the enantioselective synthesis of axially chiral isoquinoline N-oxides. J. Am. Chem. Soc., 2015, 137(21), 6766-6769.
[http://dx.doi.org/10.1021/jacs.5b04151] [PMID: 26000800]
[91]
Maeda, C.; Mitsuzane, M.; Ema, T. Chiral bifunctional metalloporphyrin catalysts for kinetic resolution of epoxides with carbon dioxide. Org. Lett., 2019, 21(6), 1853-1856.
[http://dx.doi.org/10.1021/acs.orglett.9b00447] [PMID: 30810044]
[92]
Zhang, W.; Zheng, S.; Liu, N.; Werness, J.B.; Guzei, I.A.; Tang, W. Enantioselective bromolactonization of conjugated (Z)-enynes. J. Am. Chem. Soc., 2010, 132(11), 3664-3665.
[http://dx.doi.org/10.1021/ja100173w] [PMID: 20192183]
[93]
Zhang, W.; Xu, H.; Xu, H.; Tang, W. DABCO-catalyzed 1,4-bromolactonization of conjugated enynes: highly stereoselective formation of a stereogenic center and an axially chiral allene. J. Am. Chem. Soc., 2009, 131(11), 3832-3833.
[http://dx.doi.org/10.1021/ja8099008] [PMID: 19245198]
[94]
Inokuma, T.; Furukawa, M.; Uno, T.; Suzuki, Y.; Yoshida, K.; Yano, Y.; Matsuzaki, K.; Takemoto, Y. Bifunctional hydrogen-bond donors that bear a quinazoline or benzothiadiazine skeleton for asymmetric organocatalysis. Chemistry, 2011, 17(37), 10470-10477.
[http://dx.doi.org/10.1002/chem.201101338] [PMID: 21812044]
[95]
Inokuma, T.; Furukawa, M.; Suzuki, Y.; Kimachi, T.; Kobayashi, Y.; Takemoto, Y. Organocatalyzed isomerization of a-substituted alkynoates into trisubstituted allenoates by dynamic kinetic resolution. ChemCatChem, 2012, 4, 983-985.
[http://dx.doi.org/10.1002/cctc.201200065]
[96]
Qian, H.; Yu, X.; Zhang, J.; Sun, J. Organocatalytic enantioselective synthesis of 2,3-allenoates by intermolecular addition of nitroalkanes to activated enynes. J. Am. Chem. Soc., 2013, 135(48), 18020-18023.
[http://dx.doi.org/10.1021/ja409080v] [PMID: 24224493]
[97]
Ma, Z.G.; Wei, J.L.; Lin, J.B.; Wang, G.J.; Zhou, J.; Chen, K.; Fan, C.A.; Zhang, S.Y. Asymmetric organocatalytic synthesis of 2,3-allenamides from hydrogen-bond-stabilized enynamides. Org. Lett., 2019, 21(7), 2468-2472.
[http://dx.doi.org/10.1021/acs.orglett.9b00839] [PMID: 30908066]
[98]
Takikawa, H.; Suzuki, K. Modified chiral triazolium salts for enantioselective benzoin cyclization of enolizable keto-aldehydes: synthesis of (+)-sappanone B. Org. Lett., 2007, 9(14), 2713-2716.
[http://dx.doi.org/10.1021/ol070929p] [PMID: 17559218]
[99]
Ohmatsu, K.; Kiyokawa, M.; Ooi, T. Chiral 1,2,3-triazoliums as new cationic organic catalysts with anion-recognition ability: application to asymmetric alkylation of oxindoles. J. Am. Chem. Soc., 2011, 133(5), 1307-1309.
[http://dx.doi.org/10.1021/ja1102844] [PMID: 21204518]
[100]
Zhao, Y.M.; Tam, Y.; Wang, Y.J.; Li, Z.; Sun, J. N-heterocyclic carbene-catalyzed internal redox reaction of alkynals: an efficient synthesis of allenoates. Org. Lett., 2012, 14(6), 1398-1401.
[http://dx.doi.org/10.1021/ol300111m] [PMID: 22352302]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 6
Year: 2020
Published on: 25 May, 2020
Page: [694 - 708]
Pages: 15
DOI: 10.2174/1385272824666200306094427
Price: $58

Article Metrics

PDF: 39
HTML: 1