Curcumin Therapeutic Modulation of the Wnt Signaling Pathway

Author(s): Milad Ashrafizadeh, Zahra Ahmadi, Reza Mohamamdinejad, Habib Yaribeygi*, Maria-Corina Serban, Hossein M. Orafai, Amirhossein Sahebkar*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Curcumin, isolated from the rhizome of Curcuma longa, is one of the most extensively studied phytochemicals. This natural compound has a variety of pharmacological effects including antioxidant, anti-inflammatory, anti-tumor, cardio-protective, hepato-protective and anti-diabetic. Wnt signaling pathway, one of the potential targets of curcumin through upregulation and/or downregulation, plays a significant role in many diseases, even in embryogenesis and development of various organs and systems. In order to exert an anti-tumor activity in the organism, curcumin seems to inhibit the Wnt pathway. The downstream mediators of Wnt signaling pathway such as c-Myc and cyclin D1 are also modified by curcumin. This review demonstrates how curcumin influences the Wnt signaling pathway and is beneficial for the treatment of neurological disorders (Alzheimer’s and Parkinson’s diseases), cancers (melanoma, lung cancer, breast cancer, colon cancer, endothelial carcinoma, gastric carcinoma and hepatocellular carcinoma) and other diseases, such as diabetes mellitus or bone disorders.

Keywords: Curcumin, Wnt signaling pathway, cancer therapy, herbal medicine, therapeutic activity, diabetes mellitus.

[1]
Mohammadinejad, R.; Ahmadi, Z.; Tavakol, S.; Ashrafizadeh, M. Berberine as a potential autophagy modulator. J. Cell. Physiol., 2019.
[http://dx.doi.org/10.1002/jcp.28325] [PMID: 30770555]
[2]
Ahmadi, Z.; Mohammadinejad, R.; Ashrafizadeh, M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J. Drug Deliv. Sci. Technol., 2019, 51, 591-604.
[http://dx.doi.org/10.1016/j.jddst.2019.03.017]
[3]
Ashrafizadeh, M.; Ahmadi, Z. Effect of astaxanthin treatment on the sperm quality of the mice treated with nicotine. Rev. Clin. Med., 2019, 6, 1-5.
[4]
Yaribeygi, H.; Simental‐Mendía, L.E.; Butler, A.E.; Sahebkar, A. Protective effects of plant‐derived natural products on renal complications. J. Cell. Physiol., 2018.
[PMID: 30536823]
[5]
Sahebkar, A.; Saboni, N.; Pirro, M.; Banach, M. Curcumin: An effective adjunct in patients with statin-associated muscle symptoms? J. Cachexia Sarcopenia Muscle, 2017, 8(1), 19-24.
[http://dx.doi.org/10.1002/jcsm.12140] [PMID: 27897416]
[6]
Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e76.
[http://dx.doi.org/10.1016/j.fertnstert.2010.07.1071.]
[7]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[8]
Qi, W.; Yang, C.; Dai, Z.; Che, D.; Feng, J.; Mao, Y.; Cheng, R.; Wang, Z.; He, X.; Zhou, T.; Gu, X.; Yan, L.; Yang, X.; Ma, J.X.; Gao, G. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of Wnt signaling. Diabetes, 2015, 64(4), 1407-1419.
[http://dx.doi.org/10.2337/db14-1111] [PMID: 25368097]
[9]
Chen, Q.; Ma, J.X. Canonical Wnt signaling in diabetic retinopathy. Vision Res., 2017, 139, 47-58.
[http://dx.doi.org/10.1016/j.visres.2017.02.007] [PMID: 28545982]
[10]
Nusse, R.; Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 1982, 31(1), 99-109.
[http://dx.doi.org/10.1016/0092-8674(82)90409-3] [PMID: 6297757]
[11]
Tiwari, S.K.; Agarwal, S.; Tripathi, A.; Chaturvedi, R.K. Bisphenol-A mediated inhibition of hippocampal neurogenesis attenuated by curcumin via canonical Wnt pathway. Mol. Neurobiol., 2016, 53(5), 3010-3029.
[http://dx.doi.org/10.1007/s12035-015-9197-z] [PMID: 25963729]
[12]
Clevers, H. Wnt/β-catenin signaling in development and disease. Cell, 2006, 127(3), 469-480.
[http://dx.doi.org/10.1016/j.cell.2006.10.018] [PMID: 17081971]
[13]
Kusserow, A.; Pang, K.; Sturm, C.; Hrouda, M.; Lentfer, J.; Schmidt, H.A.; Technau, U.; von Haeseler, A.; Hobmayer, B.; Martindale, M.Q.; Holstein, T.W. Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 2005, 433(7022), 156-160.
[http://dx.doi.org/10.1038/nature03158] [PMID: 15650739]
[14]
Nusse, R. Wnt signaling in disease and in development. Cell Res., 2005, 15(1), 28-32.
[http://dx.doi.org/10.1038/sj.cr.7290260] [PMID: 15686623]
[15]
Takebe, N.; Harris, P.J.; Warren, R.Q.; Ivy, S.P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol., 2011, 8(2), 97-106.
[http://dx.doi.org/10.1038/nrclinonc.2010.196] [PMID: 21151206]
[16]
Galluzzi, L.; Spranger, S.; Fuchs, E.; López-Soto, A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol., 2019, 29(1), 44-65.
[http://dx.doi.org/10.1016/j.tcb.2018.08.005] [PMID: 30220580]
[17]
Adesina, A.M.; Lopez-Terrada, D.; Wong, K.K.; Gunaratne, P.; Nguyen, Y.; Pulliam, J.; Margolin, J.; Finegold, M.J. Gene expression profiling reveals signatures characterizing histologic subtypes of hepatoblastoma and global deregulation in cell growth and survival pathways. Hum. Pathol., 2009, 40(6), 843-853.
[http://dx.doi.org/10.1016/j.humpath.2008.10.022] [PMID: 19200578]
[18]
de La Coste, A.; Romagnolo, B.; Billuart, P.; Renard, C-A.; Buendia, M-A.; Soubrane, O.; Fabre, M.; Chelly, J.; Beldjord, C.; Kahn, A.; Perret, C. Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl. Acad. Sci. USA, 1998, 95(15), 8847-8851.
[http://dx.doi.org/10.1073/pnas.95.15.8847] [PMID: 9671767]
[19]
Kim, M.S.; Kim, S.S.; Ahn, C.H.; Yoo, N.J.; Lee, S.H. Frameshift mutations of Wnt pathway genes AXIN2 and TCF7L2 in gastric carcinomas with high microsatellite instability. Hum. Pathol., 2009, 40(1), 58-64.
[http://dx.doi.org/10.1016/j.humpath.2008.06.006] [PMID: 18755497]
[20]
Koesters, R.; Ridder, R.; Kopp-Schneider, A.; Betts, D.; Adams, V.; Niggli, F.; Briner, J.; von Knebel Doeberitz, M. Mutational activation of the β-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res., 1999, 59(16), 3880-3882.
[PMID: 10463574]
[21]
Martín, V.; Valencia, A.; Agirre, X.; Cervera, J.; San Jose-Eneriz, E.; Vilas-Zornoza, A.; Rodriguez-Otero, P.; Sanz, M.A.; Herrera, C.; Torres, A.; Prosper, F.; Román-Gómez, J. Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia. Cancer Sci., 2010, 101(2), 425-432.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01413.x] [PMID: 19874313]
[22]
Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035), 843-850.
[http://dx.doi.org/10.1038/nature03319] [PMID: 15829953]
[23]
Loh, K.M.; van Amerongen, R.; Nusse, R. Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev. Cell, 2016, 38(6), 643-655.
[http://dx.doi.org/10.1016/j.devcel.2016.08.011] [PMID: 27676437]
[24]
Sawa, H. Chapter three - control of cell polarity and asymmetric division in C. elegans. In: Current Topics in Developmental Biology. Academic Press, 2012, pp. 55-76.
[25]
van Amerongen, R.; Nusse, R. Towards an integrated view of Wnt signaling in development. Development, 2009, 136(19), 3205-3214.
[http://dx.doi.org/10.1242/dev.033910] [PMID: 19736321]
[26]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its’ effects on human health. Foods, 2017, 6(10), 6.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[27]
Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res., 2013, 57(9), 1529-1542.
[http://dx.doi.org/10.1002/mnfr.201200838] [PMID: 23847105]
[28]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[29]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[30]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Karimian, M.S.; Majeed, M.; Sahebkar, A. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology, 2017, 25(1), 25-31.
[http://dx.doi.org/10.1007/s10787-016-0301-4] [PMID: 27928704]
[31]
Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother., 2016, 82, 578-582.
[http://dx.doi.org/10.1016/j.biopha.2016.05.037]
[32]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139]
[33]
Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 2011, 16(6), 4567-4598.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[34]
Goel, A.; Jhurani, S.; Aggarwal, B.B. Multi-targeted therapy by curcumin: How spicy is it? Mol. Nutr. Food Res., 2008, 52(9), 1010-1030.
[http://dx.doi.org/10.1002/mnfr.200700354] [PMID: 18384098]
[35]
Momtazi, A.A.; Derosa, G.; Maffioli, P.; Banach, M.; Sahebkar, A. Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol. Diagn. Ther., 2016, 20(4), 335-345.
[http://dx.doi.org/10.1007/s40291-016-0202-7] [PMID: 27241179]
[36]
Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res., 2017, 117, 218-227.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[37]
Shehzad, A.; Lee, Y.S. Molecular mechanisms of curcumin action: signal transduction. Biofactors, 2013, 39(1), 27-36.
[http://dx.doi.org/10.1002/biof.1065] [PMID: 23303697]
[38]
Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Ahmadi, Z.; Roomiani, S.; Katebi, M. Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. J. Cell. Physiol., 2019, 234(11), 19471-19479.
[http://dx.doi.org/10.1002/jcp.28740] [PMID: 31032940]
[39]
Srivastava, N.S.; Srivastava, R.A.K. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine, 2019, 52, 117-128.
[http://dx.doi.org/10.1016/j.phymed.2018.09.224] [PMID: 30599890]
[40]
Wang, J.Y.; Wang, X.; Wang, X.J.; Zheng, B.Z.; Wang, Y.; Wang, X.; Liang, B. Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7492-7499.
[PMID: 30468498]
[41]
Hu, P.; Ke, C.; Guo, X.; Ren, P.; Tong, Y.; Luo, S.; He, Y.; Wei, Z.; Cheng, B.; Li, R.; Luo, J.; Meng, Z. Both glypican-3/Wnt/β-catenin signaling pathway and autophagy contributed to the inhibitory effect of curcumin on hepatocellular carcinoma. Dig. Liver Dis., 2019, 51(1), 120-126.
[http://dx.doi.org/10.1016/j.dld.2018.06.012] [PMID: 30001951]
[42]
Li, X.; Wang, X.; Xie, C.; Zhu, J.; Meng, Y.; Chen, Y.; Li, Y.; Jiang, Y.; Yang, X.; Wang, S.; Chen, J.; Zhang, Q.; Geng, S.; Wu, J.; Zhong, C.; Zhao, Y. Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs, 2018, 29(3), 208-215.
[PMID: 29356693]
[43]
Dou, H.; Shen, R.; Tao, J.; Huang, L.; Shi, H.; Chen, H.; Wang, Y.; Wang, T. Curcumin suppresses the colon cancer proliferation by inhibiting Wnt/β-Catenin pathways via miR-130a. Front. Pharmacol., 2017, 8, 877.
[http://dx.doi.org/10.3389/fphar.2017.00877] [PMID: 29225578]
[44]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin.The molecular targets and therapeutic uses of curcumin in health and disease; Springer, 2007, pp. 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8]
[45]
Mythri, R.B.; Bharath, M.M. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Curr. Pharm. Des., 2012, 18(1), 91-99.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[46]
Liu, Y.; Dargusch, R.; Maher, P.; Schubert, D. A broadly neuroprotective derivative of curcumin. J. Neurochem., 2008, 105(4), 1336-1345.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05236.x] [PMID: 18208543]
[47]
Wang, Y-L.; Ju, B.; Zhang, Y-Z.; Yin, H-L.; Liu, Y-J.; Wang, S-S.; Zeng, Z-L.; Yang, X-P.; Wang, H-T.; Li, J-F. Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson’s disease through the Wnt/β-catenin signaling pathway. Cell. Physiol. Biochem., 2017, 43(6), 2226-2241.
[http://dx.doi.org/10.1159/000484302] [PMID: 29069652]
[48]
Wang, R.; Tian, S.; Yang, X.; Liu, J.; Wang, Y.; Sun, K. Celecoxib-induced inhibition of neurogenesis in fetal frontal cortex is attenuated by curcumin via Wnt/β-catenin pathway. Life Sci., 2017, 185, 95-102.
[http://dx.doi.org/10.1016/j.lfs.2017.07.028] [PMID: 28754619]
[49]
Shefa, U.; Jeong, N.Y.; Song, I.O.; Chung, H-J.; Kim, D.; Jung, J.; Huh, Y. Mitophagy links oxidative stress conditions and neurodegenerative diseases. Neural Regen. Res., 2019, 14(5), 749-756.
[http://dx.doi.org/10.4103/1673-5374.249218] [PMID: 30688256]
[50]
Chen, F.; Wang, H.; Xiang, X.; Yuan, J.; Chu, W.; Xue, X.; Zhu, H.; Ge, H.; Zou, M.; Feng, H. Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study. J. Surgic. Res., 2014, 192, 298-304.
[51]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.S.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8(1), 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[52]
Hardy, J.; De Strooper, B. Alzheimer’s disease: Where next for anti-amyloid therapies? Brain, 2017, 140(4), 853-855.
[http://dx.doi.org/10.1093/brain/awx059] [PMID: 28375461]
[53]
Zhang, X.; Yin, W.K.; Shi, X.D.; Li, Y. Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells. Eur. J. Pharm. Sci., 2011, 42(5), 540-546.
[http://dx.doi.org/10.1016/j.ejps.2011.02.009] [PMID: 21352912]
[54]
Tian, L.; Song, Z.; Shao, W.; Du, W.W.; Zhao, L.R.; Zeng, K.; Yang, B.B.; Jin, T. Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2. Cell Death Dis., 2017, 8(1), e2559.
[http://dx.doi.org/10.1038/cddis.2016.455] [PMID: 28102847]
[55]
Ahn, J.; Lee, H.; Kim, S.; Ha, T. Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/β-catenin signaling. Am. J. Physiol. Cell Physiol., 2010, 298(6), C1510-C1516.
[http://dx.doi.org/10.1152/ajpcell.00369.2009] [PMID: 20357182]
[56]
Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[57]
Ho, C.; Hsu, Y-C.; Lei, C-C.; Mau, S-C.; Shih, Y-H.; Lin, C-L. Curcumin rescues diabetic renal fibrosis by targeting superoxide-mediated Wnt signaling pathways. Am. J. Med. Sci., 2016, 351(3), 286-295.
[http://dx.doi.org/10.1016/j.amjms.2015.12.017] [PMID: 26992258]
[58]
Bao, P.; Wu, X.; Xie, S.; Li, T.; Feng, A. Curcumin ameliorates renal impairment in a diabetic rat model. Trop. J. Pharm. Res., 2019, 18, 273-278.
[http://dx.doi.org/10.4314/tjpr.v18i2.8]
[59]
Yang, X.; Lv, J-N.; Li, H.; Jiao, B.; Zhang, Q-H.; Zhang, Y.; Zhang, J.; Liu, Y-Q.; Zhang, M.; Shan, H.; Zhang, J.Z.; Wu, R.M.; Li, Y.L. Curcumin reduces lung inflammation via Wnt/β-catenin signaling in mouse model of asthma. J. Asthma, 2017, 54(4), 335-340.
[http://dx.doi.org/10.1080/02770903.2016.1218018] [PMID: 27715343]
[60]
He, M.; Li, Y.; Zhang, L.; Li, L.; Shen, Y.; Lin, L.; Zheng, W.; Chen, L.; Bian, X.; Ng, H-K.; Tang, L. Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncol. Rep., 2014, 32(1), 173-180.
[http://dx.doi.org/10.3892/or.2014.3206] [PMID: 24858998]
[61]
Sordillo, P.P.; Helson, L. Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res., 2015, 35(2), 599-614.
[PMID: 25667437]
[62]
Tuorkey, M.J. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv. Med. Appl. Sci., 2014, 6(4), 139-146.
[http://dx.doi.org/10.1556/IMAS.6.2014.4.1] [PMID: 25598986]
[63]
Chen, Z.; Xue, J.; Shen, T.; Mu, S.; Fu, Q. Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway. Int. J. Mol. Med., 2016, 37(2), 329-338.
[http://dx.doi.org/10.3892/ijmm.2015.2432] [PMID: 26677102]
[64]
Leow, P-C.; Bahety, P.; Boon, C.P.; Lee, C.Y.; Tan, K.L.; Yang, T.; Ee, P-L.R. Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. Eur. J. Med. Chem., 2014, 71, 67-80.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.073] [PMID: 24275249]
[65]
Liu, B.-l.; Chen, Y-P.; Cheng, H.; Wang, Y.-Y.; Rui, H-l.; Yang, M.; Dong, H-R.; Han, D-N.; Dong, J. The protective effects of curcumin on obesity-related glomerulopathy are associated with inhibition of Wnt/β-catenin signaling activation in podocytes. Evid.- Based Compl. Alternat. Med. 2015 2015.
[66]
Hesari, A.; Ghasemi, F.; Salarinia, R.; Biglari, H.; Tabar Molla Hassan, A.; Abdoli, V.; Mirzaei, H. Effects of curcumin on NF-κB, AP-1, and Wnt/β-catenin signaling pathway in hepatitis B virus infection. J. Cell. Biochem., 2018, 119(10), 7898-7904.
[http://dx.doi.org/10.1002/jcb.26829] [PMID: 29923222]
[67]
Liang, Z.; Lu, L.; Mao, J.; Li, X.; Qian, H.; Xu, W. Curcumin reversed chronic tobacco smoke exposure induced urocystic EMT and acquisition of cancer stem cells properties via Wnt/β-catenin. Cell Death Dis., 2017, 8(10)e3066
[http://dx.doi.org/10.1038/cddis.2017.452] [PMID: 28981096]
[68]
Zhu, J.Y.; Yang, X.; Chen, Y.; Jiang, Y.; Wang, S.J.; Li, Y.; Wang, X.Q.; Meng, Y.; Zhu, M.M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.F.; Li, X.T.; Geng, S.S.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β‐catenin and sonic hedgehog pathways. Phytother. Res., 2017, 31(4), 680-688.
[http://dx.doi.org/10.1002/ptr.5791] [PMID: 28198062]
[69]
Zheng, R.; Deng, Q.; Liu, Y.; Zhao, P. Curcumin inhibits gastric carcinoma cell growth and induces apoptosis by suppressing the Wnt/β-catenin signaling pathway. Med. Sci. Monit., 2017, 23, 163-171.
[http://dx.doi.org/10.12659/MSM.902711] [PMID: 28077837]
[70]
Zhang, Z.; Chen, H.; Xu, C.; Song, L.; Huang, L.; Lai, Y.; Wang, Y.; Chen, H.; Gu, D.; Ren, L.; Yao, Q. Curcumin inhibits tumor epithelial-mesenchymal transition by downregulating the Wnt signaling pathway and upregulating NKD2 expression in colon cancer cells. Oncol. Rep., 2016, 35(5), 2615-2623.
[http://dx.doi.org/10.3892/or.2016.4669] [PMID: 26985708]
[71]
Chen, Q.Y.; Jiao, D.M.; Wang, L.F.; Wang, L.; Hu, H.Z.; Song, J.; Yan, J.; Wu, L.J.; Shi, J.G. Curcumin inhibits proliferation-migration of NSCLC by steering crosstalk between a Wnt signaling pathway and an adherens junction via EGR-1. Mol. Biosyst., 2015, 11(3), 859-868.
[http://dx.doi.org/10.1039/C4MB00336E] [PMID: 25578635]
[72]
Feng, W.; Yang, C.X.; Zhang, L.; Fang, Y.; Yan, M. Curcumin promotes the apoptosis of human endometrial carcinoma cells by downregulating the expression of androgen receptor through Wnt signal pathway. Eur. J. Gynaecol. Oncol., 2014, 35(6), 718-723.
[PMID: 25556280]
[73]
Lu, Y.; Wei, C.; Xi, Z. Curcumin suppresses proliferation and invasion in non-small cell lung cancer by modulation of MTA1-mediated Wnt/β-catenin pathway. In Vitro Cell. Dev. Biol. Anim., 2014, 50(9), 840-850.
[http://dx.doi.org/10.1007/s11626-014-9779-5] [PMID: 24938356]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 11
Year: 2020
Page: [1006 - 1015]
Pages: 10
DOI: 10.2174/1389201021666200305115101
Price: $65

Article Metrics

PDF: 61
HTML: 1