New Insights on the Beneficial Effects of the Probiotic Kefir on Vascular Dysfunction in Cardiovascular and Neurodegenerative Diseases

Author(s): Elisardo C. Vasquez*, Rafaela Aires, Alyne M. M. Ton, Fernanda G. Amorim

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 30 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

The mechanisms responsible for cardiovascular and neurodegenerative diseases have been the focus of experimental and clinical studies for decades. The relationship between the gut microbiota and the organs and system tissues represents the research field that has generated the highest number of publications. Homeostasis of the gut microbiota is important to the host because it promotes maturation of the autoimmune system, harmonic integrative functions of the brain, and the normal function of organs related to cardiovascular and metabolic systems. On the other hand, when a gut microbiota dysbiosis occurs, the target organs become vulnerable to the onset or aggravation of complex chronic conditions, such as cardiovascular (e.g., arterial hypertension) and neurodegenerative (e.g., dementia) diseases. In the present brief review, we discuss the main mechanisms involved in those disturbances and the promising beneficial effects that have been revealed using functional food (nutraceuticals), such as the traditional probiotic Kefir. Here, we highlight the current scientific advances, concerns, and limitations about the use of this nutraceutical. The focus of our discussion is the endothelial dysfunction that accompanies hypertension and the neurovascular dysfunction that characterizes ageing-related dementia in patients suffering from Alzheimer's disease.

Keywords: Gut microbiota, dementia, Alzheimer's disease, hypertension, endothelial dysfunction, neurovascular dysfunction, probiotics, Kefir.

[1]
Vasquez EC, Gava AL, Graceli JB, et al. Novel therapeutic targets for phosphodiesterase 5 Inhibitors: current state-of-the-art on systemic arterial hypertension and atherosclerosis. Curr Pharm Biotechnol 2016; 17(4): 347-64.
[http://dx.doi.org/10.2174/1389201017666151223123904] [PMID: 26696017]
[2]
Arruda RM, Peotta VA, Meyrelles SS, Vasquez EC. Evaluation of vascular function in apolipoprotein E knockout mice with angiotensin- dependent renovascular hypertension. Hypertension 2005; 46(4): 932-6.
[http://dx.doi.org/10.1161/01.HYP.0000182154.61862.52] [PMID: 16087779]
[3]
Peotta VA, Gava AL, Vasquez EC, Meyrelles SS. Evaluation of baroreflex control of heart rate in renovascular hypertensive mice. Can J Physiol Pharmacol 2007; 85(8): 761-6.
[http://dx.doi.org/10.1139/Y07-067] [PMID: 17901885]
[4]
Sert Kuniyoshi FH, Singh P, Gami AS, et al. Patients with obstructive sleep apnea exhibit impaired endothelial function after myocardial infarction. Chest 2011; 140(1): 62-7.
[http://dx.doi.org/10.1378/chest.10-1722] [PMID: 21349927]
[5]
Pereira RB, Vasquez EC, Stefanon I, Meyrelles SS. Oral P. gingivalis infection alters the vascular reactivity in healthy and spontaneously atherosclerotic mice. Lipids Health Dis 2011; 10: 80.
[http://dx.doi.org/10.1186/1476-511X-10-80] [PMID: 21586133]
[6]
Dias AT, Leal MAS, Zanardo TC, et al. Beneficial morphofunctional changes promoted by sildenafil in resistance vessels in the angiotensin II-induced hypertension model. Curr Pharm Biotechnol 2018; 19(6): 483-94.
[http://dx.doi.org/10.2174/1389201019666180625094704] [PMID: 29938618]
[7]
Friques AG, Arpini CM, Kalil IC, et al. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats. J Transl Med 2015; 13: 390.
[http://dx.doi.org/10.1186/s12967-015-0759-7] [PMID: 26715471]
[8]
Leal MAS, Aires R, Pandolfi T, et al. Sildenafil reduces aortic endothelial dysfunction and structural damage in spontaneously hypertensive rats: Role of NO, NADPH and COX-1 pathways. Vascul Pharmacol 2020; 124: 106601.
[http://dx.doi.org/10.1016/j.vph.2019.106601] [PMID: 31689530]
[9]
Porto ML, Rodrigues BP, Menezes TN, et al. Reactive oxygen species contribute to dysfunction of bone marrow hematopoietic stem cells in aged C57BL/6 J mice. J Biomed Sci 2015; 22: 97.
[http://dx.doi.org/10.1186/s12929-015-0201-8] [PMID: 26498041]
[10]
Jacinto TA, Meireles GS, Dias AT, et al. Increased ROS production and DNA damage in monocytes are biomarkers of aging and atherosclerosis. Biol Res 2018; 51(1): 33.
[http://dx.doi.org/10.1186/s40659-018-0182-7] [PMID: 30185234]
[11]
Coutinho PN, Pereira BP, Hertel Pereira AC, et al. Chronic administration of antioxidant resin from Virola oleifera attenuates atherogenesis in LDLr -/- mice. J Ethnopharmacol 2017; 206: 65-72.
[http://dx.doi.org/10.1016/j.jep.2017.05.015] [PMID: 28502908]
[12]
Rubinstein A, Alcocer L, Chagas A. High blood pressure in Latin America: a call to action. Ther Adv Cardiovasc Dis 2009; 3(4): 259-85.
[http://dx.doi.org/10.1177/1753944709338084] [PMID: 19561117]
[13]
Ton AMM, Arpine C, Campagnaro BP, et al. Alzheimer’s disease: A brief update on the influence of gut microbiota and the impact of functional food. J Food Microbiol 2018; 2(1): 11-5.
[14]
Klippel BF, Duemke LB, Leal MA, et al. Effects of Kefir on the cardiac autonomic tones and baroreflex sensitivity in spontaneously hypertensive rats. Front Physiol 2016; 7: 211.
[http://dx.doi.org/10.3389/fphys.2016.00211] [PMID: 27375490]
[15]
Pimenta FS, Luaces-Regueira M, Ton AM, et al. Mechanisms of action of Kefir in chronic cardiovascular and metabolic diseases. Cell Physiol Biochem 2018; 48(5): 1901-14.
[http://dx.doi.org/10.1159/000492511] [PMID: 30092577]
[16]
Vasquez EC, Pereira TMC, Peotta VA, Baldo MP, Campos-Toimil M. Probiotics as beneficial dietary supplements to prevent and treat cardiovascular diseases: uncovering their impact on oxidative stress. Oxid Med Cell Longev 2019; 2019: 3086270.
[http://dx.doi.org/10.1155/2019/3086270] [PMID: 31205584]
[17]
Ton AMM, Campagnaro BP, Alves GA, et al. Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid Med Cell Longev 2020; 2020: 2638703.
[18]
Etchegoyen M, Nobile MH, Baez F, et al. Metabolic syndrome and neuroprotection. Front Neurosci 2018; 12: 196.
[http://dx.doi.org/10.3389/fnins.2018.00196] [PMID: 29731703]
[19]
Herrera MI, Udovin LD, Toro-Urrego N, et al. Neuroprotection targeting protein misfolding on chronic cerebral hypoperfusion in the context of metabolic syndrome. Front Neurosci 2018; 12: 339.
[http://dx.doi.org/10.3389/fnins.2018.00339] [PMID: 29904335]
[20]
Otero-Losada ME, Grana DR, Müller A, Ottaviano G, Ambrosio G, Milei J. Lipid profile and plasma antioxidant status in sweet carbonated beverage-induced metabolic syndrome in rat. Int J Cardiol 2011; 146(1): 106-9.
[http://dx.doi.org/10.1016/j.ijcard.2010.09.066] [PMID: 21055834]
[21]
Otero-Losada M, Gómez Llambí H, Ottaviano G, et al. Cardiorenal involvement in metabolic syndrome induced by cola drinking in rats: proinflammatory cytokines and impaired antioxidative protection. Mediators Inflamm 2016; 2016: 5613056.
[http://dx.doi.org/10.1155/2016/5613056] [PMID: 27340342]
[22]
Otero-Losada M, Cao G, González J, et al. Functional and morphological changes in endocrine pancreas following cola drink consumption in rats. PLoS One 2015; 10(3): e0118700.
[http://dx.doi.org/10.1371/journal.pone.0118700] [PMID: 25790473]
[23]
Milei J, Otero Losada M, Gómez Llambí H, et al. Chronic cola drinking induces metabolic and cardiac alterations in rats. World J Cardiol 2011; 3(4): 111-6.
[http://dx.doi.org/10.4330/wjc.v3.i4.111] [PMID: 21526048]
[24]
Tilocca B, Costanzo N, Morittu VM, et al. Milk microbiota: Characterization methods and role in cheese production. J Proteomics 2020; 210: 103534.
[http://dx.doi.org/10.1016/j.jprot.2019.103534] [PMID: 31629058]
[25]
Bourrie BC, Willing BP, Cotter PD. The Microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol 2016; 7: 647.
[http://dx.doi.org/10.3389/fmicb.2016.00647] [PMID: 27199969]
[26]
Friques AGF, Santos FDN, Angeli DB, et al. Bisphenol A contamination in infant rats: molecular, structural, and physiological cardiovascular changes and the protective role of kefir. J Nutr Biochem 2020; 75: 108254.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108254] [PMID: 31707283]
[27]
Brasil GA, Silva-Cutini MA, Moraes FSA, et al. The benefits of soluble non-bacterial fraction of kefir on blood pressure and cardiac hypertrophy in hypertensive rats are mediated by an increase in baroreflex sensitivity and decrease in angiotensin-converting enzyme activity. Nutrition 2018; 51-52: 66-72.
[http://dx.doi.org/10.1016/j.nut.2017.12.007] [PMID: 29605766]
[28]
Santanna AF, Filete PF, Lima EM, et al. Chronic administration of the soluble, nonbacterial fraction of kefir attenuates lipid deposition in LDLr-/- mice. Nutrition 2017; 35: 100-5.
[http://dx.doi.org/10.1016/j.nut.2016.11.001] [PMID: 28241975]
[29]
Monticone S, D’Ascenzo F, Moretti C, et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2018; 6(1): 41-50.
[http://dx.doi.org/10.1016/S2213-8587(17)30319-4] [PMID: 29129575]
[30]
Ali W, Bakris G. The management of hypertension in 2018: what should the targets be? Curr Hypertens Rep 2019; 21(6): 41.
[http://dx.doi.org/10.1007/s11906-019-0946-7] [PMID: 31025203]
[31]
Takeda S, Rakugi H, Morishita R. Roles of vascular risk factors in the pathogenesis of dementia. Hypertens Res 2019; 43: 162-7.
[PMID: 31723253]
[32]
Cingolani OH. Cardiovascular risks and organ damage in secondary hypertension. Endocrinol Metab Clin North Am 2019; 48(4): 657-66.
[http://dx.doi.org/10.1016/j.ecl.2019.08.015] [PMID: 31655768]
[33]
Abdalla M. Ambulatory blood pressure monitoring: a complementary strategy for hypertension diagnosis and management in low income and middle-income countries. Cardiol Clin 2017; 35(1): 117-24.
[http://dx.doi.org/10.1016/j.ccl.2016.08.012] [PMID: 27886781]
[34]
Bloch MJ. Worldwide prevalence of hypertension exceeds 1.3 billion. J Am Soc Hypertens 2016; 10(10): 753-4.
[http://dx.doi.org/10.1016/j.jash.2016.08.006] [PMID: 27660007]
[35]
Zubcevic J, Richards EM, Yang T, et al. Impaired autonomic nervous system-microbiome circuit in hypertension. Circ Res 2019; 125(1): 104-16.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.313965] [PMID: 31219753]
[36]
Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 2011; 5: 71-86.
[http://dx.doi.org/10.2147/BTT.S19099] [PMID: 21847343]
[37]
Caballero-Villarraso J, Galvan A, Escribano BM, Tunez I. Interrelationships among gut microbiota and host: paradigms, role in neurodegenerative diseases and future prospects. CNS Neurol Disord Drug Targets 2017; 16(8): 945-64.
[PMID: 28714393]
[38]
Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension 2015; 65(6): 1331-40.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05315] [PMID: 25870193]
[39]
Ding RX, Goh WR, Wu RN, et al. Revisit gut microbiota and its impact on human health and disease. Yao Wu Shi Pin Fen Xi 2019; 27(3): 623-31.
[http://dx.doi.org/10.1016/j.jfda.2018.12.012] [PMID: 31324279]
[40]
Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5(1): 14.
[http://dx.doi.org/10.1186/s40168-016-0222-x] [PMID: 28143587]
[41]
Dan X, Mushi Z, Baili W, et al. Differential analysis of hypertension- associated intestinal microbiota. Int J Med Sci 2019; 16(6): 872-81.
[http://dx.doi.org/10.7150/ijms.29322] [PMID: 31337961]
[42]
Mushtaq N, Hussain S, Zhang S, et al. Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. Int J Mol Med 2019; 44(2): 513-22.
[http://dx.doi.org/10.3892/ijmm.2019.4235] [PMID: 31173179]
[43]
Durgan DJ, Ganesh BP, Cope JL, et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 2016; 67(2): 469-74.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06672] [PMID: 26711739]
[44]
Adnan S, Nelson JW, Ajami NJ, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 2017; 49(2): 96-104.
[http://dx.doi.org/10.1152/physiolgenomics.00081.2016] [PMID: 28011881]
[45]
Robles-Vera I, Toral M, Romero M, et al. Antihypertensive effects of probiotics. Curr Hypertens Rep 2017; 19(4): 26.
[http://dx.doi.org/10.1007/s11906-017-0723-4] [PMID: 28315049]
[46]
Liu CF, Tung YT, Wu CL, Lee BH, Hsu WH, Pan TM. Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. J Agric Food Chem 2011; 59(9): 4537-43.
[http://dx.doi.org/10.1021/jf104985v] [PMID: 21446645]
[47]
Rodríguez-Figueroa JC, González-Córdova AF, Astiazaran-García H, Vallejo-Cordoba B. Hypotensive and heart rate-lowering effects in rats receiving milk fermented by specific Lactococcus lactis strains. Br J Nutr 2013; 109(5): 827-33.
[http://dx.doi.org/10.1017/S0007114512002115] [PMID: 23168230]
[48]
Chen Y, Liu W, Xue J, et al. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. J Dairy Sci 2014; 97(11): 6680-92.
[http://dx.doi.org/10.3168/jds.2014-7962] [PMID: 25151888]
[49]
Kanbak G, Uzuner K, Kuşat Ol K, Oğlakçı A, Kartkaya K, Şentürk H. Effect of kefir and low-dose aspirin on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet. Clin Exp Hypertens 2014; 36(1): 1-8.
[http://dx.doi.org/10.3109/10641963.2013.783046] [PMID: 23631764]
[50]
Yap WB, Ahmad FM, Lim YC, Zainalabidin S. Lactobacillus casei strain C1 attenuates vascular changes in spontaneously hypertensive rats. Korean J Physiol Pharmacol 2016; 20(6): 621-8.
[http://dx.doi.org/10.4196/kjpp.2016.20.6.621] [PMID: 27847439]
[51]
Ahtesh FB, Stojanovska L, Apostolopoulos V. Anti-hypertensive peptides released from milk proteins by probiotics. Maturitas 2018; 115: 103-9.
[http://dx.doi.org/10.1016/j.maturitas.2018.06.016] [PMID: 30049341]
[52]
Gómez-Guzmán M, Toral M, Romero M, et al. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res 2015; 59(11): 2326-36.
[http://dx.doi.org/10.1002/mnfr.201500290] [PMID: 26255877]
[53]
Hata Y, Yamamoto M, Ohni M, Nakajima K, Nakamura Y, Takano T. A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nutr 1996; 64(5): 767-71.
[http://dx.doi.org/10.1093/ajcn/64.5.767] [PMID: 8901799]
[54]
Aihara K, Kajimoto O, Hirata H, Takahashi R, Nakamura Y. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J Am Coll Nutr 2005; 24(4): 257-65.
[http://dx.doi.org/10.1080/07315724.2005.10719473] [PMID: 16093403]
[55]
Ganesh BP, Nelson JW, Eskew JR, et al. Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of obstructive sleep apnea. Hypertension 2018; 72(5): 1141-50.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11695] [PMID: 30354816]
[56]
Vasquez E, Meyrelles S, Gava A. Beneficial effects of the synbiotic kefir on the neural control of cardiovascular function. J Food Microbiol 2018; 2(S1): 18.
[57]
Vasquez EC, Peotta VA, Meyrelles SS. Cardiovascular autonomic imbalance and baroreflex dysfunction in the apolipoprotein E deficient mouse. Cell Physiol Biochem 2012; 29(5-6): 635-46.
[http://dx.doi.org/10.1159/000277623] [PMID: 22613964]
[58]
Santisteban MM, Qi Y, Zubcevic J, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res 2017; 120(2): 312-23.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309006] [PMID: 27799253]
[59]
Silva-Cutini MA, Almeida SA, Nascimento AM, et al. Long-term treatment with kefir probiotics ameliorates cardiac function in spontaneously hypertensive rats. J Nutr Biochem 2019; 66: 79-85.
[http://dx.doi.org/10.1016/j.jnutbio.2019.01.006] [PMID: 30776608]
[60]
Amorim FG, Coitinho LB, Dias AT, et al. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chem 2019; 282: 109-19.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.010] [PMID: 30711094]
[61]
Schwartz S, Friedberg I, Ivanov IV, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 2012; 13(4): r32.
[http://dx.doi.org/10.1186/gb-2012-13-4-r32] [PMID: 22546241]
[62]
Yamamoto Y, Nakanishi Y, Murakami S, et al. A metabolomic based evaluation of the role of commensal microbiota throughout the gastrointestinal tract in mice. Microorganisms 2018; 6(4): 6.
[http://dx.doi.org/10.3390/microorganisms6040101] [PMID: 30274293]
[63]
Li B, Guo K, Zeng L, et al. Metabolite identification in fecal microbiota transplantation mouse livers and combined proteomics with chronic unpredictive mild stress mouse livers. Transl Psychiatry 2018; 8(1): 34.
[http://dx.doi.org/10.1038/s41398-017-0078-2] [PMID: 29382834]
[64]
Cheema MU, Pluznick JL. Gut microbiota plays a central role to modulate the plasma and fecal metabolomes in response to angiotensin II. Hypertension 2019; 74(1): 184-93.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.13155] [PMID: 31154901]
[65]
Engelhardt B, Sorokin L. The blood-brain and the blood cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 2009; 31(4): 497-511.
[http://dx.doi.org/10.1007/s00281-009-0177-0] [PMID: 19779720]
[66]
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of cerebrovascular endothelial cells: prelude to vascular dementia. Front Aging Neurosci 2018; 10: 376.
[http://dx.doi.org/10.3389/fnagi.2018.00376] [PMID: 30505270]
[67]
Yu QJ, Tao H, Wang X, Li MC. Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke. Neural Regen Res 2015; 10(11): 1882-91.
[http://dx.doi.org/10.4103/1673-5374.170324] [PMID: 26807131]
[68]
Tumani H, Huss A, Bachhuber F. The cerebrospinal fluid and barriers-anatomic and physiologic considerations.Handbook of clinical neurology. Elsevier 2018; 21-32.
[http://dx.doi.org/10.1016/B978-0-12-804279-3.00002-2]
[69]
Hecht M, Krämer LM, von Arnim CAF, Otto M, Thal DR. Capillary cerebral amyloid angiopathy in Alzheimer’s disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol 2018; 135(5): 681-94.
[http://dx.doi.org/10.1007/s00401-018-1834-y] [PMID: 29574591]
[70]
Westfall S, Iqbal U, Sebastian M, Pasinetti GM. Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer’s disease. Prog Mol Biol Transl Sci 2019; 168: 147-81.
[http://dx.doi.org/10.1016/bs.pmbts.2019.06.013] [PMID: 31699313]
[71]
Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer’s disease. J Alzheimers Dis 2016; 51(4): 979-84.
[http://dx.doi.org/10.3233/JAD-160152] [PMID: 26967229]
[72]
Taniguchi Y, Kitamura A, Ishizaki T, et al. Association of trajectories of cognitive function with cause-specific mortality and medical and long-term care costs. Geriatr Gerontol Int 2019; 19(12): 1236-42.
[http://dx.doi.org/10.1111/ggi.13802] [PMID: 31746115]
[73]
Stephan BCM, Minett T, Muniz-Terrera G, Harrison SL, Matthews FE, Brayne C. Neuropsychological profiles of vascular disease and risk of dementia: implications for defining vascular cognitive impairment no dementia (VCI-ND). Age Ageing 2017; 46(5): 755-60.
[http://dx.doi.org/10.1093/ageing/afx016] [PMID: 28203692]
[74]
Bloch S, Obari D, Girouard H. Angiotensin and neurovascular coupling: beyond hypertension. Microcirculation 2015; 22(3): 159-67.
[PMID: 25660297]
[75]
Butterfield DA, Swomley AM, Sultana R. Amyloid β-peptide (1- 42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 2013; 19(8): 823-35.
[http://dx.doi.org/10.1089/ars.2012.5027] [PMID: 23249141]
[76]
Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci USA 2010; 107(43): 18670-5.
[http://dx.doi.org/10.1073/pnas.1006586107] [PMID: 20937894]
[77]
Bittner T, Fuhrmann M, Burgold S, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimer’s disease mice. PLoS One 2010; 5(11): e15477.
[http://dx.doi.org/10.1371/journal.pone.0015477] [PMID: 21103384]
[78]
Iadecola C, Zhang F, Niwa K, et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 1999; 2(2): 157-61.
[http://dx.doi.org/10.1038/5715] [PMID: 10195200]
[79]
Park L, Koizumi K, El Jamal S, et al. Age-dependent neurovascular dysfunction and damage in a mouse model of cerebral amyloid angiopathy. Stroke 2014; 45(6): 1815-21.
[http://dx.doi.org/10.1161/STROKEAHA.114.005179] [PMID: 24781082]
[80]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[81]
Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18(7): 419-34.
[http://dx.doi.org/10.1038/nrn.2017.48] [PMID: 28515434]
[82]
Faraco G, Sugiyama Y, Lane D, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 2016; 126(12): 4674-89.
[http://dx.doi.org/10.1172/JCI86950] [PMID: 27841763]
[83]
Hajjar I, Sorond F, Lipsitz LA. Apolipoprotein E, carbon dioxide vasoreactivity, and cognition in older adults: effect of hypertension. J Am Geriatr Soc 2015; 63(2): 276-81.
[http://dx.doi.org/10.1111/jgs.13235] [PMID: 25688603]
[84]
Fazal K, Perera G, Khondoker M, Howard R, Stewart R. Associations of centrally acting ACE inhibitors with cognitive decline and survival in Alzheimer’s disease. BJPsych Open 2017; 3(4): 158-64.
[http://dx.doi.org/10.1192/bjpo.bp.116.004184] [PMID: 28713585]
[85]
Hayward LF, Castellanos M, Noah C. Cardiorespiratory variability following repeat acute hypoxia in the conscious SHR versus two normotensive rat strains. Auton Neurosci 2012; 171(1-2): 58-65.
[http://dx.doi.org/10.1016/j.autneu.2012.10.008] [PMID: 23154112]
[86]
Nonogaki Z, Umegaki H, Makino T, Suzuki Y, Kuzuya M. Relationship between cardiac autonomic function and cognitive function in Alzheimer’s disease. Geriatr Gerontol Int 2017; 17(1): 92-8.
[http://dx.doi.org/10.1111/ggi.12679] [PMID: 26643357]
[87]
Izquierdo-González JJ, Amil-Ruiz F, Zazzu S, Sánchez-Lucas R, Fuentes-Almagro CA, Rodríguez-Ortega MJ. Proteomic analysis of goat milk kefir: Profiling the fermentation-time dependent protein digestion and identification of potential peptides with biological activity. Food Chem 2019; 295: 456-65.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.178] [PMID: 31174782]
[88]
Xu D, Bechtner J, Behr J, Eisenbach L, Geißler AJ, Vogel RF. Lifestyle of Lactobacillus hordei isolated from water kefir based on genomic, proteomic and physiological characterization. Int J Food Microbiol 2019; 290: 141-9.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.10.004] [PMID: 30340112]
[89]
Dallas DC, Citerne F, Tian T, et al. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chem 2016; 197(Pt A): 273-84.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.116] [PMID: 26616950]
[90]
Ebner J, Aşçı Arslan A, Fedorova M, Hoffmann R, Küçükçetin A, Pischetsrieder M. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. J Proteomics 2015; 117: 41-57.
[http://dx.doi.org/10.1016/j.jprot.2015.01.005] [PMID: 25613046]
[91]
Gross P, Oelgeschläger T. The Human Genome Project Design and information in biology: from molecules to systems . 2007; 2: 97.
[92]
Yan SK, Liu RH, Jin HZ, et al. “Omics” in pharmaceutical research: overview, applications, challenges, and future perspectives. Chin J Nat Med 2015; 13(1): 3-21.
[http://dx.doi.org/10.1016/S1875-5364(15)60002-4] [PMID: 25660284]
[93]
Horgan RP, Kenny LC. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol 2011; 13: 7.
[http://dx.doi.org/10.1576/toag.13.3.189.27672]
[94]
Marco-Puche G, Lois S, Benítez J, Trivino JC. RNA-Seq perspectives to improve clinical diagnosis. Front Genet 2019; 10: 1152.
[http://dx.doi.org/10.3389/fgene.2019.01152] [PMID: 31781178]
[95]
Manzoni C, Kia DA, Vandrovcova J, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinform 2018; 19(2): 286-302.
[http://dx.doi.org/10.1093/bib/bbw114] [PMID: 27881428]
[96]
Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995; 16(7): 1090-4.
[http://dx.doi.org/10.1002/elps.11501601185] [PMID: 7498152]
[97]
Subramanian IV, Bui Nguyen TM, Truskinovsky AM, Tolar J, Blazar BR, Ramakrishnan S. Adeno-associated virus-mediated delivery of a mutant endostatin in combination with carboplatin treatment inhibits orthotopic growth of ovarian cancer and improves long-term survival. Cancer Res 2006; 66(8): 4319-28.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3297] [PMID: 16618757]
[98]
Samir P, Link AJ. Analyzing the cryptome: uncovering secret sequences. AAPS J 2011; 13(2): 152-8.
[http://dx.doi.org/10.1208/s12248-011-9252-2] [PMID: 21327597]
[99]
Madhavan A, Sindhu R, Parameswaran B, Sukumaran RK, Pandey A. Metagenome analysis: a powerful tool for enzyme bioprospecting. Appl Biochem Biotechnol 2017; 183(2): 636-51.
[http://dx.doi.org/10.1007/s12010-017-2568-3] [PMID: 28815469]
[100]
Kim S, Kim J, Yun EJ, Kim KH. Food metabolomics: from farm to human. Curr Opin Biotechnol 2016; 37: 16-23.
[http://dx.doi.org/10.1016/j.copbio.2015.09.004] [PMID: 26426959]
[101]
Chu SH, Huang M, Kelly RS, et al. Integration of metabolomic and other omics data in population-based study designs: an epidemiological perspective. Metabolites 2019; 9(6): 9.
[http://dx.doi.org/10.3390/metabo9060117] [PMID: 31216675]
[102]
Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics 2015; 8: 33.
[http://dx.doi.org/10.1186/s12920-015-0108-y] [PMID: 26112054]
[103]
Yugi K, Kubota H, Hatano A, Kuroda S. Trans-Omics: How to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol 2016; 34(4): 276-90.
[http://dx.doi.org/10.1016/j.tibtech.2015.12.013] [PMID: 26806111]
[104]
Suravajhala P, Kogelman LJ, Kadarmideen HN. Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genet Sel Evol 2016; 48(1): 38.
[http://dx.doi.org/10.1186/s12711-016-0217-x] [PMID: 27130220]
[105]
Haas R, Zelezniak A, Iacovacci J, Kamrad S, Townsend S, Ralser M. Designing and interpreting ‘multi-omic’experiments that may change our understanding of biology. Curr Opin Cell Biol 2017; 6: 37-45.
[106]
Olivon F, Allard PM, Koval A, et al. Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem Biol 2017; 12(10): 2644-51.
[http://dx.doi.org/10.1021/acschembio.7b00413] [PMID: 28829118]
[107]
González-Ruiz V, Schvartz D, Sandström J, et al. An Integrative multi-omics workflow to address multifactorial toxicology experiments. Metabolites 2019; 9(4): 9.
[http://dx.doi.org/10.3390/metabo9040079] [PMID: 31022902]
[108]
Verce M, De Vuyst L, Weckx S. Shotgun metagenomics of a water kefir fermentation ecosystem reveals a novel oenococcus species. Front Microbiol 2019; 10: 479.
[http://dx.doi.org/10.3389/fmicb.2019.00479] [PMID: 30918501]
[109]
Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD. Sequencing based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS One 2013; 8(7): e69371.
[http://dx.doi.org/10.1371/journal.pone.0069371] [PMID: 23894461]
[110]
Laureys D, Van Jean A, Dumont J, De Vuyst L. Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process. Appl Microbiol Biotechnol 2017; 101(7): 2811-9.
[http://dx.doi.org/10.1007/s00253-016-8084-5] [PMID: 28070662]
[111]
Wang SY, Chen KN, Lo YM, et al. Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiol 2012; 32(2): 274-85.
[http://dx.doi.org/10.1016/j.fm.2012.07.001] [PMID: 22986190]
[112]
Gauglitz JM, Aceves CM, Aksenov AA, et al. Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in raw and processed foods and beverages. Food Chem 2020; 302: 125290.
[http://dx.doi.org/10.1016/j.foodchem.2019.125290] [PMID: 31404873]
[113]
Pan L, Yu J, Mi Z, et al. A Metabolomics approach uncovers differences between traditional and commercial dairy products in buryatia (Russian Federation). Molecules 2018; 23(4): 23.
[http://dx.doi.org/10.3390/molecules23040735] [PMID: 29565828]
[114]
Pimentel G, Burton KJ, von Ah U, et al. Metabolic footprinting of fermented milk consumption in serum of healthy men. J Nutr 2018; 148(6): 851-60.
[http://dx.doi.org/10.1093/jn/nxy053] [PMID: 29788433]
[115]
Sales NM, Pelegrini PB, Goersch MC. Nutrigenomics: definitions and advances of this new science. J Nutr Metab 2014; 2014: 202759.
[http://dx.doi.org/10.1155/2014/202759] [PMID: 24795820]
[116]
Puiggròs F, Solà R, Bladé C, Salvadó MJ, Arola L. Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. J Chromatogr A 2011; 1218(42): 7399-414.
[http://dx.doi.org/10.1016/j.chroma.2011.08.051] [PMID: 21917262]
[117]
Jia W, Wang H, Shi L, et al. High-throughput foodomics strategy for screening flavor components in dairy products using multiple mass spectrometry. Food Chem 2019; 279: 1-11.
[http://dx.doi.org/10.1016/j.foodchem.2018.12.005] [PMID: 30611467]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 30
Year: 2020
Published on: 04 September, 2020
Page: [3700 - 3710]
Pages: 11
DOI: 10.2174/1381612826666200304145224
Price: $65

Article Metrics

PDF: 29
HTML: 4
EPUB: 2
PRC: 1