Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections

Author(s): Jiarui Li, Pablo Fernández-Millán and Ester Boix*

Volume 20, Issue 14, 2020

Page: [1238 - 1263] Pages: 26

DOI: 10.2174/1568026620666200303122626

Price: $65

Abstract

Background: Antimicrobial resistance (AMR) to conventional antibiotics is becoming one of the main global health threats and novel alternative strategies are urging. Antimicrobial peptides (AMPs), once forgotten, are coming back into the scene as promising tools to overcome bacterial resistance. Recent findings have attracted attention to the potentiality of AMPs to work as antibiotic adjuvants.

Methods: In this review, we have tried to collect the currently available information on the mechanism of action of AMPs in synergy with other antimicrobial agents. In particular, we have focused on the mechanisms of action that mediate the inhibition of the emergence of bacterial resistance by AMPs.

Results and Conclusion: We find in the literature many examples where AMPs can significantly reduce the antibiotic effective concentration. Mainly, the peptides work at the bacterial cell wall and thereby facilitate the drug access to its intracellular target. Complementarily, AMPs can also contribute to permeate the exopolysaccharide layer of biofilm communities, or even prevent bacterial adhesion and biofilm growth. Secondly, we find other peptides that can directly block the emergence of bacterial resistance mechanisms or interfere with the community quorum-sensing systems. Interestingly, the effective peptide concentrations for adjuvant activity and inhibition of bacterial resistance are much lower than the required for direct antimicrobial action. Finally, many AMPs expressed by innate immune cells are endowed with immunomodulatory properties and can participate in the host response against infection. Recent studies in animal models confirm that AMPs work as adjuvants at non-toxic concentrations and can be safely administrated for novel combined chemotherapies.

Keywords: Antimicrobial peptides, antibiotics, host defence, bacterial infections, synergy, adjuvant, biofilms.

Graphical Abstract
[1]
de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11)e1002184
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[2]
Lewies, A.; Du Plessis, L.H.; Wentzel, J.F. Antimicrobial peptides: the achilles’ heel of antibiotic resistance? Probiotics Antimicrob. Proteins, 2018, •••
[http://dx.doi.org/10.1007/s12602-018-9465-0] [PMID: 30229514]
[3]
Wu, Q.; Ke, H.; Li, D.; Wang, Q.; Fang, J.; Zhou, J. Recent progress in machine learning-based prediction of peptide activity for drug discovery. Curr. Top. Med. Chem., 2019, 19(1), 4-16.
[http://dx.doi.org/10.2174/1568026619666190122151634] [PMID: 30674262]
[4]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 4.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[5]
Guilhelmelli, F.; Vilela, N.; Albuquerque, P.; Derengowski, L. da S.; Silva-Pereira, I.; Kyaw, C.M. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front. Microbiol., 2013, 4, 353.
[http://dx.doi.org/10.3389/fmicb.2013.00353] [PMID: 24367355]
[6]
Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes, 2018, 4, 1-13.
[http://dx.doi.org/10.1038/s41522-018-0053-6] [PMID: 29707229]
[7]
Costa, F.; Teixeira, C.; Gomes, P.; Martins, M.C.L. Clinical application of AMPs.Advances in experimental medicine and biology;; Springer: Singapore, 2019, pp. (1117)281-298.
[http://dx.doi.org/10.1007/978-981-13-3588-4_15 ] [PMID: 30980363]
[8]
Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol., 2013, 31(5), 379-382.
[http://dx.doi.org/10.1038/nbt.2572] [PMID: 23657384]
[9]
Gaglione, R.; Pane, K.; Dell’Olmo, E.; Cafaro, V.; Pizzo, E.; Olivieri, G.; Notomista, E.; Arciello, A. Cost-effective production of recombinant peptides in Escherichia coli. N. Biotechnol., 2019, 51, 39-48.
[http://dx.doi.org/10.1016/j.nbt.2019.02.004] [PMID: 30790718]
[10]
Ongey, E.L.; Neubauer, P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb. Cell Fact., 2016, 15, 97.
[http://dx.doi.org/10.1186/s12934-016-0502-y] [PMID: 27267232]
[11]
Bommarius, B.; Jenssen, H.; Elliott, M.; Kindrachuk, J.; Pasupuleti, M.; Gieren, H.; Jaeger, K-E.; Hancock, R.E.W.; Kalman, D. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides, 2010, 31(11), 1957-1965.
[http://dx.doi.org/10.1016/j.peptides.2010.08.008] [PMID: 20713107]
[12]
Li, Y. Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr. Purif., 2011, 80(2), 260-267.
[http://dx.doi.org/10.1016/j.pep.2011.08.001] [PMID: 21843642]
[13]
Kong, W.; Lu, T. Cloning and optimization of a nisin biosynthesis pathway for bacteriocin harvest. ACS Synth. Biol., 2014, 3(7), 439-445.
[http://dx.doi.org/10.1021/sb500225r] [PMID: 24847677]
[14]
Gifre-Renom, L.; Cano-Garrido, O.; Fàbregas, F.; Roca-Pinilla, R.; Seras-Franzoso, J.; Ferrer-Miralles, N.; Villaverde, A.; Bach, À.; Devant, M.; Arís, A.; Garcia-Fruitós, E. A new approach to obtain pure and active proteins from Lactococcus lactis protein aggregates. Sci. Rep., 2018, 8(1), 13917.
[http://dx.doi.org/10.1038/s41598-018-32213-8] [PMID: 30224788]
[15]
Song, A.A-L.; In, L.L.A.; Lim, S.H.E.; Rahim, R.A. A review on Lactococcus lactis: from food to factory. Microb. Cell Fact., 2017, 16(1), 55.
[http://dx.doi.org/10.1186/s12934-017-0669-x] [PMID: 28376880]
[16]
García-Fruitós, E. Lactic Acid Bacteria: a promising alternative for recombinant protein production. Microb. Cell Fact., 2012, 11, 157.
[http://dx.doi.org/10.1186/1475-2859-11-157] [PMID: 23234563]
[17]
Morello, E.; Bermúdez-Humarán, L.G.; Llull, D.; Solé, V.; Miraglio, N.; Langella, P.; Poquet, I. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J. Mol. Microbiol. Biotechnol., 2008, 14(1-3), 48-58.
[http://dx.doi.org/10.1159/000106082] [PMID: 17957110]
[18]
Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol., 2016, 120(6), 1449-1465.
[http://dx.doi.org/10.1111/jam.13033] [PMID: 26678028]
[19]
Bartoloni, A.; Mantella, A.; Goldstein, B.P.; Dei, R.; Benedetti, M.; Sbaragli, S.; Paradisi, F. In-vitro activity of nisin against clinical isolates of Clostridium difficile. J. Chemother., 2004, 16(2), 119-121.
[http://dx.doi.org/10.1179/joc.2004.16.2.119] [PMID: 15216943]
[20]
Dosler, S.; Gerceker, A.A. In vitro activities of nisin alone or in combination with vancomycin and ciprofloxacin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Chemotherapy, 2011, 57(6), 511-516.
[http://dx.doi.org/10.1159/000335598] [PMID: 22302084]
[21]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[22]
Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[23]
Takahashi, D.; Shukla, S.K.; Prakash, O.; Zhang, G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 2010, 92(9), 1236-1241.
[http://dx.doi.org/10.1016/j.biochi.2010.02.023] [PMID: 20188791]
[24]
Bechinger, B.; Zasloff, M.; Opella, S.J. Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci., 1993, 2(12), 2077-2084.
[http://dx.doi.org/10.1002/pro.5560021208] [PMID: 8298457]
[25]
Szyk, A.; Wu, Z.; Tucker, K.; Yang, D.; Lu, W.; Lubkowski, J. Crystal structures of human α-defensins HNP4, HD5, and HD6. Protein Sci., 2006, 15(12), 2749-2760.
[http://dx.doi.org/10.1110/ps.062336606] [PMID: 17088326]
[26]
Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta, 2006, 1758(9), 1184-1202.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.006] [PMID: 16756942]
[27]
Xie, Y.; Fleming, E.; Chen, J.L.; Elmore, D.E. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides, 2011, 32(4), 677-682.
[http://dx.doi.org/10.1016/j.peptides.2011.01.010] [PMID: 21277926]
[28]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[29]
Porto, W.F.; Irazazabal, L.; Alves, E.S.F.; Ribeiro, S.M.; Matos, C.O.; Pires, Á.S.; Fensterseifer, I.C.M.; Miranda, V.J.; Haney, E.F.; Humblot, V.; Torres, M.D.T.; Hancock, R.E.W.; Liao, L.M.; Ladram, A.; Lu, T.K.; de la Fuente-Nunez, C.; Franco, O.L. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat. Commun., 2018, 9(1), 1490.
[http://dx.doi.org/10.1038/s41467-018-03746-3] [PMID: 29662055]
[30]
Wu, X.; Wang, Z.; Li, X.; Fan, Y.; He, G.; Wan, Y.; Yu, C.; Tang, J.; Li, M.; Zhang, X.; Zhang, H.; Xiang, R.; Pan, Y.; Liu, Y.; Lu, L.; Yang, L. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob. Agents Chemother., 2014, 58(9), 5342-5349.
[http://dx.doi.org/10.1128/AAC.02823-14] [PMID: 24982064]
[31]
Wu, X.; Li, Z.; Li, X.; Tian, Y.; Fan, Y.; Yu, C.; Zhou, B.; Liu, Y.; Xiang, R.; Yang, L. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des. Devel. Ther., 2017, 11, 939-946.
[http://dx.doi.org/10.2147/DDDT.S107195] [PMID: 28356719]
[32]
Torrent, M.; de la Torre, B.G.; Nogués, V.M.; Andreu, D.; Boix, E. Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochem. J., 2009, 421(3), 425-434.
[http://dx.doi.org/10.1042/BJ20082330] [PMID: 19450231]
[33]
Sánchez, D.; Moussaoui, M.; Carreras, E.; Torrent, M.; Nogués, V.; Boix, E. Mapping the eosinophil cationic protein antimicrobial activity by chemical and enzymatic cleavage. Biochimie, 2011, 93(2), 331-338.
[http://dx.doi.org/10.1016/j.biochi.2010.10.005] [PMID: 20951760]
[34]
Torrent, M.; Pulido, D.; Valle, J.; Nogués, M.V.V.; Andreu, D.; Boix, E. Ribonucleases as a host-defence family: evidence of evolutionarily conserved antimicrobial activity at the N-terminus. Biochem. J., 2013, 456(1), 99-108.
[http://dx.doi.org/10.1042/BJ20130123] [PMID: 23962023]
[35]
Pizzo, E.; D’Alessio, G. The success of the RNase scaffold in the advance of biosciences and in evolution. Gene, 2007, 406(1-2), 8-12.
[http://dx.doi.org/10.1016/j.gene.2007.05.006] [PMID: 17616268]
[36]
Torrent, M.; Di Tommaso, P.; Pulido, D.; Nogués, M.V.; Notredame, C.; Boix, E.; Andreu, D. AMPA: an automated web server for prediction of protein antimicrobial regions. Bioinformatics, 2012, 28(1), 130-131.
[http://dx.doi.org/10.1093/bioinformatics/btr604] [PMID: 22053077]
[37]
Pane, K.; Cafaro, V.; Avitabile, A.; Torres, M.T.; Vollaro, A.; De Gregorio, E.; Catania, M.R.; Di Maro, A.; Bosso, A.; Gallo, G.; Zanfardino, A.; Varcamonti, M.; Pizzo, E.; Di Donato, A.; Lu, T.K.; de la Fuente-Nunez, C.; Notomista, E. Identification of novel cryptic multifunctional antimicrobial peptides from the human stomach enabled by a computational-experimental platform. ACS Synth. Biol., 2018, 7(9), 2105-2115.
[http://dx.doi.org/10.1021/acssynbio.8b00084] [PMID: 30124040]
[38]
Merzoug, A.; Chikhi, A.; Bensegueni, A.; Boucherit, H.; Okay, S. Virtual screening approach of bacterial peptide deformylase inhibitors results in new antibiotics. Mol. Inform., 2018, 37(3), 1-13.
[http://dx.doi.org/10.1002/minf.201700087] [PMID: 28991412]
[39]
Liu, S.; Bao, J.; Lao, X.; Zheng, H. Novel 3D structure based model for activity prediction and design of antimicrobial peptides. Sci. Rep., 2018, 8(1), 11189.
[http://dx.doi.org/10.1038/s41598-018-29566-5] [PMID: 30046138]
[40]
Spindler, E.C.; Hale, J.D.F.; Giddings, T.H., Jr; Hancock, R.E.W.; Gill, R.T. Deciphering the mode of action of the synthetic antimicrobial peptide Bac8c. Antimicrob. Agents Chemother., 2011, 55(4), 1706-1716.
[http://dx.doi.org/10.1128/AAC.01053-10] [PMID: 21282431]
[41]
Torrent, M.; Andreu, D.; Nogués, V.M.; Boix, E. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One, 2011, 6(2)e16968
[http://dx.doi.org/10.1371/journal.pone.0016968] [PMID: 21347392]
[42]
Torrent, M.; Valle, J.; Nogués, M.V.; Boix, E.; Andreu, D. The generation of antimicrobial peptide activity: a trade-off between charge and aggregation? Angew. Chem. Int. Ed. Engl., 2011, 50(45), 10686-10689.
[http://dx.doi.org/10.1002/anie.201103589] [PMID: 21928454]
[43]
Savini, F.; Bobone, S.; Roversi, D.; Mangoni, M.L.; Stella, L. From liposomes to cells: filling the gap between physicochemical andmicrobiological studies of the activity and selectivity of hostdefense peptides. Pept. Sci.,, 2018.110e24041
[http://dx.doi.org/10.1002/pep2.24041]
[44]
Malgieri, G.; Avitabile, C.; Palmieri, M.; D’Andrea, L.D.; Isernia, C.; Romanelli, A.; Fattorusso, R. Structural basis of a temporin 1b analogue antimicrobial activity against Gram negative bacteria determined by CD and NMR techniques in cellular environment. ACS Chem. Biol., 2015, 10(4), 965-969.
[http://dx.doi.org/10.1021/cb501057d] [PMID: 25622128]
[45]
Orioni, B.; Bocchinfuso, G.; Kim, J.Y.; Palleschi, A.; Grande, G.; Bobone, S.; Park, Y.; Kim, J.I.; Hahm, K.S.; Stella, L. Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Biochim. Biophys. Acta, 2009, 1788(7), 1523-1533.
[http://dx.doi.org/10.1016/j.bbamem.2009.04.013] [PMID: 19397893]
[46]
Roversi, D.; Luca, V.; Aureli, S.; Park, Y.; Mangoni, M.L.; Stella, L. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem. Biol., 2014, 9(9), 2003-2007.
[http://dx.doi.org/10.1021/cb500426r] [PMID: 25058470]
[47]
Freire, J.M.; Domingues, M.M.; Matos, J.; Melo, M.N.; Veiga, A.S.; Santos, N.C.; Castanho, M.A.R.B. Using zeta-potential measurements to quantify peptide partition to lipid membranes. Eur. Biophys. J., 2011, 40(4), 481-487.
[http://dx.doi.org/10.1007/s00249-010-0661-4] [PMID: 21229352]
[48]
Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem., 2018, 6, 204.
[http://dx.doi.org/10.3389/fchem.2018.00204] [PMID: 29922648]
[49]
Savini, F.; Luca, V.; Bocedi, A.; Massoud, R.; Park, Y.; Mangoni, M.L.; Stella, L. Cell-density dependence of host-defense peptide activity and selectivity in the presence of host cells. ACS Chem. Biol., 2017, 12(1), 52-56.
[http://dx.doi.org/10.1021/acschembio.6b00910] [PMID: 27935673]
[50]
Wiedemann, I.; Breukink, E.; van Kraaij, C.; Kuipers, O.P.; Bierbaum, G.; de Kruijff, B.; Sahl, H.G. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem., 2001, 276(3), 1772-1779.
[http://dx.doi.org/10.1074/jbc.M006770200] [PMID: 11038353]
[51]
Pulido, D.; Prats-Ejarque, G.; Villalba, C.; Albacar, M.; González-López, J.J.; Torrent, M.; Moussaoui, M.; Boix, E. A novel RNase 3/ECP peptide for Pseudomonas aeruginosa biofilm eradication that combines antimicrobial, lipopolysaccharide binding, and cell-agglutinating activities. Antimicrob. Agents Chemother., 2016, 60(10), 6313-6325.
[http://dx.doi.org/10.1128/AAC.00830-16] [PMID: 27527084]
[52]
Pulido, D.; Prats-Ejarque, G.; Villalba, C.; Albacar, M.; Moussaoui, M.; Andreu, D.; Volkmer, R.; Torrent, M.; Boix, E. Positional scanning library applied to the human eosinophil cationic protein/RNase3 N-terminus reveals novel and potent anti-biofilm peptides. Eur. J. Med. Chem., 2018, 152, 590-599.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.012] [PMID: 29763807]
[53]
Pulido, D.; Nogués, M.V.; Boix, E.; Torrent, M. Lipopolysaccharide neutralization by antimicrobial peptides: a gambit in the innate host defense strategy. J. Innate Immun., 2012, 4(4), 327-336.
[http://dx.doi.org/10.1159/000336713] [PMID: 22441679]
[54]
Heinbockel, L.; Weindl, G.; Martinez-de-Tejada, G.; Correa, W.; Sanchez-Gomez, S.; Bárcena-Varela, S.; Goldmann, T.; Garidel, P.; Gutsmann, T.; Brandenburg, K. Inhibition of lipopolysaccharide- and lipoprotein-induced inflammation by antitoxin peptide pep19-2.5. Front. Immunol., 2018, 9, 1704.
[http://dx.doi.org/10.3389/fimmu.2018.01704] [PMID: 30093904]
[55]
Cirioni, O.; Silvestri, C.; Ghiselli, R.; Orlando, F.; Riva, A.; Gabrielli, E.; Mocchegiani, F.; Cianforlini, N.; Trombettoni, M.M.C.; Saba, V.; Scalise, G.; Giacometti, A. Therapeutic efficacy of buforin II and rifampin in a rat model of Acinetobacter baumannii sepsis. Crit. Care Med., 2009, 37(4), 1403-1407.
[http://dx.doi.org/10.1097/CCM.0b013e31819c3e22] [PMID: 19318826]
[56]
Mathew, B.; Nagaraj, R. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs. Peptides, 2015, 71, 128-140.
[http://dx.doi.org/10.1016/j.peptides.2015.07.009] [PMID: 26206286]
[57]
Thorne, K.J.; Oliver, R.C.; Barrett, A.J. Lysis and killing of bacteria by lysosomal proteinases. Infect. Immun., 1976, 14(2), 555-563.
[http://dx.doi.org/10.1128/IAI.14.2.555-563.1976] [PMID: 971964]
[58]
Lu, L.; Li, J.; Moussaoui, M.; Boix, E. Immune modulation by human secreted RNases at the extracellular space. Front. Immunol., 2018, 9, 1012.
[http://dx.doi.org/10.3389/fimmu.2018.01012] [PMID: 29867984]
[59]
Domachowske, J.B.; Dyer, K.D.; Bonville, C.A.; Rosenberg, H.F. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J. Infect. Dis., 1998, 177(6), 1458-1464.
[http://dx.doi.org/10.1086/515322] [PMID: 9607820]
[60]
Torres-Juarez, F.; Cardenas-Vargas, A.; Montoya-Rosales, A.; González-Curiel, I.; Garcia-Hernandez, M.H.; Enciso-Moreno, J.A.; Hancock, R.E.W.; Rivas-Santiago, B. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages. Infect. Immun., 2015, 83(12), 4495-4503.
[http://dx.doi.org/10.1128/IAI.00936-15] [PMID: 26351280]
[61]
Haney, E.F.; Hancock, R.E.W.W. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers, 2013, 100(6), 572-583.
[http://dx.doi.org/10.1002/bip.22250] [PMID: 23553602]
[62]
Kanduc, D.; Mittelman, A.; Serpico, R.; Sinigaglia, E.; Sinha, A.A.; Natale, C.; Santacroce, R.; Di Corcia, M.G.; Lucchese, A.; Dini, L.; Pani, P.; Santacroce, S.; Simone, S.; Bucci, R.; Farber, E. Cell death: apoptosis versus necrosis (review). Int. J. Oncol., 2002, 21(1), 165-170.
[http://dx.doi.org/10.3892/ijo.21.1.165] [PMID: 12063564]
[63]
Lee, W.; Lee, D.G. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr. Microbiol., 2014, 69(6), 794-801.
[http://dx.doi.org/10.1007/s00284-014-0657-x] [PMID: 25023640]
[64]
Rodríguez-Rojas, A.; Makarova, O.; Rolff, J. Antimicrobials, stress and mutagenesis. PLoS Pathog., 2014, 10(10)e1004445
[http://dx.doi.org/10.1371/journal.ppat.1004445] [PMID: 25299705]
[65]
Lee, J-U.; Kang, D-I.; Zhu, W.L.; Shin, S.Y.; Hahm, K-S.; Kim, Y. Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative. Biopolymers, 2007, 88(2), 208-216.
[http://dx.doi.org/10.1002/bip.20700] [PMID: 17285588]
[66]
Ovchinnikova, T.V.; Aleshina, G.M.; Balandin, S.V.; Krasnosdembskaya, A.D.; Markelov, M.L.; Frolova, E.I.; Leonova, Y.F.; Tagaev, A.A.; Krasnodembsky, E.G.; Kokryakov, V.N. Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaeta Arenicola marina. FEBS Lett., 2004, 577(1-2), 209-214.
[http://dx.doi.org/10.1016/j.febslet.2004.10.012] [PMID: 15527787]
[67]
Ouellette, A.J.; Hsieh, M.M.; Nosek, M.T.; Cano-Gauci, D.F.; Huttner, K.M.; Buick, R.N.; Selsted, M.E. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect. Immun., 1994, 62(11), 5040-5047.
[http://dx.doi.org/10.1128/IAI.62.11.5040-5047.1994] [PMID: 7927786]
[68]
Porter, E.M.; Liu, L.; Oren, A.; Anton, P.A.; Ganz, T. Localization of human intestinal defensin 5 in Paneth cell granules. Infect. Immun., 1997, 65(6), 2389-2395.
[http://dx.doi.org/10.1128/IAI.65.6.2389-2395.1997] [PMID: 9169779]
[69]
Awang, T.; Pongprayoon, P. The adsorption of human defensin 5 on bacterial membranes: simulation studies. J. Mol. Model., 2018, 24(10), 273.
[http://dx.doi.org/10.1007/s00894-018-3812-7] [PMID: 30187138]
[70]
Schibli, D.J.; Hunter, H.N.; Aseyev, V.; Starner, T.D.; Wiencek, J.M.; McCray, P.B., Jr; Tack, B.F.; Vogel, H.J. The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J. Biol. Chem., 2002, 277(10), 8279-8289.
[http://dx.doi.org/10.1074/jbc.M108830200] [PMID: 11741980]
[71]
Goebel, C.; Mackay, L.G.; Vickers, E.R.; Mather, L.E. Determination of defensin HNP-1, HNP-2, and HNP-3 in human saliva by using LC/MS. Peptides, 2000, 21(6), 757-765.
[http://dx.doi.org/10.1016/S0196-9781(00)00205-9] [PMID: 10958994]
[72]
Selsted, M.E.; Novotny, M.J.; Morris, W.L.; Tang, Y.Q.; Smith, W.; Cullor, J.S. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem., 1992, 267(7), 4292-4295.
[PMID: 1537821]
[73]
Jindal, H.M.; Le, C.F.; Mohd Yusof, M.Y.; Velayuthan, R.D.; Lee, V.S.; Zain, S.M.; Isa, D.M.; Sekaran, S.D. Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumoniae. PLoS One, 2015, 10(6)e0128532
[http://dx.doi.org/10.1371/journal.pone.0128532] [PMID: 26046345]
[74]
Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA, 1987, 84(15), 5449-5453.
[http://dx.doi.org/10.1073/pnas.84.15.5449] [PMID: 3299384]
[75]
Giovannini, M.G.; Poulter, L.; Gibson, B.W.; Williams, D.H. Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. Biochem. J., 1987, 243(1), 113-120.
[http://dx.doi.org/10.1042/bj2430113] [PMID: 3606567]
[76]
Marani, M.M.; Dourado, F.S.; Quelemes, P.V.; de Araujo, A.R.; Perfeito, M.L.G.; Barbosa, E.A.; Véras, L.M.C.; Coelho, A.L.R.; Andrade, E.B.; Eaton, P.; Longo, J.P.F.; Azevedo, R.B.; Delerue-Matos, C.; Leite, J.R.S.A. Characterization and biological activities of ocellatin peptides from the skin secretion of the frog leptodactylus pustulatus. J. Nat. Prod., 2015, 78(7), 1495-1504.
[http://dx.doi.org/10.1021/np500907t] [PMID: 26107622]
[77]
Clark, D.P.; Durell, S.; Maloy, W.L.; Zasloff, M. Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J. Biol. Chem., 1994, 269(14), 10849-10855.
[PMID: 8144672]
[78]
Zheng, Z.; Tharmalingam, N.; Liu, Q.; Jayamani, E.; Kim, W.; Fuchs, B.B.; Zhang, R.; Vilcinskas, A.; Mylonakis, E. Synergistic Efficacy of Aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2017, 61(7), e00686-e17.
[http://dx.doi.org/10.1128/AAC.00686-17] [PMID: 28483966]
[79]
Lin, C-H.; Tzen, J.T.C.; Shyu, C-L.; Yang, M.J.; Tu, W-C. Structural and biological characterization of mastoparans in the venom of Vespa species in Taiwan. Peptides, 2011, 32(10), 2027-2036.
[http://dx.doi.org/10.1016/j.peptides.2011.08.015] [PMID: 21884742]
[80]
Zhou, J.; Zhao, J.; Zhang, S.; Shen, J.; Qi, Y.; Xue, X.; Li, Y.; Wu, L.; Zhang, J.; Chen, F.; Chen, L. Quantification of melittin and apamin in bee venom lyophilized powder from Apis mellifera by liquid chromatography-diode array detector-tandem mass spectrometry. Anal. Biochem., 2010, 404(2), 171-178.
[http://dx.doi.org/10.1016/j.ab.2010.05.014] [PMID: 20580685]
[81]
Mishra, B.; Reiling, S.; Zarena, D.; Wang, G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr. Opin. Chem. Biol., 2017, 38, 87-96.
[http://dx.doi.org/10.1016/j.cbpa.2017.03.014] [PMID: 28399505]
[82]
Zhang, R.; Wang, Z.; Tian, Y.; Yin, Q.; Cheng, X.; Lian, M.; Zhou, B.; Zhang, X.; Yang, L. Efficacy of antimicrobial peptide DP7, designed by machine-learning method, against methicillin-resistant staphylococcus aureus. Front. Microbiol., 2019, 10, 1175.
[http://dx.doi.org/10.3389/fmicb.2019.01175] [PMID: 31191493]
[83]
Costa, F.; Maia, S.; Gomes, J.; Gomes, P.; Martins, M.C.L. Characterization of hLF1-11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity. Acta Biomater., 2014, 10(8), 3513-3521.
[http://dx.doi.org/10.1016/j.actbio.2014.02.028] [PMID: 24631659]
[84]
Wieczorek, M.; Jenssen, H.; Kindrachuk, J.; Scott, W.R.P.; Elliott, M.; Hilpert, K.; Cheng, J.T.J.; Hancock, R.E.W.; Straus, S.K. Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem. Biol., 2010, 17(9), 970-980.
[http://dx.doi.org/10.1016/j.chembiol.2010.07.007] [PMID: 20851346]
[85]
Hilchie, A.L.; Wuerth, K.; Hancock, R.E.W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol., 2013, 9(12), 761-768.
[http://dx.doi.org/10.1038/nchembio.1393] [PMID: 24231617]
[86]
Jacob, B.; Park, I.S.; Bang, J.K.; Shin, S.Y. Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. J. Pept. Sci., 2013, 19(11), 700-707.
[http://dx.doi.org/10.1002/psc.2552] [PMID: 24105706]
[87]
Willcox, M.D.P.; Hume, E.B.H.; Aliwarga, Y.; Kumar, N.; Cole, N. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J. Appl. Microbiol., 2008, 105(6), 1817-1825.
[http://dx.doi.org/10.1111/j.1365-2672.2008.03942.x] [PMID: 19016975]
[88]
Feng, Q.; Huang, Y.; Chen, M.; Li, G.; Chen, Y. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(1), 197-204.
[http://dx.doi.org/10.1007/s10096-014-2219-3] [PMID: 25169965]
[89]
Andrä, J.; Jakovkin, I.; Grötzinger, J.; Hecht, O.; Krasnosdembskaya, A.D.; Goldmann, T.; Gutsmann, T.; Leippe, M. Structure and mode of action of the antimicrobial peptide arenicin. Biochem. J., 2008, 410(1), 113-122.
[http://dx.doi.org/10.1042/BJ20071051] [PMID: 17935487]
[90]
Andrä, J.; Hammer, M.U.; Grötzinger, J.; Jakovkin, I.; Lindner, B.; Vollmer, E.; Fedders, H.; Leippe, M.; Gutsmann, T. Significance of the cyclic structure and of arginine residues for the antibacterial activity of arenicin-1 and its interaction with phospholipid and lipopolysaccharide model membranes. Biol. Chem., 2009, 390(4), 337-349.
[http://dx.doi.org/10.1515/BC.2009.039] [PMID: 19199831]
[91]
Shenkarev, Z.O.; Balandin, S.V.; Trunov, K.I.; Paramonov, A.S.; Sukhanov, S.V.; Barsukov, L.I.; Arseniev, A.S.; Ovchinnikova, T.V. Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry, 2011, 50(28), 6255-6265.
[http://dx.doi.org/10.1021/bi200746t] [PMID: 21627330]
[92]
Choi, H.; Lee, D.G. Synergistic effect of antimicrobial peptide arenicin-1 in combination with antibiotics against pathogenic bacteria. Res. Microbiol., 2012, 163(6-7), 479-486.
[http://dx.doi.org/10.1016/j.resmic.2012.06.001] [PMID: 22705395]
[93]
Preet, S.; Virdi, J.S.; Rishi, P. Anti-Yersinia activity of cryptdin-2: a Paneth cell peptide. Natl. Acad. Sci. Lett., 2013, 36, 161-166.
[http://dx.doi.org/10.1007/s40009-013-0114-6]
[94]
Preet, S.; Verma, I.; Rishi, P. Cryptdin-2: a novel therapeutic agent for experimental Salmonella Typhimurium infection. J. Antimicrob. Chemother., 2010, 65(5), 991-994.
[http://dx.doi.org/10.1093/jac/dkq066] [PMID: 20228082]
[95]
Harwig, S.S.L.; Eisenhauer, P.B.; Chen, N.P.; Lehrer, R.I. Cryptdins: endogenous antibiotic peptides of small intestina Paneth cells; Springer: Boston, 1995, pp. 251-255.
[96]
Chileveru, H.R.; Lim, S.A.; Chairatana, P.; Wommack, A.J.; Chiang, I-L.; Nolan, E.M. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry, 2015, 54(9), 1767-1777.
[http://dx.doi.org/10.1021/bi501483q] [PMID: 25664683]
[97]
Nishi, H.; Komatsuzawa, H.; Fujiwara, T.; McCallum, N.; Sugai, M. Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob. Agents Chemother., 2004, 48(12), 4800-4807.
[http://dx.doi.org/10.1128/AAC.48.12.4800-4807.2004] [PMID: 15561859]
[98]
Harder, J.; Bartels, J.; Christophers, E.; Schroder, J.M. Isolation and characterization of human β -defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem., 2001, 276(8), 5707-5713.
[http://dx.doi.org/10.1074/jbc.M008557200] [PMID: 11085990]
[99]
Zilbauer, M.; Dorrell, N.; Boughan, P.K.; Harris, A.; Wren, B.W.; Klein, N.J.; Bajaj-Elliott, M. Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect. Immun., 2005, 73(11), 7281-7289.
[http://dx.doi.org/10.1128/IAI.73.11.7281-7289.2005] [PMID: 16239524]
[100]
Boniotto, M.; Antcheva, N.; Zelezetsky, I.; Tossi, A.; Palumbo, V.; Verga Falzacappa, M.V.; Sgubin, S.; Braida, L.; Amoroso, A.; Crovella, S. A study of host defence peptide β-defensin 3 in primates. Biochem. J., 2003, 374(Pt 3), 707-714.
[http://dx.doi.org/10.1042/bj20030528] [PMID: 12795637]
[101]
Lee, S.H.; Baek, D.H. Antibacterial and neutralizing effect of human β-defensins on Enterococcus faecalis and Enterococcus faecalis lipoteichoic acid. J. Endod., 2012, 38(3), 351-356.
[http://dx.doi.org/10.1016/j.joen.2011.12.026] [PMID: 22341073]
[102]
Hoover, D.M.; Wu, Z.; Tucker, K.; Lu, W.; Lubkowski, J. Antimicrobial characterization of human β-defensin 3 derivatives. Antimicrob. Agents Chemother., 2003, 47(9), 2804-2809.
[http://dx.doi.org/10.1128/AAC.47.9.2804-2809.2003] [PMID: 12936977]
[103]
Sahly, H.; Schubert, S.; Harder, J.; Rautenberg, P.; Ullmann, U.; Schröder, J.; Podschun, R. Burkholderia is highly resistant to human Beta-defensin 3. Antimicrob. Agents Chemother., 2003, 47(5), 1739-1741.
[http://dx.doi.org/10.1128/AAC.47.5.1739-1741.2003] [PMID: 12709350]
[104]
Lehrer, R.I.; Barton, A.; Daher, K.A.; Harwig, S.S.; Ganz, T.; Selsted, M.E. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest., 1989, 84(2), 553-561.
[http://dx.doi.org/10.1172/JCI114198] [PMID: 2668334]
[105]
Sharma, S.; Verma, I.; Khuller, G.K. Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study. Eur. Respir. J., 2000, 16(1), 112-117.
[http://dx.doi.org/10.1034/j.1399-3003.2000.16a20.x] [PMID: 10933095]
[106]
de Leeuw, E.; Li, C.; Zeng, P.; Li, C.; Diepeveen-de Buin, M.; Lu, W.Y.; Breukink, E.; Lu, W. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett., 2010, 584(8), 1543-1548.
[http://dx.doi.org/10.1016/j.febslet.2010.03.004] [PMID: 20214904]
[107]
Vega, L.A.; Caparon, M.G. Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal. Mol. Microbiol., 2012, 85(6), 1119-1132.
[http://dx.doi.org/10.1111/j.1365-2958.2012.08163.x] [PMID: 22780862]
[108]
Ericksen, B.; Wu, Z.; Lu, W.; Lehrer, R.I. Antibacterial activity and specificity of the six human α-defensins. Antimicrob. Agents Chemother., 2005, 49(1), 269-275.
[http://dx.doi.org/10.1128/AAC.49.1.269-275.2005] [PMID: 15616305]
[109]
Falla, T.J.; Karunaratne, D.N.; Hancock, R.E. Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem., 1996, 271(32), 19298-19303.
[http://dx.doi.org/10.1074/jbc.271.32.19298] [PMID: 8702613]
[110]
Subbalakshmi, C.; Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett., 1998, 160(1), 91-96.
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.x] [PMID: 9495018]
[111]
Bowdish, D.M.E.; Davidson, D.J.; Scott, M.G.; Hancock, R.E.W. Immunomodulatory activities of small host defense peptides. Antimicrob. Agents Chemother., 2005, 49(5), 1727-1732.
[http://dx.doi.org/10.1128/AAC.49.5.1727-1732.2005] [PMID: 15855488]
[112]
Brahma, B.; Patra, M.C.; Karri, S.; Chopra, M.; Mishra, P.; De, B.C.; Kumar, S.; Mahanty, S.; Thakur, K.; Poluri, K.M.; Datta, T.K.; De, S. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins. PLoS One, 2015, 10(12)e0144741
[http://dx.doi.org/10.1371/journal.pone.0144741] [PMID: 26675301]
[113]
Henzler Wildman, K.A.; Lee, D.K.; Ramamoorthy, A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry, 2003, 42(21), 6545-6558.
[http://dx.doi.org/10.1021/bi0273563] [PMID: 12767238]
[114]
Sochacki, K.A.; Barns, K.J.; Bucki, R.; Weisshaar, J.C. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc. Natl. Acad. Sci. USA, 2011, 108(16), E77-E81.
[http://dx.doi.org/10.1073/pnas.1101130108] [PMID: 21464330]
[115]
Ruan, Y.; Shen, T.; Wang, Y.; Hou, M.; Li, J.; Sun, T. Antimicrobial peptide LL-37 attenuates LTA induced inflammatory effect in macrophages. Int. Immunopharmacol., 2013, 15(3), 575-580.
[http://dx.doi.org/10.1016/j.intimp.2013.01.012] [PMID: 23375934]
[116]
Bals, R.; Wang, X.; Zasloff, M.; Wilson, J.M. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9541-9546.
[http://dx.doi.org/10.1073/pnas.95.16.9541] [PMID: 9689116]
[117]
Matsuzaki, K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta, 1998, 1376(3), 391-400.
[http://dx.doi.org/10.1016/S0304-4157(98)00014-8] [PMID: 9804997]
[118]
Kim, M.K.; Kang, N.; Ko, S.J.; Park, J.; Park, E.; Shin, D.W.; Kim, S.H.; Lee, S.A.; Lee, J.I.; Lee, S.H.; Ha, E.G.;; Jeon, S.H.;; Park, Y.; Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant acinetobacter baumannii. Int. J. Mol. Sci., 2018, 19(10), 19.
[http://dx.doi.org/10.3390/ijms19103041] [PMID: 30301180]
[119]
Bessa, L.J.; Eaton, P.; Dematei, A.; Plácido, A.; Vale, N.; Gomes, P.; Delerue-Matos, C.; Sa Leite, J.R.; Gameiro, P. Synergistic and antibiofilm properties of ocellatin peptides against multidrug-resistant Pseudomonas aeruginosa. Future Microbiol., 2018, 13, 151-163.
[http://dx.doi.org/10.2217/fmb-2017-0175] [PMID: 29308671]
[120]
Overton, I.M.; Graham, S.; Gould, K.A.; Hinds, J.; Botting, C.H.; Shirran, S.; Barton, G.J.; Coote, P.J. Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus. BMC Syst. Biol., 2011, 5, 68.
[http://dx.doi.org/10.1186/1752-0509-5-68] [PMID: 21569391]
[121]
Aleinein, R.A.; Hamoud, R.; Schäfer, H.; Wink, M. Molecular cloning and expression of ranalexin, a bioactive antimicrobial peptide from Rana catesbeiana in Escherichia coli and assessments of its biological activities. Appl. Microbiol. Biotechnol., 2013, 97(8), 3535-3543.
[http://dx.doi.org/10.1007/s00253-012-4441-1] [PMID: 23053091]
[122]
Jayamani, E.; Rajamuthiah, R.; Larkins-Ford, J.; Fuchs, B.B.; Conery, A.L.; Vilcinskas, A.; Ausubel, F.M.; Mylonakis, E. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model. Antimicrob. Agents Chemother., 2015, 59(3), 1728-1737.
[http://dx.doi.org/10.1128/AAC.04198-14] [PMID: 25583713]
[123]
van den Bogaart, G.; Guzmán, J.V.; Mika, J.T.; Poolman, B. On the mechanism of pore formation by melittin. J. Biol. Chem., 2008, 283(49), 33854-33857.
[http://dx.doi.org/10.1074/jbc.M805171200] [PMID: 18819911]
[124]
Dempsey, C.E. The actions of melittin on membranes BBA -Reviews on Biomembranes,, 1990, (1031), 143-161.
[http://dx.doi.org/10.1016/0304-4157(90)90006-x] [PMID: 2187536]
[125]
Simmaco, M.; Mignogna, G.; Barra, D.; Bossa, F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J. Biol. Chem., 1994, 269(16), 11956-11961.
[PMID: 8163497]
[126]
Breukink, E.; de Kruijff, B. The lantibiotic nisin, a special case or not? Biochim. Biophys. Acta, 1999, 1462(1-2), 223-234.
[http://dx.doi.org/10.1016/S0005-2736(99)00208-4] [PMID: 10590310]
[127]
Kindrachuk, J.; Jenssen, H.; Elliott, M.; Nijnik, A.; Magrangeas-Janot, L.; Pasupuleti, M.; Thorson, L.; Ma, S.; Easton, D.M.; Bains, M.; Finlay, B.; Breukink, E.J.; Georg-Sahl, H.; Hancock, R.E. Manipulation of innate immunity by a bacterial secreted peptide: lantibiotic nisin Z is selectively immunomodulatory. Innate Immun., 2013, 19(3), 315-327.
[http://dx.doi.org/10.1177/1753425912461456] [PMID: 23109507]
[128]
de Vos, W.M.; Mulders, J.W.M.; Siezen, R.J.; Hugenholtz, J.; Kuipers, O.P. Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl. Environ. Microbiol., 1993, 59(1), 213-218.
[http://dx.doi.org/10.1128/AEM.59.1.213-218.1993] [PMID: 8439149]
[129]
Noll, K.S.; Sinko, P.J.; Chikindas, M.L. Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob. Proteins, 2011, 3(1), 41-47.
[http://dx.doi.org/10.1007/s12602-010-9061-4] [PMID: 21949544]
[130]
Shelburne, C.E.; An, F.Y.; Dholpe, V.; Ramamoorthy, A.; Lopatin, D.E.; Lantz, M.S. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother., 2007, 59(2), 297-300.
[http://dx.doi.org/10.1093/jac/dkl495] [PMID: 17213266]
[131]
Dijkshoorn, L.; Brouwer, C.P.J.M.; Bogaards, S.J.P.; Nemec, A.; van den Broek, P.J.; Nibbering, P.H. The synthetic N-terminal peptide of human lactoferrin, hLF(1-11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother., 2004, 48(12), 4919-4921.
[http://dx.doi.org/10.1128/AAC.48.12.4919-4921.2004] [PMID: 15561882]
[132]
Reffuveille, F.; de la Fuente-Núñez, C.; Mansour, S.; Hancock, R.E.W. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob. Agents Chemother., 2014, 58(9), 5363-5371.
[http://dx.doi.org/10.1128/AAC.03163-14] [PMID: 24982074]
[133]
Kim, E.Y.; Rajasekaran, G.; Shin, S.Y. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 136, 428-441.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.028] [PMID: 28525841]
[134]
Rasul, R.; Cole, N.; Balasubramanian, D.; Chen, R.; Kumar, N.; Willcox, M.D.P. Interaction of the antimicrobial peptide melimine with bacterial membranes. Int. J. Antimicrob. Agents, 2010, 35(6), 566-572.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.02.005] [PMID: 20227248]
[135]
Wright, G.D. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol., 2016, 24(11), 862-871.
[http://dx.doi.org/10.1016/j.tim.2016.06.009] [PMID: 27430191]
[136]
Folkesson, A.; Haagensen, J.A.J.; Zampaloni, C.; Sternberg, C.; Molin, S. Biofilm induced tolerance towards antimicrobial peptides. PLoS One, 2008, 3(4)e1891
[http://dx.doi.org/10.1371/journal.pone.0001891] [PMID: 18382672]
[137]
Lowrence, R.C.; Subramaniapillai, S.G.; Ulaganathan, V.; Nagarajan, S. Tackling drug resistance with efflux pump inhibitors: from bacteria to cancerous cells. Crit. Rev. Microbiol., 2019, 45(3), 334-353.
[http://dx.doi.org/10.1080/1040841X.2019.1607248] [PMID: 31248314]
[138]
Arthur, M. Antibiotics: vancomycin sensing. Nat. Chem. Biol., 2010, 6(5), 313-315.
[http://dx.doi.org/10.1038/nchembio.356] [PMID: 20404817]
[139]
Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother., 2005, 55(3), 283-288.
[http://dx.doi.org/10.1093/jac/dkh546] [PMID: 15705644]
[140]
Tran, T.T.; Panesso, D.; Mishra, N.N.; Mileykovskaya, E.; Guan, Z.; Munita, J.M.; Reyes, J.; Diaz, L.; Weinstock, G.M.; Murray, B.E.; Shamoo, Y.; Dowhan, W.; Bayer, A.S.; Arias, C.A. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. MBio, 2013, 4(4), e00281-e13.
[http://dx.doi.org/10.1128/mBio.00281-13] [PMID: 23882013]
[141]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[http://dx.doi.org/10.1016/j.coph.2006.04.006] [PMID: 16890021]
[142]
Chan, C.; Burrows, L.L.; Deber, C.M. Alginate as an auxiliary bacterial membrane: binding of membrane-active peptides by polysaccharides. J. Pept. Res., 2005, 65(3), 343-351.
[http://dx.doi.org/10.1111/j.1399-3011.2005.00217.x] [PMID: 15787964]
[143]
Chan, C.; Burrows, L.L.; Deber, C.M. Helix induction in antimicrobial peptides by alginate in biofilms. J. Biol. Chem., 2004, 279(37), 38749-38754.
[http://dx.doi.org/10.1074/jbc.M406044200] [PMID: 15247257]
[144]
Johnson, L.; Horsman, S.R.; Charron-Mazenod, L.; Turnbull, A.L.; Mulcahy, H.; Surette, M.G.; Lewenza, S. Extracellular DNA-induced antimicrobial peptide resistance in Salmonella enterica serovar Typhimurium. BMC Microbiol., 2013, 13, 115.
[http://dx.doi.org/10.1186/1471-2180-13-115] [PMID: 23705831]
[145]
Islam, D.; Bandholtz, L.; Nilsson, J.; Wigzell, H.; Christensson, B.; Agerberth, B.; Gudmundsson, G. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med., 2001, 7(2), 180-185.
[http://dx.doi.org/10.1038/84627] [PMID: 11175848]
[146]
Johansson, L.; Thulin, P.; Sendi, P.; Hertzén, E.; Linder, A.; Akesson, P.; Low, D.E.; Agerberth, B.; Norrby-Teglund, A. Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect. Immun., 2008, 76(8), 3399-3404.
[http://dx.doi.org/10.1128/IAI.01392-07] [PMID: 18490458]
[147]
Rieg, S.; Huth, A.; Kalbacher, H.; Kern, W.V. Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps. Int. J. Antimicrob. Agents, 2009, 33(2), 174-176.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.07.032] [PMID: 18945595]
[148]
Schmidtchen, A.; Frick, I-M.; Andersson, E.; Tapper, H.; Björck, L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol., 2002, 46(1), 157-168.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03146.x] [PMID: 12366839]
[149]
Schmidtchen, A.; Frick, I-M.; Björck, L. Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial α-defensin. Mol. Microbiol., 2001, 39(3), 708-713.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02251.x] [PMID: 11169110]
[150]
Brannon, J.R.; Thomassin, J.L.; Desloges, I.; Gruenheid, S.; Le Moual, H. Role of uropathogenic Escherichia coli OmpT in the resistance against human cathelicidin LL-37. FEMS Microbiol. Lett., 2013, 345(1), 64-71.
[http://dx.doi.org/10.1111/1574-6968.12185] [PMID: 23710656]
[151]
Thomassin, J.L.; Brannon, J.R.; Gibbs, B.F.; Gruenheid, S.; Le Moual, H.; Omp, T. OmpT outer membrane proteases of enterohemorrhagic and enteropathogenic Escherichia coli contribute differently to the degradation of human LL-37. Infect. Immun., 2012, 80(2), 483-492.
[http://dx.doi.org/10.1128/IAI.05674-11] [PMID: 22144482]
[152]
Nyberg, P.; Rasmussen, M.; Björck, L. α2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J. Biol. Chem., 2004, 279(51), 52820-52823.
[http://dx.doi.org/10.1074/jbc.C400485200] [PMID: 15520011]
[153]
MacNair, C.R.; Stokes, J.M.; Carfrae, L.A.; Fiebig-Comyn, A.A.; Coombes, B.K.; Mulvey, M.R.; Brown, E.D. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun., 2018, 9(1), 458.
[http://dx.doi.org/10.1038/s41467-018-02875-z] [PMID: 29386620]
[154]
He, J.; Starr, C.G.; Wimley, W.C. A lack of synergy between membrane-permeabilizing cationic antimicrobial peptides and conventional antibiotics. Biochim. Biophys. Acta, 2015, 1848(1 Pt A), 8-15.
[http://dx.doi.org/10.1016/j.bbamem.2014.09.010] [PMID: 25268681]
[155]
Pletzer, D.; Mansour, S.C.; Hancock, R.E.W. Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PLoS Pathog., 2018, 14(6)e1007084
[http://dx.doi.org/10.1371/journal.ppat.1007084] [PMID: 29928049]
[156]
Prats-Ejarque, G.; Li, J.; Ait-Ichou, F.; Lorente, H.; Boix, E. Testing a human antimicrobial RNase chimera against bacterial resistance. Front. Microbiol., 2019, 10, 1357.
[http://dx.doi.org/10.3389/fmicb.2019.01357] [PMID: 31275278]
[157]
García-Mayoral, M.F.; Canales, A.; Díaz, D.; López-Prados, J.; Moussaoui, M.; de Paz, J.L.; Angulo, J.; Nieto, P.M.; Jiménez-Barbero, J.; Boix, E.; Bruix, M. Insights into the glycosaminoglycan-mediated cytotoxic mechanism of eosinophil cationic protein revealed by NMR. ACS Chem. Biol., 2013, 8(1), 144-151.
[http://dx.doi.org/10.1021/cb300386v] [PMID: 23025322]
[158]
Salazar, V.A.; Arranz-Trullén, J.; Navarro, S.; Blanco, J.A.; Sánchez, D.; Moussaoui, M.; Boix, E. Exploring the mechanisms of action of human secretory RNase 3 and RNase 7 against Candida albicans. MicrobiologyOpen, 2016, 5(5), 830-845.
[http://dx.doi.org/10.1002/mbo3.373] [PMID: 27277554]
[159]
Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocin-antimicrobial synergy: a medical and food perspective. Front. Microbiol., 2017, 8, 1205.
[http://dx.doi.org/10.3389/fmicb.2017.01205] [PMID: 28706513]
[160]
Panteleev, P.V.; Bolosov, I.A.; Kalashnikov, A.À.; Kokryakov, V.N.; Shamova, O.V.; Emelianova, A.A.; Balandin, S.V.; Ovchinnikova, T.V. Combined antibacterial effects of goat cathelicidins with different mechanisms of action. Front. Microbiol., 2018, 9, 2983.
[http://dx.doi.org/10.3389/fmicb.2018.02983] [PMID: 30555455]
[161]
Mendes, C.A.C.; Burdmann, E.A. Polymyxins - review with emphasis on nephrotoxicity. Rev Assoc Med Bras(1992), 2009, 55(6), 752-759.
[http://dx.doi.org/10.1590/S0104-42302009000600023] [PMID: 20191233]
[162]
Abdelraouf, K.; Braggs, K.H.; Yin, T.; Truong, L.D.; Hu, M.; Tam, V.H. Characterization of polymyxin B-induced nephrotoxicity: implications for dosing regimen design. Antimicrob. Agents Chemother., 2012, 56(9), 4625-4629.
[http://dx.doi.org/10.1128/AAC.00280-12] [PMID: 22687519]
[163]
Patrzykat, A.; Zhang, L.; Mendoza, V.; Iwama, G.K.; Hancock, R.E. Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin. Antimicrob. Agents Chemother., 2001, 45(5), 1337-1342.
[http://dx.doi.org/10.1128/AAC.45.5.1337-1342.2001] [PMID: 11302792]
[164]
Lyu, Y.; Domalaon, R.; Yang, X.; Schweizer, F. Amphiphilic lysine conjugated to tobramycin synergizes legacy antibiotics against wild-type and multidrug-resistant Pseudomonas aeruginosa. Pept. Sci., 2017, 111e23091
[http://dx.doi.org/10.1002/bip.23091]
[165]
Rishi, P.; Preet, S.; Bharrhan, S.; Verma, I. In vitro and in vivo synergistic effects of cryptdin 2 and ampicillin against Salmonella. Antimicrob. Agents Chemother., 2011, 55(9), 4176-4182.
[http://dx.doi.org/10.1128/AAC.00273-11] [PMID: 21690282]
[166]
Nuding, S.; Frasch, T.; Schaller, M.; Stange, E.F.; Zabel, L.T. Synergistic effects of antimicrobial peptides and antibiotics against Clostridium difficile. Antimicrob. Agents Chemother., 2014, 58(10), 5719-5725.
[http://dx.doi.org/10.1128/AAC.02542-14] [PMID: 25022581]
[167]
Kalita, A.; Verma, I.; Khuller, G.K. Role of human neutrophil peptide-1 as a possible adjunct to antituberculosis chemotherapy. J. Infect. Dis., 2004, 190(8), 1476-1480.
[http://dx.doi.org/10.1086/424463] [PMID: 15378441]
[168]
Dosler, S.; Mataraci, E. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides, 2013, 49, 53-58.
[http://dx.doi.org/10.1016/j.peptides.2013.08.008] [PMID: 23988790]
[169]
Lin, L.; Nonejuie, P.; Munguia, J.; Hollands, A.; Olson, J.; Dam, Q.; Kumaraswamy, M.; Rivera, H., Jr; Corriden, R.; Rohde, M.; Hensler, M.E.; Burkart, M.D.; Pogliano, J.; Sakoulas, G.; Nizet, V.; Nizet, V. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant gram-negative bacterial pathogens. EBioMedicine, 2015, 2(7), 690-698.
[http://dx.doi.org/10.1016/j.ebiom.2015.05.021] [PMID: 26288841]
[170]
Giacometti, A.; Cirioni, O.; Del Prete, M.S.; Paggi, A.M.; D’Errico, M.M.; Scalise, G. Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria. Peptides, 2000, 21(8), 1155-1160.
[http://dx.doi.org/10.1016/S0196-9781(00)00254-0] [PMID: 11035200]
[171]
Aleinein, R.A.; Schäfer, H.; Wink, M. Secretory ranalexin produced in recombinant Pichia pastoris exhibits additive or synergistic bactericidal activity when used in combination with polymyxin B or linezolid against multi-drug resistant bacteria. Biotechnol. J., 2014, 9(1), 110-119.
[http://dx.doi.org/10.1002/biot.201300282] [PMID: 24166764]
[172]
Lin, C-H.; Hou, R.F.; Shyu, C-L.; Shia, W-Y.; Lin, C-F.; Tu, W-C. In vitro activity of mastoparan-AF alone and in combination with clinically used antibiotics against multiple-antibiotic-resistant Escherichia coli isolates from animals. Peptides, 2012, 36(1), 114-120.
[http://dx.doi.org/10.1016/j.peptides.2012.03.002] [PMID: 22561066]
[173]
Lin, C-H.; Lee, M-C.; Tzen, J.T.C.; Lee, H-M.; Chang, S-M.; Tu, W-C.; Lin, C-F. Efficacy of Mastoparan-AF alone and in combination with clinically used antibiotics on nosocomial multidrug-resistant Acinetobacter baumannii. Saudi J. Biol. Sci., 2017, 24(5), 1023-1029.
[http://dx.doi.org/10.1016/j.sjbs.2016.12.013] [PMID: 28663698]
[174]
Lewies, A.; Wentzel, J.F.; Jordaan, A.; Bezuidenhout, C.; Du Plessis, L.H. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int. J. Pharm., 2017, 526(1-2), 244-253.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.071] [PMID: 28461263]
[175]
Naghmouchi, K.; Le Lay, C.; Baah, J.; Drider, D. Antibiotic and antimicrobial peptide combinations: synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Res. Microbiol., 2012, 163(2), 101-108.
[http://dx.doi.org/10.1016/j.resmic.2011.11.002] [PMID: 22172555]
[176]
Cavera, V.L.; Volski, A.; Chikindas, M.L. The natural antimicrobial subtilosin a synergizes with lauramide arginine ethyl ester (lae), ε-poly-l-lysine (polylysine), clindamycin phosphate and metronidazole, against the vaginal pathogen Gardnerella vaginalis. Probiotics Antimicrob. Proteins, 2015, 7(2), 164-171.
[http://dx.doi.org/10.1007/s12602-014-9183-1] [PMID: 25588687]
[177]
Morici, P.; Florio, W.; Rizzato, C.; Ghelardi, E.; Tavanti, A.; Rossolini, G.M.; Lupetti, A. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. Eur. J. Clin. Microbiol. Infect. Dis., 2017, 36(10), 1739-1748.
[http://dx.doi.org/10.1007/s10096-017-2987-7] [PMID: 28470337]
[178]
Kampshoff, F.; Willcox, M.D.P.; Dutta, D.; Kampshoff, F.; Willcox, M.D.P.; Dutta, D. A pilot study of the synergy between two antimicrobial peptides and two common antibiotics. Antibiotics (Basel), 2019, 8(2), 60.
[http://dx.doi.org/10.3390/antibiotics8020060] [PMID: 31075940]
[179]
Herrmann, G.; Yang, L.; Wu, H.; Song, Z.; Wang, H.; Høiby, N.; Ulrich, M.; Molin, S.; Riethmüller, J.; Döring, G. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J. Infect. Dis., 2010, 202(10), 1585-1592.
[http://dx.doi.org/10.1086/656788] [PMID: 20942647]
[180]
Taha, M.N.; Saafan, A.E.; Ahmedy, A.; El Gebaly, E.; Khairalla, A.S. Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1. J. Microbiol., 2019, 57(7), 618-625.
[http://dx.doi.org/10.1007/s12275-019-8548-2] [PMID: 31054133]
[181]
Yamakami, K.; Tsumori, H.; Sakurai, Y.; Shimizu, Y.; Nagatoshi, K.; Sonomoto, K. Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucan-biofilm synthesis by Streptococcus mutans. Pharm. Biol., 2013, 51(2), 267-270.
[http://dx.doi.org/10.3109/13880209.2012.717227] [PMID: 23116173]
[182]
Field, D.; Seisling, N.; Cotter, P.D.; Ross, R.P.; Hill, C. Synergistic nisin-polymyxin combinations for the control of Pseudomonas biofilm formation. Front. Microbiol., 2016, 7, 1713.
[http://dx.doi.org/10.3389/fmicb.2016.01713] [PMID: 27833601]
[183]
Ribeiro, S.M.; de la Fuente-Núñez, C.; Baquir, B.; Faria-Junior, C.; Franco, O.L.; Hancock, R.E.W. Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics. Antimicrob. Agents Chemother., 2015, 59(7), 3906-3912.
[http://dx.doi.org/10.1128/AAC.00092-15] [PMID: 25896694]
[184]
Chernysh, S.; Gordya, N.; Suborova, T. Insect antimicrobial peptide complexes prevent resistance development in bacteria. PLoS One, 2015, 10(7)e0130788
[http://dx.doi.org/10.1371/journal.pone.0130788] [PMID: 26177023]
[185]
Singh, A.P.; Preet, S.; Rishi, P. Nisin/β-lactam adjunct therapy against Salmonella enterica serovar Typhimurium: a mechanistic approach. J. Antimicrob. Chemother., 2014, 69(7), 1877-1887.
[http://dx.doi.org/10.1093/jac/dku049] [PMID: 24633205]
[186]
Brandenburg, K.; Heinbockel, L.; Correa, W.; Lohner, K. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis. Biochim. Biophys. Acta, 2016, 1858(5), 971-979.
[http://dx.doi.org/10.1016/j.bbamem.2016.01.011] [PMID: 26801369]
[187]
Mangoni, M.L.; Epand, R.F.; Rosenfeld, Y.; Peleg, A.; Barra, D.; Epand, R.M.; Shai, Y. Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J. Biol. Chem., 2008, 283(34), 22907-22917.
[http://dx.doi.org/10.1074/jbc.M800495200] [PMID: 18550541]
[188]
Rosenfeld, Y.; Papo, N.; Shai, Y. Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J. Biol. Chem., 2006, 281(3), 1636-1643.
[http://dx.doi.org/10.1074/jbc.M504327200] [PMID: 16293630]
[189]
Dürr, M.; Peschel, A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect. Immun., 2002, 70(12), 6515-6517.
[http://dx.doi.org/10.1128/IAI.70.12.6515-6517.2002] [PMID: 12438319]
[190]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[191]
Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol., 2019, 10, 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[192]
Li, J.; Nation, R.L.; Turnidge, J.D.; Milne, R.W.; Coulthard, K.; Rayner, C.R.; Paterson, D.L. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect. Dis., 2006, 6(9), 589-601.
[http://dx.doi.org/10.1016/S1473-3099(06)70580-1] [PMID: 16931410]
[193]
Otvos, L. Racing on the Wrong Track. Front Chem., 2017, 5, 42.
[http://dx.doi.org/10.3389/fchem.2017.00042] [PMID: 28674690]
[194]
Kirkup, B.C., Jr Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applications. Curr. Med. Chem., 2006, 13(27), 3335-3350.
[http://dx.doi.org/10.2174/092986706778773068] [PMID: 17168847]
[195]
Oliva, R.; Chino, M.; Pane, K.; Pistorio, V.; De Santis, A.; Pizzo, E.; D’Errico, G.; Pavone, V.; Lombardi, A.; Del Vecchio, P.; Notomista, E.; Nastri, F.; Petraccone, L. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci. Rep., 2018, 8(1), 8888.
[http://dx.doi.org/10.1038/s41598-018-27231-5] [PMID: 29892005]
[196]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[197]
Wang, S.; Yan, C.; Zhang, X.; Shi, D.; Chi, L.; Luo, G.; Deng, J. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater. Sci., 2018, 6(10), 2757-2772.
[http://dx.doi.org/10.1039/C8BM00807H] [PMID: 30187036]
[198]
Goncalves, D.M.; de Liz, R.; Girard, D. The inflammatory process in response to nanoparticles. ScientificWorldJournal, 2011, 11, 2441-2442.
[http://dx.doi.org/10.1100/2011/143947] [PMID: 22235176]
[199]
Boraschi, D.; Italiani, P.; Palomba, R.; Decuzzi, P.; Duschl, A.; Fadeel, B.; Moghimi, S.M. Nanoparticles and innate immunity: new perspectives on host defence. Semin. Immunol., 2017, 34, 33-51.
[http://dx.doi.org/10.1016/j.smim.2017.08.013] [PMID: 28869063]
[200]
Yan, H.; Hancock, R.E. Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob. Agents Chemother., 2001, 45(5), 1558-1560.
[http://dx.doi.org/10.1128/AAC.45.5.1558-1560.2001] [PMID: 11302828]
[201]
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88(6), 1895-1898.
[PMID: 7462208]
[202]
Guruprasad, K.; Reddy, B.V.B.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng., 1990, 4(2), 155-161.
[http://dx.doi.org/10.1093/protein/4.2.155] [PMID: 2075190]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy