Oxidative Stress in the Pathogenesis of Alzheimer’s Disease and Cerebrovascular Disease with Therapeutic Implications

Author(s): Anamaria Jurcau*, Aurel Simion

Journal Name: CNS & Neurological Disorders - Drug Targets
(Formerly Current Drug Targets - CNS & Neurological Disorders)

Volume 19 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The significant gain in life expectancy led to an increase in the incidence and prevalence of dementia. Although vascular risk factors have long and repeatedly been shown to increase the risk of Alzheimer’s Disease (AD), translating these findings into effective preventive measures has failed. In addition, the finding that incident ischemic stroke approximately doubles the risk of a patient to develop AD has been recently reinforced. Current knowledge and pathogenetic hypotheses of AD are discussed. The implication of oxidative stress in the development of AD is reviewed, with special emphasis on its sudden burst in the setting of acute ischemic stroke and the possible link between this increase in oxidative stress and consequent cognitive impairment. Current knowledge and future directions in the prevention and treatment of AD are discussed outlining the hypothesis of a possible beneficial effect of antioxidant treatment in acute ischemic stroke in delaying the onset/progression of dementia.

Keywords: Alzheimer's disease, cerebrovascular disease, dementia, pathogenesis, neurovascular unit, oxidative stress, antioxidant treatment.

[1]
Maurer K, Volk S, Gerbaldo H. Auguste D and Alzheimer’s disease. Lancet 1997; 349(9064): 1546-9.
[http://dx.doi.org/10.1016/S0140-6736(96)10203-8] [PMID: 9167474]
[2]
Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement 2015; 11(6): 718-26.
[http://dx.doi.org/10.1016/j.jalz.2015.05.016] [PMID: 26045020]
[3]
Rius-Pérez S, Tormos AM, Pérez S, Taléns-Visconti R. Vascular pathology: Cause or effect in Alzheimer disease? Neurologia 2018; 33(2): 112-20.
[http://dx.doi.org/10.1016/j.nrleng.2015.07.008] [PMID: 26385017]
[4]
Instituto Nacional de Estadistica. Defunciones según la causa de muerte en el año 2013 INE. 2015.Available at: https://www.ine.es/prensa/np896.pdf
[5]
Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimers Dement (Amst) 2017; 7: 69-87.
[http://dx.doi.org/10.1016/j.dadm.2017.01.005] [PMID: 28275702]
[6]
Xu J, Zhang Y, Qiu C, Cheng F. Global and regional economic costs of dementia: a systematic review. Lancet 2017; 390: S47.
[http://dx.doi.org/10.1016/S0140-6736(17)33185-9]
[7]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[8]
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[9]
Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 1987; 235(4791): 877-80.
[http://dx.doi.org/10.1126/science.3810169] [PMID: 3810169]
[10]
Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995; 375(6534): 754-60.
[http://dx.doi.org/10.1038/375754a0] [PMID: 7596406]
[11]
Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995; 269(5226): 973-7.
[http://dx.doi.org/10.1126/science.7638622] [PMID: 7638622]
[12]
Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261(5123): 921-3.
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[13]
McIlroy SP, Dynan KB, Lawson JT, Patterson CC, Passmore AP. Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland. Stroke 2002; 33(10): 2351-6.
[http://dx.doi.org/10.1161/01.STR.0000032550.90046.38] [PMID: 12364720]
[14]
Bangen KJ, Nation DA, Delano-Wood L, et al. Aggregate effects of vascular risk factors on cerebrovascular changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement 2015; 11(4): 394-403.e1.
[http://dx.doi.org/10.1016/j.jalz.2013.12.025] [PMID: 25022538]
[15]
Chen H, Su F, Ye Q, Wang Z, Shu H, Bai F. The dose-dependent effects of vascular risk factors on dynamic compensatory neural processes in mild cognitive impairment. Front Aging Neurosci 2018; 10: 131.
[http://dx.doi.org/10.3389/fnagi.2018.00131] [PMID: 29867442]
[16]
Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 2011; 10(9): 819-28.
[http://dx.doi.org/10.1016/S1474-4422(11)70072-2] [PMID: 21775213]
[17]
Gorelick PB, Scuteri A, Black SE, et al. American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011; 42(9): 2672-713.
[http://dx.doi.org/10.1161/STR.0b013e3182299496] [PMID: 21778438]
[18]
Skoog I, Lernfelt B, Landahl S, et al. 15-year longitudinal study of blood pressure and dementia. Lancet 1996; 347(9009): 1141-5.
[http://dx.doi.org/10.1016/S0140-6736(96)90608-X] [PMID: 8609748]
[19]
Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 2001; 322(7300): 1447-51.
[http://dx.doi.org/10.1136/bmj.322.7300.1447] [PMID: 11408299]
[20]
Ruitenberg A, Skoog I, Ott A, et al. Blood pressure and risk of dementia: results from the Rotterdam study and the Gothenburg H-70 Study. Dement Geriatr Cogn Disord 2001; 12(1): 33-9.
[http://dx.doi.org/10.1159/000051233] [PMID: 11125239]
[21]
Nilsson SE, Read S, Berg S, Johansson B, Melander A, Lindblad U. Low systolic blood pressure is associated with impaired cognitive function in the oldest old: longitudinal observations in a population-based sample 80 years and older. Aging Clin Exp Res 2007; 19(1): 41-7.
[http://dx.doi.org/10.1007/BF03325209] [PMID: 17332720]
[22]
SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA 1991; 265(24): 3255-64.
[http://dx.doi.org/10.1001/jama.1991.03460240051027] [PMID: 2046107]
[23]
Peters R, Beckett N, Forette F, et al. HYVET investigators. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol 2008; 7(8): 683-9.
[http://dx.doi.org/10.1016/S1474-4422(08)70143-1] [PMID: 18614402]
[24]
Lithell H, Hansson L, Skoog I, et al. SCOPE Study Group. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens 2003; 21(5): 875-86.
[http://dx.doi.org/10.1097/00004872-200305000-00011] [PMID: 12714861]
[25]
Forette F, Seux ML, Staessen JA, et al. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 1998; 352(9137): 1347-51.
[http://dx.doi.org/10.1016/S0140-6736(98)03086-4] [PMID: 9802273]
[26]
Gorelick PB, Counts SE, Nyenhuis D. Vascular cognitive impairment and dementia. Biochim Biophys Acta 2016; 1862(5): 860-8.
[http://dx.doi.org/10.1016/j.bbadis.2015.12.015] [PMID: 26704177]
[27]
Yasar S, Xia J, Yao W, et al. Ginkgo Evaluation of Memory (GEM) Study Investigators. Antihypertensive drugs decrease risk of Alzheimer disease: Ginkgo Evaluation of Memory Study. Neurology 2013; 81(10): 896-903.
[http://dx.doi.org/10.1212/WNL.0b013e3182a35228] [PMID: 23911756]
[28]
Gorelick PB, Nyenhuis D, Materson BJ, et al. American Society of Hypertension Writing Group. Blood pressure and treatment of persons with hypertension as it relates to cognitive outcomes including executive function. J Am Soc Hypertens 2012; 6(5): 309-15.
[http://dx.doi.org/10.1016/j.jash.2012.08.004] [PMID: 22995799]
[29]
Björkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004; 24(5): 806-15.
[http://dx.doi.org/10.1161/01.ATV.0000120374.59826.1b] [PMID: 14764421]
[30]
Koudinov AR, Koudinova NV. Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J 2001; 15(10): 1858-60.
[http://dx.doi.org/10.1096/fj.00-0815fje] [PMID: 11481254]
[31]
Mielke MM, Zandi PP, Sjögren M, et al. High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology 2005; 64(10): 1689-95.
[http://dx.doi.org/10.1212/01.WNL.0000161870.78572.A5] [PMID: 15911792]
[32]
Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One 2009; 4(1)e4144
[http://dx.doi.org/10.1371/journal.pone.0004144] [PMID: 19127292]
[33]
Talbot K, Wang H-Y, Kazi H, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012; 122(4): 1316-38.
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[34]
Luchsinger JA, Perez T, Chang H, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis 2016; 51(2): 501-14.
[http://dx.doi.org/10.3233/JAD-150493] [PMID: 26890736]
[35]
Roses AD, Saunders AM, Lutz MW, et al. New applications of disease genetics and pharmacogenetics to drug development. Curr Opin Pharmacol 2014; 14: 81-9.
[http://dx.doi.org/10.1016/j.coph.2013.12.002] [PMID: 24565016]
[36]
Claxton A, Baker LD, Hanson A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis 2015; 44(3): 897-906.
[http://dx.doi.org/10.3233/JAD-141791] [PMID: 25374101]
[37]
Langballe EM, Ask H, Holmen J, et al. Alcohol consumption and risk of dementia up to 27 years later in a large, population-based sample: the HUNT study, Norway. Eur J Epidemiol 2015; 30(9): 1049-56.
[http://dx.doi.org/10.1007/s10654-015-0029-2] [PMID: 25968174]
[38]
Gustafson DR. Adiposity and cognitive decline: underlying mechanisms. J Alzheimers Dis 2012; 30(Suppl. 2): S97-S112.
[http://dx.doi.org/10.3233/JAD-2012-120487] [PMID: 22543853]
[39]
Scarmeas N, Luchsinger JA, Schupf N, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA 2009; 302(6): 627-37.
[http://dx.doi.org/10.1001/jama.2009.1144] [PMID: 19671904]
[40]
Martinelli I, Tomassoni D, Moruzzi M, Traini E, Amenta F, Tayebati SK. Obesity and metabolic syndrome affect the cholinergic transmission and cognitive functions. CNS Neurol Disord Drug Targets 2017; 16(6): 664-76.
[http://dx.doi.org/10.2174/1871527316666170428123853] [PMID: 28462694]
[41]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[42]
Bergmans BA, De Strooper B. gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol 2010; 9(2): 215-26.
[http://dx.doi.org/10.1016/S1474-4422(09)70332-1] [PMID: 20129170]
[43]
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10(9): 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[44]
de la Torre JC, Mussivand T. Can disturbed brain microcirculation cause Alzheimer’s disease? Neurol Res 1993; 15(3): 146-53.
[http://dx.doi.org/10.1080/01616412.1993.11740127] [PMID: 8103579]
[45]
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011; 12(12): 723-38.
[http://dx.doi.org/10.1038/nrn3114] [PMID: 22048062]
[46]
Johnson KA, Albert MS. Perfusion abnormalities in prodromal AD. Neurobiol Aging 2000; 21(2): 289-92.
[http://dx.doi.org/10.1016/S0197-4580(00)00137-8] [PMID: 10867213]
[47]
Hall CN, Reynell C, Gesslein B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 2014; 508(7494): 55-60.
[http://dx.doi.org/10.1038/nature13165] [PMID: 24670647]
[48]
Zhang X, Zhou K, Wang R, et al. Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem 2007; 282(15): 10873-80.
[http://dx.doi.org/10.1074/jbc.M608856200] [PMID: 17303576]
[49]
Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim Biophys Acta 2016; 1862(5): 887-900.
[http://dx.doi.org/10.1016/j.bbadis.2015.12.016] [PMID: 26705676]
[50]
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57(2): 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[51]
Mooradian AD, Chung HC, Shah GN. GLUT-1 expression in the cerebra of patients with Alzheimer’s disease. Neurobiol Aging 1997; 18(5): 469-74.
[http://dx.doi.org/10.1016/S0197-4580(97)00111-5] [PMID: 9390772]
[52]
Winkler EA, Nishida Y, Sagare AP, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 2015; 18(4): 521-30.
[http://dx.doi.org/10.1038/nn.3966] [PMID: 25730668]
[53]
Choi BR, Cho WH, Kim J, et al. Increased expression of the receptor for advanced glycation end products in neurons and astrocytes in a triple transgenic mouse model of Alzheimer’s disease. Exp Mol Med 2014; 46e75
[http://dx.doi.org/10.1038/emm.2013.147] [PMID: 24503708]
[54]
Deane R, Sagare A, Hamm K, et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 2008; 118(12): 4002-13.
[http://dx.doi.org/10.1172/JCI36663] [PMID: 19033669]
[55]
Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003; 9(7): 907-13.
[http://dx.doi.org/10.1038/nm890] [PMID: 12808450]
[56]
Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ Res 2010; 107(12): 1498-502.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233080] [PMID: 21127294]
[57]
Carvalho C, Moreira PI. Oxidative stress: a major player in cerebrovascular alterations associated to neurodegenerative events. Front Physiol 2018; 9: 806.
[http://dx.doi.org/10.3389/fphys.2018.00806] [PMID: 30018565]
[58]
Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 2001; 18(9): 685-716.
[http://dx.doi.org/10.2165/00002512-200118090-00004] [PMID: 11599635]
[59]
Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature 2010; 468(7323): 557-61.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[60]
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24(5): 981-90.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[61]
Beal MF. Oxidative damage as an early marker of Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2005; 26(5): 585-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.022] [PMID: 15708432]
[62]
Yaribeygi H, Panahi Y, Javadi B, Sahebkar A. The underlying role of oxidative stress in neurodegeneration: a mechanistic review. CNS Neurol Disord Drug Targets 2018; 17(3): 207-15.
[http://dx.doi.org/10.2174/1871527317666180425122557] [PMID: 29692267]
[63]
Zhu X, Perry G, Smith MA, Wang X. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 2013; 33(Suppl. 1): S253-62.
[http://dx.doi.org/10.3233/JAD-2012-129005] [PMID: 22531428]
[64]
Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 2013; 1: 304-12.
[http://dx.doi.org/10.1016/j.redox.2013.04.005] [PMID: 24024165]
[65]
Marcus DL, Strafaci JA, Freedman ML. Differential neuronal expression of manganese superoxide dismutase in Alzheimer’s disease. Med Sci Monit 2006; 12(1): BR8-BR14.
[PMID: 16369462]
[66]
Khachaturian ZS. Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci 1994; 747: 1-11.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44398.x] [PMID: 7847664]
[67]
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4(7): 517-29.
[http://dx.doi.org/10.1038/nrm1155] [PMID: 12838335]
[68]
Meldolesi J, Pozzan T. The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 1998; 23(1): 10-4.
[http://dx.doi.org/10.1016/S0968-0004(97)01143-2] [PMID: 9478128]
[69]
Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 2002; 32(5-6): 235-49.
[http://dx.doi.org/10.1016/S0143416002001823] [PMID: 12543086]
[70]
Del Prete D, Checler F, Chami M. Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener 2014; 9: 21.
[http://dx.doi.org/10.1186/1750-1326-9-21] [PMID: 24902695]
[71]
Area-Gomez E, de Groof AJ, Boldogh I, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 2009; 175(5): 1810-6.
[http://dx.doi.org/10.2353/ajpath.2009.090219] [PMID: 19834068]
[72]
Sarasija S, Norman KR. Role of presenilin in mitochondrial oxidative stress and neurodegeneration in Caenorhabditis elegans. Antioxidants 2018; 7(9): 111.
[http://dx.doi.org/10.3390/antiox7090111] [PMID: 30149498]
[73]
Shoshan-Barmatz V, Ben-Hail D. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 2012; 12(1): 24-34.
[http://dx.doi.org/10.1016/j.mito.2011.04.001] [PMID: 21530686]
[74]
Perocchi F, Gohil VM, Girgis HS, et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 2011; 476: 336-40.
[75]
Cai X, Lytton J. Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6. J Biol Chem 2004; 279(7): 5867-76.
[http://dx.doi.org/10.1074/jbc.M310908200] [PMID: 14625281]
[76]
Bonora M, Morganti C, Morciano G, et al. Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation. EMBO Rep 2017; 18(7): 1077-89.
[http://dx.doi.org/10.15252/embr.201643602] [PMID: 28566520]
[77]
Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 2000; 256(1): 19-26.
[http://dx.doi.org/10.1006/excr.2000.4833] [PMID: 10739647]
[78]
Snow WM, Albensi BC. Neuronal gene targets of NF-κB and their dysregulation in Alzheimer’s disease. Front Mol Neurosci 2016; 9: 118.
[http://dx.doi.org/10.3389/fnmol.2016.00118] [PMID: 27881951]
[79]
Marwarha G, Ghribi O. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) - a friend, a foe, or a bystander - in the neurodegenerative cascade and pathogenesis of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2017; 16(10): 1050-65.
[http://dx.doi.org/10.2174/1871527316666170725114652] [PMID: 28745240]
[80]
Terai K, Matsuo A, McGeer PL. Enhancement of immunoreactivity for NF-κ B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res 1996; 735(1): 159-68.
[http://dx.doi.org/10.1016/0006-8993(96)00310-1] [PMID: 8905182]
[81]
Chami L, Buggia-Prévot V, Duplan E, et al. Nuclear factor-κB regulates βAPP and β- and γ-secretases differently at physiological and supraphysiological Aβ concentrations. J Biol Chem 2012; 287(29): 24573-84.
[http://dx.doi.org/10.1074/jbc.M111.333054] [PMID: 22654105]
[82]
Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C. Inhibition of NF-kappaB potentiates amyloid β-mediated neuronal apoptosis. Proc Natl Acad Sci USA 1999; 96(16): 9409-14.
[http://dx.doi.org/10.1073/pnas.96.16.9409] [PMID: 10430956]
[83]
Bourne KZ, Ferrari DC, Lange-Dohna C, Rossner S, Wood TG, Perez-Polo JR. Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to β-amyloid peptides. J Neurosci Res 2007; 85(6): 1194-204.
[http://dx.doi.org/10.1002/jnr.21252] [PMID: 17385716]
[84]
Zheng C, Yin Q, Wu H. Structural studies of NF-κB signaling. Cell Res 2011; 21(1): 183-95.
[http://dx.doi.org/10.1038/cr.2010.171] [PMID: 21135870]
[85]
Valerio A, Boroni F, Benarese M, et al. NF-kappaB pathway: a target for preventing β-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci 2006; 23(7): 1711-20.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04722.x] [PMID: 16623827]
[86]
Arevalo MA, Roldan PM, Chacón PJ, Rodríguez-Tebar A. Amyloid β serves as an NGF-like neurotrophic factor or acts as a NGF antagonist depending on its concentration. J Neurochem 2009; 111(6): 1425-33.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06412.x] [PMID: 20050289]
[87]
Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 2014; 220: 223-50.
[http://dx.doi.org/10.1007/978-3-642-45106-5_9] [PMID: 24668475]
[88]
Laske C, Stransky E, Leyhe T, et al. Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm (Vienna) 2006; 113(9): 1217-24.
[http://dx.doi.org/10.1007/s00702-005-0397-y] [PMID: 16362629]
[89]
Zhang F, Kang Z, Li W, Xiao Z, Zhou X. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer’s disease. J Clin Neurosci 2012; 19(7): 946-9.
[http://dx.doi.org/10.1016/j.jocn.2011.12.022] [PMID: 22613489]
[90]
Hendrickx A, Pierrot N, Tasiaux B, et al. Epigenetic induction of EGR-1 expression by the amyloid precursor protein during exposure to novelty. PLoS One 2013; 8(9)e74305
[http://dx.doi.org/10.1371/journal.pone.0074305] [PMID: 24066134]
[91]
Murayama T, Ogawa Y. Characterization of type 3 ryanodine receptor (RyR3) of sarcoplasmic reticulum from rabbit skeletal muscles. J Biol Chem 1997; 272(38): 24030-7.
[http://dx.doi.org/10.1074/jbc.272.38.24030] [PMID: 9295356]
[92]
Kelliher M, Fastbom J, Cowburn RF, et al. Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and beta-amyloid pathologies. Neuroscience 1999; 92(2): 499-513.
[http://dx.doi.org/10.1016/S0306-4522(99)00042-1] [PMID: 10408600]
[93]
Tu H, Nelson O, Bezprozvanny A, et al. Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 2006; 126(5): 981-93.
[http://dx.doi.org/10.1016/j.cell.2006.06.059] [PMID: 16959576]
[94]
Chakroborty S, Goussakov I, Miller MB, Stutzmann GE. Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 2009; 29(30): 9458-70.
[http://dx.doi.org/10.1523/JNEUROSCI.2047-09.2009] [PMID: 19641109]
[95]
Supnet C, Grant J, Kong H, Westaway D, Mayne M. Amyloid-beta-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem 2006; 281(50): 38440-7.
[http://dx.doi.org/10.1074/jbc.M606736200] [PMID: 17050533]
[96]
Oulès B, Del Prete D, Greco B, et al. Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 2012; 32(34): 11820-34.
[http://dx.doi.org/10.1523/JNEUROSCI.0875-12.2012] [PMID: 22915123]
[97]
Shi Y, Wang Y, Wei H. Dantrolene: from malignant hyperthermia to Alzheimer’s disease. CNS Neurol Disord Drug Targets 2018; 17: 1.
[http://dx.doi.org/10.2174/1871527317666180619162649] [PMID: 29921212]
[98]
Sato M, Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 2011; 334(6059): 1141-4.
[http://dx.doi.org/10.1126/science.1210333] [PMID: 21998252]
[99]
Sandoval H, Thiagarajan P, Dasgupta SK, et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454(7201): 232-5.
[http://dx.doi.org/10.1038/nature07006] [PMID: 18454133]
[100]
Martinez-Vicente M. Neuronal mitophagy in neurodegenerative diseases. Front Mol Neurosci 2017; 10: 64.
[http://dx.doi.org/10.3389/fnmol.2017.00064] [PMID: 28337125]
[101]
Lee J-H, Yu WH, Kumar A, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141(7): 1146-58.
[http://dx.doi.org/10.1016/j.cell.2010.05.008] [PMID: 20541250]
[102]
Ji ZS, Müllendorff K, Cheng IH, Miranda RD, Huang Y, Mahley RW. Reactivity of apolipoprotein E4 and amyloid β peptide: lysosomal stability and neurodegeneration. J Biol Chem 2006; 281(5): 2683-92.
[http://dx.doi.org/10.1074/jbc.M506646200] [PMID: 16298992]
[103]
Newcomer JW, Farber NB, Olney JW. NMDA receptor function, memory, and brain aging. Dialogues Clin Neurosci 2000; 2(3): 219-32.
[PMID: 22034391]
[104]
Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 2017; 57(4): 1105-21.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[105]
Ferreira IL, Bajouco LM, Mota SI, Auberson YP, Oliveira CR, Rego AC. Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium 2012; 51(2): 95-106.
[http://dx.doi.org/10.1016/j.ceca.2011.11.008] [PMID: 22177709]
[106]
Hu NW, Klyubin I, Anwyl R, Rowan MJ. GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proc Natl Acad Sci USA 2009; 106(48): 20504-9.
[http://dx.doi.org/10.1073/pnas.0908083106] [PMID: 19918059]
[107]
Frankland PW, O’Brien C, Ohno M, Kirkwood A, Silva AJ. α-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 2001; 411(6835): 309-13.
[http://dx.doi.org/10.1038/35077089] [PMID: 11357133]
[108]
Gu Z, Liu W, Yan Z. beta-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J Biol Chem 2009; 284(16): 10639-49.
[http://dx.doi.org/10.1074/jbc.M806508200] [PMID: 19240035]
[109]
Zeng Y, Zhao D, Xie CW. Neurotrophins enhance CaMKII activity and rescue amyloid-β-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis 2010; 21(3): 823-31.
[http://dx.doi.org/10.3233/JAD-2010-100264] [PMID: 20634586]
[110]
Zhang Y, Li P, Feng J, Wu M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol Sci 2016; 37(7): 1039-47.
[http://dx.doi.org/10.1007/s10072-016-2546-5] [PMID: 26971324]
[111]
Du H, Guo L, Wu X, et al. Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration. Biochim Biophys Acta 2014; 1842(12 Pt A): 2517-27.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.004] [PMID: 23507145]
[112]
Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005; 8(8): 1051-8.
[http://dx.doi.org/10.1038/nn1503] [PMID: 16025111]
[113]
Hsieh H, Boehm J, Sato C, et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 2006; 52(5): 831-43.
[http://dx.doi.org/10.1016/j.neuron.2006.10.035] [PMID: 17145504]
[114]
Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer’s disease. J Neuroinflammation 2011; 8: 26.
[http://dx.doi.org/10.1186/1742-2094-8-26] [PMID: 21439035]
[115]
Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 2011; 8: 150.
[http://dx.doi.org/10.1186/1742-2094-8-150] [PMID: 22047170]
[116]
Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J Biochem 2001; 130(2): 169-75.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002969] [PMID: 11481032]
[117]
Kapasi A, Schneider JA. Vascular contributions to cognitive impairment, clinical Alzheimer’s disease, and dementia in older persons. Biochim Biophys Acta 2016; 1862(5): 878-86.
[http://dx.doi.org/10.1016/j.bbadis.2015.12.023] [PMID: 26769363]
[118]
Jellinger KA, Attems J. Is there pure vascular dementia in old age? J Neurol Sci 2010; 299(1-2): 150-4.
[http://dx.doi.org/10.1016/j.jns.2010.08.038] [PMID: 20869729]
[119]
Kokmen E, Whisnant JP, O’Fallon WM, Chu CP, Beard CM. Dementia after ischemic stroke: a population-based study in Rochester, Minnesota (1960-1984). Neurology 1996; 46(1): 154-9.
[http://dx.doi.org/10.1212/WNL.46.1.154] [PMID: 8559366]
[120]
Savva GM, Stephan BC. Alzheimer’s Society Vascular Dementia Systematic Review Group. Epidemiological studies of the effect of stroke on incident dementia: a systematic review. Stroke 2010; 41(1): e41-6.
[http://dx.doi.org/10.1161/STROKEAHA.109.559880] [PMID: 19910553]
[121]
Zhou J, Yu J-T, Wang H-F, et al. Association between stroke and Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis 2015; 43(2): 479-89.
[http://dx.doi.org/10.3233/JAD-140666] [PMID: 25096624]
[122]
Kuźma E, Lourida I, Moore SF, Levine DA, Ukoumunne OC, Llewellyn DJ. Stroke and dementia risk: A systematic review and meta-analysis. Alzheimers Dement 2018; 14(11): 1416-26.
[http://dx.doi.org/10.1016/j.jalz.2018.06.3061] [PMID: 30177276]
[123]
Leys D, Hénon H, Mackowiak-Cordoliani MA, Pasquier F. Poststroke dementia. Lancet Neurol 2005; 4(11): 752-9.
[http://dx.doi.org/10.1016/S1474-4422(05)70221-0] [PMID: 16239182]
[124]
Manly JJ, Bell-McGinty S, Tang MX, Schupf N, Stern Y, Mayeux R. Implementing diagnostic criteria and estimating frequency of mild cognitive impairment in an urban community. Arch Neurol 2005; 62(11): 1739-46.
[http://dx.doi.org/10.1001/archneur.62.11.1739] [PMID: 16286549]
[125]
Uno M, Kitazato KT, Nishi K, Itabe H, Nagahiro S. Raised plasma oxidised LDL in acute cerebral infarction. J Neurol Neurosurg Psychiatry 2003; 74(3): 312-6.
[http://dx.doi.org/10.1136/jnnp.74.3.312] [PMID: 12588914]
[126]
Bir LS, Demir S, Rota S, Köseoğlu M. Increased serum malondialdehyde levels in chronic stage of ischemic stroke. Tohoku J Exp Med 2006; 208(1): 33-9.
[http://dx.doi.org/10.1620/tjem.208.33] [PMID: 16340171]
[127]
Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 2001; 21(1): 2-14.
[http://dx.doi.org/10.1097/00004647-200101000-00002] [PMID: 11149664]
[128]
Gürsoy-Ozdemir Y, Can A, Dalkara T. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 2004; 35(6): 1449-53.
[http://dx.doi.org/10.1161/01.STR.0000126044.83777.f4] [PMID: 15073398]
[129]
Lukic-Panin V, Deguchi K, Yamashita T, et al. Free radical scavenger edaravone administration protects against tissue plasminogen activator induced oxidative stress and blood brain barrier damage. Curr Neurovasc Res 2010; 7(4): 319-29.
[http://dx.doi.org/10.2174/156720210793180747] [PMID: 20854248]
[130]
Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 2004; 24(2): 133-50.
[http://dx.doi.org/10.1097/01.WCB.0000111614.19196.04] [PMID: 14747740]
[131]
Siesjö BK. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg 1992; 77(2): 169-84.
[http://dx.doi.org/10.3171/jns.1992.77.2.0169] [PMID: 1625004]
[132]
Nogawa S, Zhang F, Ross ME, Iadecola C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 1997; 17(8): 2746-55.
[http://dx.doi.org/10.1523/JNEUROSCI.17-08-02746.1997] [PMID: 9092596]
[133]
Pasinetti GM, Aisen PS. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 1998; 87(2): 319-24.
[http://dx.doi.org/10.1016/S0306-4522(98)00218-8] [PMID: 9740394]
[134]
Kaltschmidt B, Linker RA, Deng J, Kaltschmidt C. Cyclooxygenase-2 is a neuronal target gene of NF-kappaB. BMC Mol Biol 2002; 3: 16.
[http://dx.doi.org/10.1186/1471-2199-3-16] [PMID: 12466023]
[135]
Kotilinek LA, Westerman MA, Wang Q, et al. Cyclooxygenase-2 inhibition improves amyloid-β-mediated suppression of memory and synaptic plasticity. Brain 2008; 131(Pt 3): 651-64.
[http://dx.doi.org/10.1093/brain/awn008] [PMID: 18292081]
[136]
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6: 524-51.
[http://dx.doi.org/10.1016/j.redox.2015.08.020] [PMID: 26484802]
[137]
Mori M, Naganuma M, Okada Y, et al. Early neurological deterioration within 24 hours after intravenous rt-PA therapy for stroke patients: the Stroke Acute Management with Urgent Risk Factor Assessment and Improvement rt-PA Registry. Cerebrovasc Dis 2012; 34(2): 140-6.
[http://dx.doi.org/10.1159/000339759] [PMID: 22854333]
[138]
Seners P, Turc G, Tisserand M, et al. Unexplained early neurological deterioration after intravenous thrombolysis: incidence, predictors, and associated factors. Stroke 2014; 45(7): 2004-9.
[http://dx.doi.org/10.1161/STROKEAHA.114.005426] [PMID: 24876087]
[139]
Chen F, Ni YC. Magnetic resonance diffusion-perfusion mismatch in acute ischemic stroke: An update. World J Radiol 2012; 4(3): 63-74.
[http://dx.doi.org/10.4329/wjr.v4.i3.63] [PMID: 22468186]
[140]
Simion A, Jurcau A. The role of antioxidant treatment in acute ischemic stroke: past, present and future. Neurol Res Surg 2019; 2(2): 1-7.
[141]
Kassem-Moussa H, Graffagnino C. Nonocclusion and spontaneous recanalization rates in acute ischemic stroke: a review of cerebral angiography studies. Arch Neurol 2002; 59(12): 1870-3.
[http://dx.doi.org/10.1001/archneur.59.12.1870] [PMID: 12470173]
[142]
Jurcau A. The outcome of cardioembolic stroke is improved with antioxidant treatment: a clinical study. Rom J Neurol 2008; 7: 27-32.
[143]
Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 1997; 22(1-2): 359-78.
[http://dx.doi.org/10.1016/S0891-5849(96)00269-9] [PMID: 8958163]
[144]
Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis 2003; 15(3): 222-9.
[http://dx.doi.org/10.1159/000069318] [PMID: 12715790]
[145]
Kimura K, Aoki J, Sakamoto Y, et al. Administration of edaravone, a free radical scavenger, during t-PA infusion can enhance early recanalization in acute stroke patients--a preliminary study. J Neurol Sci 2012; 313(1-2): 132-6.
[http://dx.doi.org/10.1016/j.jns.2011.09.006] [PMID: 21967833]
[146]
Enomoto M, Endo A, Yatsushige H, Fushimi K, Otomo Y. Clinical effects of early edaravone use in acute ischemic stroke patients treated by endovascular reperfusion therapy. Stroke 2019; 50(3): 652-8.
[http://dx.doi.org/10.1161/STROKEAHA.118.023815] [PMID: 30741623]
[147]
Wang S, Ma F, Huang L, et al. Dl-3-n-Butylphthalide (NBP): a promising therapeutic agent for ischemic stroke. CNS Neurol Disord Drug Targets 2018; 17(5): 338-47.
[http://dx.doi.org/10.2174/1871527317666180612125843] [PMID: 29895257]
[148]
Li F, Zhao H, Han Z, et al. Xuesaitong may protect against ischemic stroke by modulating microglial phenotypes and inhibiting neuronal cell apoptosis via the STAT3 signaling pathway. CNS Neurol Disord Drug Targets 2019; 18(2): 115-23.
[http://dx.doi.org/10.2174/1871527317666181114140340] [PMID: 30426907]
[149]
Whiteman H. Alzheimer’s disease: are we close to finding a cure? Medical News Today 2014 Available at: https://www.medicalnewstoday.com/articles/281331
[150]
Schneider LS, Sano M. Current Alzheimer’s disease clinical trials: methods and placebo outcomes. Alzheimers Dement 2009; 5(5): 388-97.
[http://dx.doi.org/10.1016/j.jalz.2009.07.038] [PMID: 19751918]
[151]
Zhou X, Li Y, Shi X, Ma C. An overview on therapeutics attenuating amyloid β level in Alzheimer’s disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. Am J Transl Res 2016; 8(2): 246-69.
[PMID: 27158324]
[152]
Galasko DR, Peskind E, Clark CM, et al. Alzheimer’s Disease Cooperative Study. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 2012; 69(7): 836-41.
[http://dx.doi.org/10.1001/archneurol.2012.85] [PMID: 22431837]
[153]
Miller ER III, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005; 142(1): 37-46.
[http://dx.doi.org/10.7326/0003-4819-142-1-200501040-00110] [PMID: 15537682]
[154]
Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 2007; 145(4): 1233-48.
[http://dx.doi.org/10.1016/j.neuroscience.2006.10.056] [PMID: 17303344]
[155]
Dias KS, Viegas C Jr. Multi-target directed drugs: a modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr Neuropharmacol 2014; 12(3): 239-55.
[http://dx.doi.org/10.2174/1570159X1203140511153200] [PMID: 24851088]
[156]
Ghosh A, Chandran K, Kalivendi SV, et al. Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radic Biol Med 2010; 49(11): 1674-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.08.028] [PMID: 20828611]
[157]
Smith RA, Adlam VJ, Blaikie FH, et al. Mitochondria-targeted antioxidants in the treatment of disease. Ann N Y Acad Sci 2008; 1147: 105-11.
[http://dx.doi.org/10.1196/annals.1427.003] [PMID: 19076435]
[158]
Carvalho C, Katz PS, Dutta S, Katakam PV, Moreira PI, Busija DW. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions. J Alzheimers Dis 2014; 38(1): 75-83.
[http://dx.doi.org/10.3233/JAD-130464] [PMID: 23948922]
[159]
Pung YF, Rocic P, Murphy MP, et al. Resolution of mitochondrial oxidative stress rescues coronary collateral growth in Zucker obese fatty rats. Arterioscler Thromb Vasc Biol 2012; 32(2): 325-34.
[http://dx.doi.org/10.1161/ATVBAHA.111.241802] [PMID: 22155454]
[160]
Lazic D, Sagare AP, Nikolakopoulou AM, Griffin JH, Vassar R, Zlokovic BV. 3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. J Exp Med 2019; 216(2): 279-93.
[http://dx.doi.org/10.1084/jem.20181035] [PMID: 30647119]
[161]
Khoury R, Grysman N, Gold J, Patel K, Grossberg GT. The role of 5 HT6-receptor antagonists in Alzheimer’s disease: an update. Expert Opin Investig Drugs 2018; 27(6): 523-33.
[http://dx.doi.org/10.1080/13543784.2018.1483334] [PMID: 29848076]
[162]
Kubo M, Kishi T, Matsunaga S, Iwata N. Histamine H3 receptor antagonists for Alzheimer’s disease: a systematic review and meta-analysis of randomized placebo-controlled trials. J Alzheimers Dis 2015; 48(3): 667-71.
[http://dx.doi.org/10.3233/JAD-150393] [PMID: 26402104]
[163]
Hung SY, Fu WM. Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci 2017; 24(1): 47.
[http://dx.doi.org/10.1186/s12929-017-0355-7] [PMID: 28720101]
[164]
Jonsson T, Atwal JK, Steinberg S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 2012; 488(7409): 96-9.
[http://dx.doi.org/10.1038/nature11283] [PMID: 22801501]
[165]
Das B, Yan R. A close look at BACE1 inhibitors for Alzheimer’s disease treatment. CNS Drugs 2019; 33(3): 251-63.
[http://dx.doi.org/10.1007/s40263-019-00613-7] [PMID: 30830576]
[166]
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol 2019; 174: 53-89.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.006] [PMID: 30599179]
[167]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[168]
van Dyck CH. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry 2018; 83(4): 311-9.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.010] [PMID: 28967385]
[169]
Panza F, Solfrizzi V, Seripa D, et al. Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. BioMed Res Int 2016; 20163245935
[http://dx.doi.org/10.1155/2016/3245935] [PMID: 27429978]
[170]
Burstein AH, Sabbagh M, Andrews R, Valcarce C, Dunn I, Altstiel L. Development of Azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild Alzheimer’s disease. J Prev Alzheimers Dis 2018; 5(2): 149-54.
[PMID: 29616709]
[171]
Porrini V, Lanzillotta A, Branca C, et al. CHF5074 (CSP-1103) induces microglia alternative activation in plaque-free Tg2576 mice and primary glial cultures exposed to beta-amyloid. Neuroscience 2015; 302: 112-20.
[http://dx.doi.org/10.1016/j.neuroscience.2014.10.029] [PMID: 25450955]
[172]
Samarghandian S, Farkhondeh T, Samini F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS Neurol Disord Drug Targets 2018; 17(6): 412-20.
[http://dx.doi.org/10.2174/1871527317666180702101455] [PMID: 29962349]
[173]
Chen D, Peng C, Xie X, et al. Low dose of anisodine hydrobromide induced neuroprotective efects in chronic cerebral hypoperfusion rats. CNS Neurol Disord Drug Targets 2017; 16(10): 1111-9.
[http://dx.doi.org/10.2174/1871527316666171026114043] [PMID: 29076436]
[174]
Bais S, Kumari R, Prashar Y. Ameliorative effect of trans-sinapic acid and its protective role in cerebral hypoxia in aluminum chloride induced dementia of Alzheimer’s type. CNS Neurol Disord Drug Targets 2018; 17(2): 144-54.
[http://dx.doi.org/10.2174/1871527317666180309130912] [PMID: 29521253]
[175]
Wang K, Sun W, Zhang L, et al. Oleanolic acid ameliorates Aβ25-35 injection-induced memory deficit in Alzheimer’s disease model rats by maintaining synaptic plasticity. CNS Neurol Disord Drug Targets 2018; 17(5): 389-99.
[http://dx.doi.org/10.2174/1871527317666180525113109] [PMID: 29793416]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2020
Page: [94 - 108]
Pages: 15
DOI: 10.2174/1871527319666200303121016
Price: $65

Article Metrics

PDF: 23
HTML: 3
EPUB: 1
PRC: 1