Title:Impact of Industrial Dyes on the Environment and Bacterial Peroxidase Isolated from Bacillus sp. BTS-P5 as a Possible Solution
VOLUME: 9 ISSUE: 1
Author(s):Vivek Chauhan and Shamsher S. kanwar*
Affiliation:Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005
Keywords:Peroxidase, industrial dyes, biodegradation, pollution, wastewater management, environment.
Abstract:
Background: Synthetic dyes find usage in multiple industries such as paper, textile, food,
plastic and pharmaceutical. On their release in industrial effluent and subsequently into the environment,
the majority of them affect aquatic and surrounding non-aquatic life because of toxic properties.
Therefore, their proper discharge and economical treatment is a matter of great concern. In this context,
many enzymes have been reported to efficiently perform dye degradation. Peroxidase is one such enzyme,
which causes dye degradation either by precipitation of chemical structure of aromatic dyes or
by opening up their aromatic ring structure. The current paper focuses on the major impacts of industrial
dyes on the surrounding environment and on exploring the use of bacterial peroxidases as alternative
dye degradation compounds.
Methods: A bacterial peroxidase was extracted from Bacillus sp. BTS-P5, a strain isolated from a soil
sample. Various process parameters were optimized for optimal degradation of ten major industrially
important dyes [Bismark Brown R (BBR), Bromophenol Blue (BB), Rhodamine B (RB), Bismark
Brown Y (BBY), Direct Violet 21 (DV), Basic Fuchsin (BF), Coomassie Brilliant Blue (CBBG), Congo
Red (CR), Direct Black 154 (DB) and Methylene Blue (MB)] by bacterial peroxidase.
Results: Basic Fuchsin showed maximum degradation of about 95% by bacterial peroxidase while the
Bromophenol Blue was least degraded (29%). Out of the ten dyes, eight dyes showed degradation over
50%.
Conclusion: The findings of this research showed that bacterial peroxidase was efficient in dye degradation
and hence it has potential as a potent bio-degrader of industrial dyes effluent and wastewater
management.