Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges

Author(s): Huayu Liu, Kun Liu, Xiao Han, Hongxiang Xie, Chuanling Si*, Wei Liu*, Youngsoo Bae*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 28 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer


Background: Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics, which make them widely used in many fields. This review aims to introduce the preparation of CNFs-based hydrogels and their recent biomedical application advances.

Methods: By searching the recent literatures, we have summarized the preparation methods of CNFs, including mechanical methods and chemical mechanical methods, and also introduced the fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels, including scaffold materials and wound dressings.

Results: CNFs-based hydrogels are new types of materials that are non-toxic and display a certain mechanical strength. In the tissue scaffold application, they can provide a micro-environment for the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound surface and protect the wound from the external environment, thereby effectively promoting the healing of skin tissue.

Conclusion: By summarizing the preparation and application of CNFs-based hydrogels, we have analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels is still in the laboratory stage. It needs further exploration to be applied in practice. The development of medical hydrogels with high mechanical properties and biocompatibility still poses significant challenges.

Keywords: Cellulose nanofibrils (CNFs), hydrogel, biomedical applications, nanocellulose, Young's modulus, CNFs-based hydrogels.

Du, H.S.; Liu, C.; Mu, X.D.; Gong, W.B.; Lv, D.; Hong, Y.M.; Si, C.L.; Li, B. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016, 23(4), 2389-2407.
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500.
[http://dx.doi.org/10.1021/cr900339w] [PMID: 20201500]
Zhai, T.; Zheng, Q.; Cai, Z.; Turng, L.S.; Xia, H.; Gong, S. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane. ACS Appl. Mater. Interfaces, 2015, 7(13), 7436-7444.
[http://dx.doi.org/10.1021/acsami.5b01679] [PMID: 25822398]
Giese, M.; Blusch, L.K.; Khan, M.K.; MacLachlan, M.J. Functional materials from cellulose-derived liquid-crystal templates. Angew. Chem. Int. Ed. Engl., 2015, 54(10), 2888-2910.
[http://dx.doi.org/10.1002/anie.201407141] [PMID: 25521805]
Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Blanco, A.; Negro, C. Pickering emulsions containing cellulose microfibers produced by mechanical treatments as stabilizer in the food industry. Appl. Sci. (Basel), 2019, 9(2), 359.
Li, M.; Fang, G.G.; Cai, Z.S.; Liang, L.; Zhou, J. Wei. L.L. Combination of ultrasonication/mechanical refining with alkali treatment to improve the accessibility and porosity of bamboo cellulose fibers for the preparation of magnetic bionanocomposite cellulose beads. J. Bioresour. Bioprod., 2018, 3(2), 40-48.
Liu, H.; Liu, Z.; Hui, L.; Liu, H.; Liu, P.; Zhang, F.; An, X.; Wen, Y.; Wu, S. Cationic cellulose nanofibers as sustainable flocculant and retention aid for reconstituted tobacco sheet with high performance. Carbohydr. Polym., 2019, 210, 372-378.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.065] [PMID: 30732773]
Sunasee, R.; Carson, M.; Despres, H.W.; Pacherille, A.; Nunez, K.D.; Ckless, K. Analysis of the immune and antioxidant response of cellulose nanocrystals grafted with β-cyclodextrin in myeloid cell lines. J. Nanomater., 2019, 2019, 1-9.
Miraftab, R.; Xiao, H. Feasibility and potential of graphene and its hybrids with cellulose as drug carriers: A commentary. J. Bioresour. Bioprod., 2019, 4(4), 200-201.
Palmieri, S.; Cipolletta, G.; Pastore, C.; Giosuè, C.; Akyol, Ç.; Eusebi, A.L.; Frison, N.; Tittarelli, F.; Fatone, F. Pilot scale cellulose recovery from sewage sludge and reuse in building and construction material. Waste Manag., 2019, 100, 208-218.
[http://dx.doi.org/10.1016/j.wasman.2019.09.015] [PMID: 31546181]
Badulescu, R.; Vivod, V.; Jausovec, D.; Voncina, B. Grafting of ethylcellulose microcapsules onto cotton fibers. Carbohydr. Polym., 2008, 71(1), 85-91.
Aliu, A.O.; Guo, J.C.; Wang, S.B.; Zhao, X. Hydraulic fracture fluid for gas reservoirs in petroleum engineering applications using sodium carboxy methyl cellulose as gelling agent. J. Nat. Gas Sci. Eng., 2016, 32, 491-500.
Fan, J.S.; Liang, S.P.; Zhang, M.M.; Xu, G.Y. Fabrication of nanocomposite electrochemical sensors with poly(3,4-ethylenedioxythiophene) conductive polymer and Au nanoparticles adsorbed on carboxylated nanocrystalline cellulose. J. Bioresour. Bioprod., 2018, 3(1), 30-34.
Xie, H.X.; Du, H.S.; Yang, X.H.; Si, C.L. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int. J. Polym. Sci., 2018, 1-25.
Du, H.S.; Liu, C.; Zhang, M.M.; Kong, Q.S.; Li, B.; Xian, M. Preparation and industrialization status of nanocellulose. Huaxue Jinzhan, 2018, 30(4), 448-462.
Du, H.S.; Liu, C.; Zhang, Y.D.; Yu, G.; Si, C.L.; Li, B. Preparation and characterization of functional cellulose nano-fibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind. Crops Prod., 2016, 94, 736-745.
Wang, Q.B.; Du, H.S.; Zhang, F.; Zhang, Y.D.; Wu, M.Y.; Yu, G.; Liu, C.; Li, B.; Peng, H. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(27), 13021-13030.
Hu, L.Q.; Du, H.S.; Liu, C.; Zhang, Y.D.; Yu, G.; Zhang, X.Y.; Si, C.L.; Li, B.; Peng, H. Comparative evaluation of the efficient conversion of corn husk filament and corn husk powder to valuable materials via a sustainable and clean biorefinery process. ACS Sustain. Chem.& Eng., 2019, 7(1), 1327-1336.
Ewulonu, C.M.; Liu, X.; Wu, M.; Yong, H. Lignin containing cellulose nanomaterials: A promising new nanomaterial for numerous applications. J. Bioresour. Bioprod., 2019, 4(1), 3-10.
Liu, C.; Du, H.S.; Lv, D.; Wang, X.; Zhang, Y.D.; Yu, G.; Li, B.; Mu, X.D.; Peng, H.; Liu, H.Z. Properties of nanocelluloses and their application as rheology modifier in paper coating. Ind. Eng. Chem. Res., 2017, 56(29), 8264-8273.
Hassan, E.A.; Hassan, M.L.; Abou-zeid, R.E.; El-Wakil, N.A. Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind. Crops Prod., 2016, 93, 219-226.
Kumar, V.; Elfving, A.; Koivula, H.; Bousfield, D.; Toivakka, M. Roll-to-roll processed cellulose nanofiber coatings. Ind. Eng. Chem. Res., 2016, 55(12), 3603-3613.
Hamou, K.B.; Kaddami, H.; Dufresne, A.; Boufi, S.; Magnin, A.; Erchiqui, F. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydr. Polym., 2018, 181, 1061-1070.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.043] [PMID: 29253932]
Ghorbel, N.; Kallel, A.; Boufi, S. Molecular dynamics of poly (vinyl alcohol)/cellulose nanofibrils nanocomposites highlighted by dielectric relaxation spectroscopy. Compos. Pt. A-Appl. Sci. Manuf., 2019, 124, 105465
Oun, A.A.; Rhim, J.W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr. Polym., 2015, 127, 101-109.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.073] [PMID: 25965462]
Li, K.; Huang, J.; Gao, H.; Zhong, Y.; Cao, X.; Chen, Y.; Zhang, L.; Cai, J. Reinforced mechanical properties and tunable biodegradability in nanoporous cellulose gels: poly (l-lactide-co-caprolactone) nanocomposites. Biomacromolecules, 2016, 17(4), 1506-1515.
[http://dx.doi.org/10.1021/acs.biomac.6b00109] [PMID: 26955741]
Lay, M.; Méndez, J.A.; Delgado-Aguilar, M.; Bun, K.N.; Vilaseca, F. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. Carbohydr. Polym., 2016, 152, 361-369.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.102] [PMID: 27516283]
Dias, O.A.T.; Konar, S.; Leão, A.L.; Sain, M. Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization. Carbohydr. Polym., 2019, 220, 79-85.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.057] [PMID: 31196553]
Chen, C.C.; Wang, Y.R.; Meng, T.T.; Wu, Q.J.; Fang, L.; Zhao, D.; Zhang, Y.Y.; Li, D.G. Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose, 2019, 26(16), 8843-8851.
Haraguchi, K. Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci., 2007, 11(3-4), 47-54.
Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of synthesis of hydrogels … A review. Saudi Pharm. J., 2016, 24(5), 554-559.
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym., 2019, 209, 130-144.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.020] [PMID: 30732792]
Peng, N.; Wang, Y.F.; Ye, Q.F.; Liang, L.; An, Y.X.; Li, Q.W.; Chang, C.Y. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohyd. polym., 2016, 137(10), 59-64.
Abe, K.; Iwamoto, S.; Yano, H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 2007, 8(10), 3276-3278.
[http://dx.doi.org/10.1021/bm700624p] [PMID: 17784769]
Soni, B.; Hassan, B.; Mahmoud, B. Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr. Polym., 2015, 134, 581-589.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.031] [PMID: 26428161]
Deepa, B.; Abraham, E.; Cherian, B.M.; Bismarck, A.; Blaker, J.J.; Pothan, L.A.; Leao, A.L.; de Souza, S.F.; Kottaisamy, M. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour. Technol., 2011, 102(2), 1988-1997.
[http://dx.doi.org/10.1016/j.biortech.2010.09.030] [PMID: 20926289]
Tian, C.; Yi, J.; Wu, Y.; Wu, Q.; Qing, Y.; Wang, L. Preparation of highly charged cellulose nanofibrils using high pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydr. Polym., 2016, 136, 485-492.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.055] [PMID: 26572379]
Zhao, Y.Q.; Xu, C.Y.; Xing, C.; Shi, X.M.; Matuana, L.M.; Zhou, H.D.; Ma, X.X. Fabrication and characteristics of cellulose nanofibril films from coconut palm petiole prepared by different mechanical processing. Ind. Crops Prod., 2015, 65, 96-101.
Lee, H.; Mani, S. Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind. Crops Prod., 2017, 104, 179-187.
Wang, Q.Q.; Zhu, J.Y.; Gleisner, R.; Kuster, T.A.; Baxa, U.; McNeil, S.E. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose, 2012, 19(5), 1631-1643.
Nechyporchuk, O.; Pignon, F.; Belgacem, M.N. Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J. Mater. Sci., 2015, 50(2), 531-541.
Feng, Y.H.; Cheng, T.Y.; Yang, W.G.; Ma, P.T.; He, H.Z.; Yin, X.C.; Yu, X.X. Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Ind. Crops Prod., 2018, 111, 285-291.
Saito, T.; Kuramae, R.; Wohlert, J.; Berglund, L.A.; Isogai, A. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules, 2013, 14(1), 248-253.
[http://dx.doi.org/10.1021/bm301674e] [PMID: 23215584]
Chen, Y.; Fan, D.B.; Han, Y.M.; Li, G.Y.; Wang, S.Q. Length-controlled cellulose nanofibrils produced using enzyme pretreatment and grinding. Cellulose, 2017, 24(12), 5431-5442.
Nie, S.; Zhang, K.; Lin, X.; Zhang, C.; Yan, D.; Liang, H.; Wang, S. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr. Polym., 2018, 181, 1136-1142.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.020] [PMID: 29253942]
Hu, J.G.; Tian, D.; Renneckar, S.; Saddler, J.N. Enzyme mediated nanofibrillation of cellulose by the syner-gistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Sci. Rep.-UK, 2018, 8(1), 3195.
Liu, X.Y.; Jiang, Y.; Qin, C.R.; Yang, S.; Song, X.P.; Wang, S.F.; Li, K.C. Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: energy consumption and nanofiber characteristics. Cellulose, 2018, 25(12), 7065-7078.
Chen, L.H.; Zhu, J.Y.; Baez, C.; Kitin, P.; Elder, T. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem., 2016, 18(13), 3835-3843.
Du, H.S.; Liu, C.; Zhang, Y.D.; Yu, G.; Si, C.L.; Li, B. Sustainable preparation and characterization of thermally stable and functional cellulose nanocrystals and nanofibrils via formic acid hydrolysis. J. Bioresour. Bioprod., 2017, 2(1), 10-15.
Lv, D.; Du, H.S.; Che, X.P.; Wu, M.Y.; Zhang, Y.D.; Liu, C.; Nie, S.X.; Zhang, X.Y.; Li, B. Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustain. Chem.& Eng., 2019, 7(10), 9449-9463.
Gan, L.H.; Zhu, J.D. A lignin-derived carbonaceous acid for efficient catalytic hydrolysis of cellulose. J. Bioresour. Bioprod., 2018, 3(4), 166-171.
Hiraoki, R.; Ono, Y.; Saito, T.; Isogai, A. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO oxidized cellulose nanofibrils. Biomacromolecules, 2015, 16(2), 675-681.
[http://dx.doi.org/10.1021/bm501857c] [PMID: 25584418]
Shinoda, R.; Saito, T.; Okita, Y.; Isogai, A. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 2012, 13(3), 842-849.
[http://dx.doi.org/10.1021/bm2017542] [PMID: 22276990]
Siro, I.; Plackett, D.; Hedenqvist, M.; Ankerfors, M.; Lindstrom, T. Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J. Appl. Polym. Sci., 2011, 119(5), 2652-2660.
Rees, A.; Powell, L.C.; Chinga-Carrasco, G.; Gethin, D.T.; Syverud, K.; Hill, K.E.; Thomas, D.W. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res. Int., 2015, 2015(2) 925757
[http://dx.doi.org/10.1155/2015/925757] [PMID: 26090461]
Naderi, A.; Lindstrom, T.; Pettersson, T. The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose, 2014, 21(4), 2357-2368.
Liimatainen, H.; Suopajärvi, T.; Sirviö, J.; Hormi, O.; Niinimäki, J. Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation. Carbohydr. Polym., 2014, 103, 187-192.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.042] [PMID: 24528718]
Ru, J.; Tong, C.C.; Chen, N.; Shan, P.J.; Zhao, X.K.; Liu, X.Y.; Chen, J.Z.; Li, Q.; Liu, X.H.; Liu, H.Z.; Zhao, Y. Morphological and property characteristics of surface-quaternized nanofibrillated cellulose derived from bamboo pulp. Cellulose, 2019, 26(3), 1683-1701.
Iwamoto, S.; Lee, S.H.; Endo, T. Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym. J., 2013, 46(1), 73-76.
Gamelas, J.A.F.; Pedrosa, J.; Lourenço, A.F.; Mutjé, P.; González, I.; Chinga-Carrasco, G.; Singh, G.; Ferreira, P.J.T. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Micron, 2015, 72, 28-33.
[http://dx.doi.org/10.1016/j.micron.2015.02.003] [PMID: 25768897]
Rautkoski, H.; Pajari, H.; Koskela, H.; Sneck, A.; Moilanen, P. Use of cellulose nanofibrils (CNF) in coating colors. Nord. Pulp Paper Res. J., 2015, 30(3), 511-518.
Yang, B.; Zhang, M.; Lu, Z.; Tan, J.; Luo, J.; Song, S.; Ding, X.; Wang, L.; Lu, P.; Zhang, Q. Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF). Carbohydr. Polym., 2019, 208, 372-381.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.086] [PMID: 30658813]
Zheng, Q.F.; Cai, Z.Y.; Gong, S.Q. Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(9), 3110-3118.
Vallejos, M.E.; Felissia, F.E.; Area, M.C.; Ehman, N.V.; Tarrés, Q.; Mutjé, P. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydr. Polym., 2016, 139, 99-105.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.004] [PMID: 26794952]
Xu, J.; Krietemeyer, E.F.; Boddu, V.M.; Liu, S.X.; Liu, W.C. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohydr. Polym., 2018, 192, 202-207.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.017] [PMID: 29691014]
Lee, J.A.; Yoon, M.J.; Lee, E.S.; Lim, D.Y.; Kim, K.Y. Preparation and characterization of cellulose nanofibers (CNFs) from microcrystalline cellulose (MCC) and CNF/polyamide 6 composites. Macromol. Res., 2014, 22(7), 738-745.
Leitner, J.; Hinterstoisser, B.; Wastyn, M.; Keckes, J.; Gindl, W. Sugar beet cellulose nanofibril-reinforced composites. Cellulose, 2007, 14(5), 419-425.
Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym., 2012, 90(4), 1609-1613.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.038] [PMID: 22944423]
Liimatainen, H.; Visanko, M.; Sirvio, J.; Hormi, O.; Niinimäki, J. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose, 2013, 20(2), 741-749.
Chiratil, C. JOY, J.; Mathew, L.; Mozetic, M.; Koetz, J.; Thomas, S. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crops Prod., 2014, 59, 27-34.
Qing, Y.; Sabo, R.; Zhu, J.Y.; Agarwal, U.; Cai, Z.; Wu, Y. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym., 2013, 97(1), 226-234.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.086] [PMID: 23769541]
Sirvio, J.A.; Visanko, M.; Liimatainen, H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem., 2015, 17(6), 3401-3406.
Carrillo, C.A.; Laine, J.; Rojas, O.J. Microemulsion systems for fiber deconstruction into cellulose nanofibrils. ACS Appl. Mater. Interfaces, 2014, 6(24), 22622-22627.
[http://dx.doi.org/10.1021/am5067332] [PMID: 25454578]
Eyholzer, C.; Bordeanu, N.; Lopez-Suevos, F.; Rentsch, D.; Zimmermann, T.; Oksman, K. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose, 2010, 17(1), 19-30.
Laitin, O.; Suopajarvi, T.; Osterberg, M.; Liimatainen, H. Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS. Appl. Mater. Inter., 2017, 9(29), 25029-25037.
Josset, S.; Orsolini, P.; Siqueira, G.; Tejado, A.; Tingaut, P.; Zimmermann, T. Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nord. Pulp Paper Res. J., 2014, 29(1), 167-175.
Hu, C.; Zhao, Y.; Li, K.; Zhu, J.Y.; Gleisner, R. Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder. Holzforschung, 2015, 69(8), 993-1000.
Nair, S.S.; Zhu, J.Y.; Deng, Y.; Ragauskas, A.J. Characterization of cellulose nanofibrillation by micro grinding. J. Nanopart. Res., 2014, 16(4), 2349.
C S, J.C.; George, N.; Narayanankutty, S.K. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym., 2016, 142, 158-166.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.015] [PMID: 26917386]
Fleur, R.; Gabriel, B.; Meyer, V.; Petit-Conil, M.; Bras, J. Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. J. Mater. Sci., 2018, 53(17), 12604-12615.
Malucelli, L.C.; Matos, M.; Jord, O.C.; Lacerda, L.G.; Filho, C.; Magalhães, W. Grinding severity influences the viscosity of cellulose nanofiber (CNF) suspensions and mechanical properties of nanopaper. Cellulose, 2018, 25(11), 6581-6589.
Saito, T.; Isogai, A. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloid. Surface. A., 2006, 289(1-3), 219-225.
Xie, J.; Hse, C.Y.; De Hoop, C.F.; Hu, T.; Qi, J.; Shupe, T.F. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydr. Polym., 2016, 151, 725-734.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.011] [PMID: 27474619]
Hiasa, S.; Iwamoto, S.; Endo, T.; Edashige, Y. Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste. Ind. Crops Prod., 2014, 62, 280-285.
Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod., 2016, 93, 2-25.
Herrick, F.W.; Casebier, R.L.; Hamilton, J.K.; Sandberg, K.R. Microfibrillated cellulose: Morphology and accessibility. J. Appl. Polym. Sci. Symp., 1983, 37, 797-813.
Hassan, M.; Hassan, E.A.; Oksman, K.N. Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. J. Mater. Sci., 2011, 46(6), 1732-1740.
Zhao, J.; Zhang, W.; Zhang, X.; Zhang, X.; Lu, C.; Deng, Y. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization. Carbohydr. Polym., 2013, 97(2), 695-702.
[http://dx.doi.org/10.1016/j.carbpol.2013.05.050] [PMID: 23911503]
Zimmermann, T. PÖHler, E.; Geiger, T. Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater., 2004, 6(9), 754-761.
Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3(1), 71-85.
[http://dx.doi.org/10.1039/C0NR00583E] [PMID: 20957280]
Lee, S.Y.; Chun, S.J.; Kang, I.A.; Park, J.Y. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J. Ind. Eng. Chem., 2009, 15(1), 50-55.
Lee, S.Y.; Mohan, D.J.; Kang, I.A.; Doh, G.H.; Lee, S.; Han, S.O. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers Polym., 2009, 10(1), 77-82.
Wei, J.; Zhou, Y.; Lv, Y.Y.; Jia, C.; Liu, J.X.; Zhang, X.F.; Sun, J.; Shao, Z.Q. Carboxymethyl cellulose nanofibrils with tree-like matrix: preparation and behavior of Pickering emulsions stabilization. ACS Sustain. Chem.& Eng., 2019, 7(15), 12887-12896.
Eriksen, Ø.; Syverud, K.; Gregersen, Ø. The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord. Pulp Paper Res. J., 2008, 23(3), 299-304.
Spence, K.L.; Venditti, R.A.; Rojas, O.J.; Habibi, Y.; Pawlak, J.J. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 2011, 18(4), 1097-1111.
Chaker, A.; Boufi, S. Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydr. Polym., 2015, 131, 224-232.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.003] [PMID: 26256179]
Wang, Q.; Wei, W.; Chang, F.; Sun, J.; Xie, S.; Zhu, Q. Controlling the size and film strength of individualized cellulose nanofibrils prepared by combined enzymatic pretreatment and high pressure microfluidization. BioResources, 2016, 11(1), 2536-2547.
Bian, H.; Li, G.; Jiao, L.; Yu, Z.; Dai, H. Enzyme-assisted mechanical fibrillation of bleached spruce kraft pulp for producing well-dispersed and uniform-sized cellulose nanofibrils. BioResources, 2016, 11(4), 10483-10496.
Boufi, S.; Chaker, A. Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Ind. Crops Prod., 2016, 93, 39-47.
Taniguchi, T.; Okamura, K. New films produced from micro-fibrillated natural fibres. Polym. Int., 1998, 47(3), 291-294.
Abe, K.; Yano, H. Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose, 2009, 16(6), 1017-1023.
Iwamoto, S.; Nakagaito, A.N.; Yano, H.; Nogi, M. Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. Adv. Mater., 2005, 81(6), 1109-1112.
Wang, S.; Cheng, Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, Part 1: Process optimization. J. Appl. Polym. Sci., 2009, 113(2), 1270-1275.
Herrera, M.; Thitiwutthisakul, K.; Yang, X.; Rujitanaroj, PO.; Rojas, R.; Berglund, L. Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp. Cellulose, 2018, 25(5), 3121-3133.
Chen, W.; Yu, H.; Liu, Y.; Hai, Y.; Zhang, M.; Chen, P. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 2011, 18(2), 433-442.
Chen, W.S.; Yu, H.P.; Liu, Y.X.; Chen, P.; Zhang, M.X.; Hai, Y.F. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym., 2011, 83(4), 1804-1811.
Dilamian, M.; Noroozi, B. A combined homogenization high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose, 2019, 26(10), 5831-5849.
Ang, S.; Haritos, V.; Batchelor, W. Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose, 2019, 26(8), 4767-4786.
Liu, X.; Jiang, Y.; Song, X.; Qin, C.; Wang, S.; Li, K. A bio-mechanical process for cellulose nanofiber production - Towards a greener and energy conservation solution. Carbohydr. Polym., 2019, 208, 191-199.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.071] [PMID: 30658790]
Fukuzumi, H.; Saito, T.; Isogai, A. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr. Polym., 2013, 93(1), 172-177.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.069] [PMID: 23465916]
Nooy, A.E.J.; Besemer, A.C.; Bekkum, H.V. Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides. Recl. Trav. Chim. Pays Bas, 1994, 113(3), 165-166.
Tanaka, R.; Saito, T.; Isogai, A. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int. J. Biol. Macromol., 2012, 51(3), 228-234.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.05.016] [PMID: 22617623]
Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8(8), 2485-2491.
[http://dx.doi.org/10.1021/bm0703970] [PMID: 17630692]
Besbes, I.; Alila, S.; Boufi, S. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr. Polym., 2011, 84(3), 975-983.
Serra, A.; González, I.; Oliver-Ortega, H.; Tarrès, Q.; Delgado-Aguilar, M.; Mutjé, P. Reducing the amount of catalyst in TEMPO-oxidized cellulose nanofibers: Effect on properties and cost. Polymers (Basel), 2017, 9(11), 557.
[http://dx.doi.org/10.3390/polym9110557] [PMID: 30965860]
Fukuzumi, H.; Saito, T.; Okita, Y.; Isogai, A. Thermal stabilization of TEMPO-oxidized cellulose. Polym. Degrad. Stabil., 2010, 95(9), 1502-1508.
Saito, T.; Hirota, M.; Tamura, N.; Kimura, S.; Fukuzumi, H.; Heux, L.; Isogai, A. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules, 2009, 10(7), 1992-1996.
[http://dx.doi.org/10.1021/bm900414t] [PMID: 19445519]
Zhang, K.; Zhang, Y.; Yan, D.; Zhang, C.; Nie, S. Enzyme assisted mechanical production of cellulose nanofibrils: thermal stability. Cellulose, 2018, 25(9), 5049-5061.
Tao, P.; Zhang, Y.; Wu, Z.; Liao, X.; Nie, S. Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: Transition of cellulose crystal structure. Carbohydr. Polym., 2019, 214, 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.012] [PMID: 30925976]
Saelee, K.; Yingkamhaeng, N.; Nimchua, T.; Sukyai, P. An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Ind. Crops Prod., 2016, 82, 149-160.
Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; Lindström, T. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 2007, 8(6), 1934-1941.
[http://dx.doi.org/10.1021/bm061215p] [PMID: 17474776]
Long, L.; Tian, D.; Zhai, R.; Li, X.; Zhang, Y.; Hu, J.; Wang, F.; Saddler, J. Thermostable xylanase-aided two stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. Bioresour. Technol., 2018, 257, 334-338.
[http://dx.doi.org/10.1016/j.biortech.2018.02.104] [PMID: 29500062]
Bian, H.; Gao, Y.; Yang, Y.; Fang, G.; Dai, H. Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour. Technol., 2018, 256, 321-327.
[http://dx.doi.org/10.1016/j.biortech.2018.02.038] [PMID: 29459318]
Henriksson, M.; Henriksson, G.; Berglund, L.A.; Lindatorm, T. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J., 2007, 43(8), 3434-3441.
Ji, H.; Xiang, Z.Y.; Qi, H.S.; Han, T.T.; Pranovich, A.; Song, T. Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chem., 2019, 21(8), 1956-1964.
Bian, H.; Gao, Y.; Luo, J.; Jiao, L.; Wu, W.; Fang, G.; Dai, H. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials. Waste Manag., 2019, 91, 1-8.
[http://dx.doi.org/10.1016/j.wasman.2019.04.052] [PMID: 31203931]
Luo, J.; Huang, K.X.; Xu, Y.; Fan, Y.M. A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation. Cellulose, 2019, 1-10.
Qin, Y.; Qiu, X.; Zhu, J.Y. Understanding longitudinal wood fiber ultra-structure for producing cellulose nanofibrils using disk milling with diluted acid prehydrolysis. Sci. Rep., 2016, 6, 35602.
[http://dx.doi.org/10.1038/srep35602] [PMID: 27796325]
Liu, C.; Du, H.S.; Yu, G.; Zhang, Y.D.; Kong, Q.S.; Li, B.; Mu, X.D. Simultaneous extraction of carboxylated cellulose nanocrystals and nanofibrils via citric acid hydrolysis—a sustainable route. Paper and Biomaterials, 2017, 2(4), 19-26.
Jia, C.; Chen, L.H.; Shao, Z.Q.; Agarwal, U.P.; Hu, L.B.; Zhu, J.Y. Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose, 2017, 24(6), 2483-2498.
Bian, H.Y.; Chen, L.H.; Dai, H.Q.; Zhu, J.Y. Effect of fiber drying on properties of lignin containing cellulose nanocrystals and nanofibrils produced through maleic acid hydrolysis. Cellulose, 2017, 24(10), 4205-4216.
Bian, H.; Chen, L.; Dai, H.; Zhu, J.Y. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr. Polym., 2017, 167, 167-176.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.050] [PMID: 28433151]
Bian, H.; Chen, L.; Wang, R.; Zhu, J. Green and low-cost production of thermally stable and carboxylated cellulose nanocrystals and nanofibrils using highly recyclable dicarboxylic acids. J. Vis. Exp., 2017, (119)e55079
[http://dx.doi.org/10.3791/55079] [PMID: 28117828]
Wang, R.B.; Chen, L.H.; Zhu, J.Y.; Yang, R.D. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat, 2017, 3(5), 328-335.
Itagaki, H.; Kurokawa, T.; Furukawa, H.; Nakajima, T.; Katsumoto, Y.; Gong, J.P. Water-induced brittle-ductile transition of double network hydrogels. Macromolecules, 2010, 43(22), 9495-9500.
Hu, Z.; Chen, G. Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv. Mater., 2014, 26(34), 5950-5956.
[http://dx.doi.org/10.1002/adma.201400179] [PMID: 24923256]
Kong, W.; Huang, D.; Xu, G.; Ren, J.; Liu, C.; Zhao, L.; Sun, R. Graphene Oxide/polyacrylamide/aluminum ion cross-linked carboxymethyl hemicellulose nanocomposite hydrogels with very tough and elastic properties. Chem. Asian J., 2016, 11(11), 1697-1704.
[http://dx.doi.org/10.1002/asia.201600138] [PMID: 27062081]
Nair, S.S.; Zhu, J.Y.; Deng, Y.L.; Ragauskas, A.J. Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain. Chem.& Eng., 2014, 2(4), 772.
George, J.; Sajeevkumar, V.A.; Ramana, K.V.; Sabapathy, S.N. Siddaramaiah. Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles. J. Mater. Chem., 2012, 22(42), 22433-22439.
Klemm, D.; Kramer, F.; Moritz, S.; Lindstrom, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocellulosen: eine neue familie naturbasierter materialien. Angew. Chem., 2011, 123(24), 5550-5580.
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
Mahfoudhi, N.; Boufi, S. Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose, 2016, 23(6), 3691-3701.
Chen, X.; Chen, C.; Zhang, H.; Huang, Y.; Yang, J.; Sun, D. Facile approach to the fabrication of 3D cellulose nanofibrils (CNFs) reinforced poly(vinyl alcohol) hydrogel with ideal biocompatibility. Carbohydr. Polym., 2017, 173, 547-555.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.036] [PMID: 28732898]
Chang, C.Y.; Lue, A.; Zhang, L. Effects of crosslinking methods on structure and properties of cellulose/pva hydrogels. Macromol. Chem. Phys., 2008, 209(12), 1266-1273.
Kong, W.; Wang, C.; Jia, C.; Kuang, Y.; Pastel, G.; Chen, C.; Chen, G.; He, S.; Huang, H.; Zhang, J.; Wang, S.; Hu, L. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater., 2018, 30(39) e1801934
[http://dx.doi.org/10.1002/adma.201801934] [PMID: 30101467]
Liu, M.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature, 2015, 517(7532), 68-72.
[http://dx.doi.org/10.1038/nature14060] [PMID: 25557713]
Chen, M.L.; Zhu, J.T.; Qi, G.J.; He, C.C.; Wang, H.L. Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Mater. Lett., 2012, 89, 104-107.
Zhang, L.; Zhao, J.; Zhu, J.T.; He, C.C.; Wang, H.L. Anisotropic tough poly (vinyl alcohol) hydrogels. Soft Matter, 2012, 8(40), 10439.
Yang, J.; Ma, M.G.; Zhang, X.M.; Xu, F. Elucidating dynamics of precoordinated ionic bridges as sacrificial bonds in interpenetrating network hydrogels. Macromolecules, 2016, 49(11), 4340-4348.
Masruchin, N.; Park, B.D.; Causin, V. Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide) for model drug release. Cellulose, 2018, 25(1), 485-502.
Lu, J.; Zhu, W.; Dai, L.; Si, C.; Ni, Y. Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydr. Polym., 2019, 215, 289-295.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.100] [PMID: 30981356]
Zander, N.E.; Dong, H.; Steele, J.; Grant, J.T. Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl. Mater. Interfaces, 2014, 6(21), 18502-18510.
[http://dx.doi.org/10.1021/am506007z] [PMID: 25295848]
Dong, H.; Snyder, J.F.; Tran, D.T.; Leadore, J.L. Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydr. Polym., 2013, 95(2), 760-767.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.041] [PMID: 23648039]
Zhang, H.; Yang, C.; Zhou, W.J.; Luan, Q.; Li, W.L.; Deng, Q.C.; Dong, X.Y.; Tang, H.; Huang, F.H. A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics. ACS Sustain. Chem.& Eng., 2018, 6(11), 13924-13931.
Liu, Y.; Sui, Y.; Liu, C.; Liu, C.; Wu, M.; Li, B.; Li, Y. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym., 2018, 188, 27-36.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.093] [PMID: 29525166]
Yue, Y.; Han, J.; Han, G.; French, A.D.; Qi, Y.; Wu, Q. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization. Carbohydr. Polym., 2016, 147(5), 155-164.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.005] [PMID: 27178920]
Xue, Y.; Mou, Z.; Xiao, H. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 2017, 9(39), 14758-14781.
[http://dx.doi.org/10.1039/C7NR04994C] [PMID: 28967940]
Bhattacharya, M.; Malinen, M.M.; Lauren, P.; Lou, Y.R.; Kuisma, S.W.; Kanninen, L.; Lille, M.; Corlu, A.; GuGuen-Guillouzo, C.; Ikkala, O.; Laukkanen, A.; Urtti, A.; Yliperttula, M. Nanofibrillar cellulose hydrogel promotes three dimensional liver cell culture. J. Control. Release, 2012, 164(3), 291-298.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.039] [PMID: 22776290]
Ávila, H.M.; Schwarz, S.; Rotter, N.; Gatenholm, P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting, 2016, 1-2, 22-35.
Nguyen, D.; Hägg, D.A.; Forsman, A.; Ekholm, J.; Nimkingratana, P.; Brantsing, C.; Kalogeropoulos, T.; Zaunz, S.; Concaro, S.; Brittberg, M.; Lindahl, A.; Gatenholm, P.; Enejder, A.; Simonsson, S. Cartilage tissue engineering by the 3d bioprinting of ips cells in a nanocellulose/alginate bioink. Sci. Rep., 2017, 7(1), 658.
[http://dx.doi.org/10.1038/s41598-017-00690-y] [PMID: 28386058]
Håkansson, K.M.O.; Henriksson, I.C.; Vazquez, C.D.; Kuzmenko, V.; Markstedt, K.; Enoksson, P.; Gatenholm, P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting, 2016, (1-2), 22-35.
Abouzeid, R.E.; Khiari, R.; Beneventi, D.; Dufresne, A. Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering. Biomacromolecules, 2018, 19(11), 4442-4452.
[http://dx.doi.org/10.1021/acs.biomac.8b01325] [PMID: 30301348]
Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.; Hägg, D.; Gatenholm, P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 2015, 16(5), 1489-1496.
[http://dx.doi.org/10.1021/acs.biomac.5b00188] [PMID: 25806996]
Shin, S.; Park, S.; Park, M.; Jeong, E.; Na, K.; Youn, H.J.; Hyun, J. Cellulose nano-fibers for the enhancement of printability of low viscosity gelatin derivatives. BioResources, 2017, 12(2), 2941-2954.
Eyholzer, C.; de Couraça, A.B.; Duc, F.; Bourban, P.E.; Tingaut, P.; Zimmermann, T.; Månson, J.A.E.; Oksman, K. Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules, 2011, 12(5), 1419-1427.
[http://dx.doi.org/10.1021/bm101131b] [PMID: 21405099]
Doench, I.; Torres-Ramos, M.E.W.; Montembault, A.; Nunes de Oliveira, P.; Halimi, C.; Viguier, E.; Heux, L.; Siadous, R.; Thiré, R.M.S.M.; Osorio-Madrazo, A. HEUX, L.; Siadous, R.; Thire, R.M.S.M.; Osorio-Madrazo, A. Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering. Polymers (Basel), 2018, 10(11), 1202.
[http://dx.doi.org/10.3390/polym10111202] [PMID: 30961127]
Dong, H.; Snyder, J.F.; Williams, K.S.; Andzelm, J.W. Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules, 2013, 14(9), 3338-3345.
[http://dx.doi.org/10.1021/bm400993f] [PMID: 23919541]
Basu, A.; Lindh, J.; Ålander, E.; Strømme, M.; Ferraz, N. On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: Physicochemical properties and application-oriented biocompatibility studies. Carbohydr. Polym., 2017, 174, 299-308.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.073] [PMID: 28821071]
Basu, A.; Heitz, K.; Strømme, M.; Welch, K.; Ferraz, N. Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced wound care applications. Carbohydr. Polym., 2018, 181, 345-350.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.085] [PMID: 29253982]
Xu, C.; Zhang Molino, B.; Wang, X.; Cheng, F.; Xu, W.; Molino, P.; Bacher, M.; Su, D.; Rosenau, T.; Willför, S.; Wallace, G. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(43), 7066-7075.
[http://dx.doi.org/10.1039/C8TB01757C] [PMID: 32254590]
Liu, J.; Chinga-Carrasco, G.; Cheng, F.; Xu, W.Y.; Willfor, S.; Syverud, K.; Xu, C.L. Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose, 2016, 23(5), 3129-3143.
Liu, R.; Dai, L.; Si, C.; Zeng, Z. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym., 2018, 195, 63-70.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.085] [PMID: 29805020]
Wang, Z.; Zhou, R.; Wen, F.; Zhang, R.; Ren, L.; Teoh, S.H.; Hong, M. Reliable laser fabrication: the quest for responsive biomaterials surface. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(22), 3612-3631.
[http://dx.doi.org/10.1039/C7TB02545A] [PMID: 32254825]
De France, K.J.; Hoare, T.; Cranston, E.D. Review of hydrogels and aerogels containing nanocellulose. Chem. Mater., 2017, 29, 4609-4631.
Ruiz-Palomero, C.; Soriano, M.L.; Valcárcel, M. Nanocellulose as analyte and analytical tool: Opportunities and challenges. Trac-Trend. Anal. Chem., 2017, 87, 1-18.
Dai, L.; Cheng, T.; Duan, C.; Zhao, W.; Zhang, W.; Zou, X.; Aspler, J.; Ni, Y. 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydr. Polym., 2019, 203, 71-86.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.027] [PMID: 30318237]
Collins, S.F. Bioprinting is changing regenerative medicine forever. Stem Cells Dev., 2014, 23(Suppl. 1), 79-82.
[http://dx.doi.org/10.1089/scd.2014.0322] [PMID: 25457969]
Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8), 773-785.
[http://dx.doi.org/10.1038/nbt.2958] [PMID: 25093879]
Balguid, A.; Mol, A.; van Marion, M.H.; Bank, R.A.; Bouten, C.V.C.; Baaijens, F.P.T. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng. Part A, 2009, 15(2), 437-444.
[http://dx.doi.org/10.1089/ten.tea.2007.0294] [PMID: 18694294]
Camci-Unal, G.; Annabi, N.; Dokmeci, M.R.; Liao, R.; Khademhosseini, A. Hydrogels for cardiac tissue engineering. NPG Asia Mater., 2014, 6(5) e99
Antonini, A.D.; Daisy, M.; Adriana, M.; Carneiro, P.R.F.; Patricia, S.; Maria, de H.L.; Ribeiro, D.; Marcelo, L. Preparation of thermosensitive gel for controlled release of levoflox-acin and their application in the treatment of multidrug resistant -bacteria. BioMed Res. Int., 2016, 1-10.
Jung, I.Y.; Kim, J.S.; Choi, B.R.; Lee, K.; Lee, H. Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv. Healthc. Mater., 2017, 6(12) 1601475
[http://dx.doi.org/10.1002/adhm.201601475] [PMID: 28371450]
Mir, M.; Ali, M.N.; Barakullah, A.; Gulzar, A.; Arshad, M.; Fatima, S.; Asad, M. Synthetic polymeric biomaterials for wound healing: a review. Prog. Biomater., 2018, 7(1), 1-21.
[http://dx.doi.org/10.1007/s40204-018-0083-4] [PMID: 29446015]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 06 August, 2020
Page: [4622 - 4646]
Pages: 25
DOI: 10.2174/0929867327666200303102859
Price: $65

Article Metrics

PDF: 26