Exploring Nanoemulsion for Liver Cancer Therapy

Author(s): Tanmay Upadhyay, Vaseem A. Ansari*, Usama Ahmad, Nazneen Sultana, Juber Akhtar

Journal Name: Current Cancer Therapy Reviews

Volume 16 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Cancer is a leading cause of mortality worldwide, accounting for 8.8 million deaths in 2015. Among these, at least 0.78 million people died of liver cancer alone. The recognized risk factors for liver cancer include chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, exposure to dietary aflatoxin, fatty liver disease, alcohol-induced cirrhosis, obesity, smoking, diabetes, and iron overload. The treatment plan for early diagnosed patients includes radiation therapy, tumour ablation, surgery, immunotherapy, and chemotherapy. Some sort of drug delivery vehicles has to be used when the treatment plan is targeted chemotherapy. Nanoemulsions are a class of biphasic liquid dosage form which are mixtures of oil and water stabilized by a surfactant. They are either transparent or bluish in hue and serve as a wonderful carrier system for chemotherapeutic drugs. These vehicles have a particle size in the range of 20-200 nm allowing them to be delivered successfully in the deepest of tissues. Recent publications on nanoemulsions reveal their acceptance and a popular choice for delivering both synthetic and herbal drugs to the liver. This work focuses on some anti-cancer agents that utilized the advantages of nanoemulsion for liver cancer therapy.

Keywords: Nanoemulsion, liver cancer, hepatocellular carcinoma, drug delivery, immunotherapy, chemotherapy.

[1]
Izadiyan Z, Basri M, Fard Masoumi HR, Abedi Karjiban R, Salim N, Shameli K. Modeling and optimization of nanoemulsion containing Sorafenib for cancer treatment by response surface methodology. Chem Cent J 2017; 11: 21.
[http://dx.doi.org/10.1186/s13065-017-0248-6] [PMID: 28293282]
[2]
Wang Z, Mu HJ, Zhang XM, et al. Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies. Int J Nanomedicine 2015; 10: 633-44.
[http://dx.doi.org/10.2147/IJN.S74079] [PMID: 25609965]
[3]
Depalo N, Iacobazzi RM, Valente G, et al. Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma. Nano Res 2017; 10(7): 2431-48.
[http://dx.doi.org/10.1007/s12274-017-1444-3]
[4]
Lamprecht A. Nanomedicines in gastroenterology and hepatology. Nat Rev Gastroenterol Hepatol 2015; 12(4): 195-204.
[http://dx.doi.org/10.1038/nrgastro.2015.37] [PMID: 25752711]
[5]
Hu X, Hu J, Tian J, et al. Polyprodrug amphiphiles: Hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc 2013; 135(46): 17617-29.
[http://dx.doi.org/10.1021/ja409686x] [PMID: 24160840]
[6]
Xu Z, Chen L, Gu W, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 2009; 30(2): 226-32.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.014] [PMID: 18851881]
[7]
Chen J, Ding J, Wang Y, et al. Sequentially responsive shell-stacked nanoparticles for deep penetration into solid tumors. Adv Mater 2017; 29(32): 1701170-1.
[http://dx.doi.org/10.1002/adma.201701170] [PMID: 28632302]
[8]
Ding J, Xu W, Zhang Y, et al. Self-reinforced endocytoses of smart polypeptide nanogels for “on-demand” drug delivery. J Control Release 2013; 172(2): 444-55.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.029] [PMID: 23742879]
[9]
Jin C, Qian N, Zhao W, et al. Improved therapeutic effect of DOX-PLGA-PEG micelles decorated with bivalent fragment HAb18 F(ab’)(2) for hepatocellular carcinoma. Biomacromolecules 2010; 11(9): 2422-31.
[http://dx.doi.org/10.1021/bm1005992] [PMID: 20831277]
[10]
Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X. Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun (Camb) 2014; 50(77): 11274-90.
[http://dx.doi.org/10.1039/C4CC03153A] [PMID: 25005913]
[11]
Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release 2006; 111(3): 333-42.
[http://dx.doi.org/10.1016/j.jconrel.2005.12.023] [PMID: 16488046]
[12]
Perry JL, Reuter KG, Luft JC, Pecot CV, Zamboni W, DeSimone JM. Mediating passive tumor accumulation through particle size, tumor type and location. Nano Lett 2017; 17(5): 2879-86.
[http://dx.doi.org/10.1021/acs.nanolett.7b00021] [PMID: 28287740]
[13]
Huang Y, Yang X, Xu T, et al. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol 2016; 49(1): 153-63.
[http://dx.doi.org/10.3892/ijo.2016.3525] [PMID: 27210546]
[14]
Hu X, Liu G, Li Y, Wang X, Liu S. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J Am Chem Soc 2015; 137(1): 362-8.
[http://dx.doi.org/10.1021/ja5105848] [PMID: 25495130]
[15]
Wang HX, Xie HY, Wang JG, et al. Self-assembling prodrugs by precise programming of molecular structures that contribute distinct stability, pharmacokinetics and antitumor efficacy. Adv Funct Mater 2015; 25(31): 4956-65.
[http://dx.doi.org/10.1002/adfm.201501953]
[16]
Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev 2014; 79-80: 107-18.
[http://dx.doi.org/10.1016/j.addr.2014.05.005] [PMID: 24819216]
[17]
Tiwari S, Tan Y-M, Amiji M. Preparation and in vitro characteri-zation of multifunctional nanoemulsions for simultaneous MR imaging and targeted drug delivery. J Biomed Nanotechnol 2006; 2: 217-24.
[http://dx.doi.org/10.1166/jbn.2006.038]
[18]
Arruebo M, Valladares M, González-Fernández Á. Antibody-conjugated nanoparticles for biomedical applications. J Nanomater 2009; 2009: 1-24.
[http://dx.doi.org/10.1155/2009/439389]
[19]
Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov 2010; 9(7): 537-50.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
[20]
Tan W, Wang H, Chen Y, et al. Molecular aptamers for drug delivery. Trends Biotechnol 2011; 29(12): 634-40.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.009] [PMID: 21821299]
[21]
Ugelstad J, El-Aasser MS, Vanderhoff JW. Emulsion polymerization Initiation of polymerization in monomer droplets J Polym Sci 1973; 11: 503-13.
[22]
Ali A, Ansari VA, Ahmad U, Akhtar J, Jahan A. Nanoemulsion: An advanced vehicle for efficient drug delivery. Drug Res (Stuttg) 2017; 67(11): 617-31.
[http://dx.doi.org/10.1055/s-0043-115124] [PMID: 28738427]
[23]
Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci 2004; 108-109: 303-18.
[http://dx.doi.org/10.1016/j.cis.2003.10.023] [PMID: 15072948]
[24]
Muller RH, Benita BHL, Benita S. Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Medpharm Sci 1998; 8: 149-73.
[http://dx.doi.org/10.1208/pt0802028]
[25]
Rosano HL, Lan T, Weiss A, Whittam JH, Gerbacia WEF. Unstable microemulsions. J Phys Chem 1981; 85: 468-73.
[http://dx.doi.org/10.1021/j150605a003]
[26]
Charman WN, Stella VJ. Transport of lipophilic molecules by the intestinal lymphatic system. Adv Drug Deliv Rev 1991; 7: 1-14.
[http://dx.doi.org/10.1016/0169-409X(91)90046-F]
[27]
Pouton CW. Self-emulsifying drug delivery systems: Assessment of the efficiency of emulsification. Int J Pharm 1985; 27: 335-48.
[http://dx.doi.org/10.1016/0378-5173(85)90081-X]
[28]
Lindmark T, Nikkilä T, Artursson P. Mechanisms fatty acids of absorption enhancement in intestinal epithelial Caco-2 by medium chain. J Pharmacol Exp Ther 1995; 275(2): 958-64.
[29]
Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: A review. Syst Rev Pharm 2016; 8: 39-47.
[http://dx.doi.org/10.5530/srp.2017.1.8]
[30]
Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007; 66(2): 227-43.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.014] [PMID: 17127045]
[31]
Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm 2003; 56(2): 189-96.
[http://dx.doi.org/10.1016/S0939-6411(03)00067-5] [PMID: 12957632]
[32]
Azeem A, Rizwan M, Ahmad FJ, et al. Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech 2009; 10(1): 69-76.
[http://dx.doi.org/10.1208/s12249-008-9178-x] [PMID: 19148761]
[33]
Wang L, Li X, Zhang G, Dong J, Eastoe J. Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 2007; 314(1): 230-5.
[http://dx.doi.org/10.1016/j.jcis.2007.04.079] [PMID: 17612555]
[34]
Rajpoot P, Pathak K, Bali V. Therapeutic applications of nanoemulsion based drug delivery systems: A review of patents in last two decades. Recent Pat Drug Deliv Formul 2011; 5(2): 163-72.
[http://dx.doi.org/10.2174/187221111795471427] [PMID: 21361870]
[35]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5: 123-7.
[36]
Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int J Pharm 2004; 280(1-2): 241-51.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.016] [PMID: 15265563]
[37]
Ahmad U, Akhtar J, Singh SP, et al. Silymarin nanoemulsion against human hepatocellular carcinoma: Development and optimization. Artif Cells Nanomed Biotechnol 2018; 46(2): 231-41.
[http://dx.doi.org/10.1080/21691401.2017.1324465] [PMID: 28503949]
[38]
Ravindranath V, Chandrasekhara N. Absorption and tissue distribution of curcumin in rats. Toxicology 1980; 16(3): 259-65.
[http://dx.doi.org/10.1016/0300-483X(80)90122-5] [PMID: 7423534]
[39]
Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chem 2012; 132: 799-807.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.039]
[40]
Kim S, Choi MG, Lee HS, et al. Silibinin suppresses TNF-α-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules 2009; 14(11): 4300-11.
[http://dx.doi.org/10.3390/molecules14114300] [PMID: 19924065]
[41]
Ligeret H, Brault A, Vallerand D, Haddad Y, Haddad PS. Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J Ethnopharmacol 2008; 115(3): 507-14.
[http://dx.doi.org/10.1016/j.jep.2007.10.024] [PMID: 18061382]
[42]
Jaganathan SK, Mazumdar A, Mondhe D, Mandal M. Apoptotic effect of eugenol in human colon cancer cell lines. Cell Biol Int 2011; 35(6): 607-15.
[http://dx.doi.org/10.1042/CBI20100118] [PMID: 21044050]
[43]
Majeed H, Antoniou J, Fang Z. Apoptotic effects of eugenol-loaded nanoemulsions in human colon and liver cancer cell lines. Asian Pac J Cancer Prev 2014; 15(21): 9159-64.
[http://dx.doi.org/10.7314/APJCP.2014.15.21.9159] [PMID: 25422195]
[44]
Park SJ, Ahmad F, Philp A, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphor-diesterases. Cell 2012; 148(3): 421-33.
[http://dx.doi.org/10.1016/j.cell.2012.01.017] [PMID: 22304913]
[45]
Gocmez SS, Gacar N, Utkan T, Gacar G, Scarpace PJ, Tumer N. Protective effects of resveratrol on aging-induced cognitive impairment in rats. Neurobiol Learn Mem 2016; 131: 131-6.
[http://dx.doi.org/10.1016/j.nlm.2016.03.022] [PMID: 27040098]
[46]
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006; 127(6): 1109-22.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[47]
Alnajjar A, Elsiesy H. Natural products and hepatocellular carcinoma: A review. Hepatoma Res 2015; 1: 119.
[http://dx.doi.org/10.4103/2394-5079.167379]
[48]
Herneisey M, Mejia G, Pradhan G, Dussor G, Price T, Janjic J. Resveratrol nanoemulsions target inflammatory macrophages to prevent. J Pain 2018; 19: S75-6.
[http://dx.doi.org/10.1016/j.jpain.2017.12.173]
[49]
Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: A comprehensive review. Food Chem Toxicol 2014; 64: 65-80.
[http://dx.doi.org/10.1016/j.fct.2013.11.016] [PMID: 24275090]
[50]
Sarfarazi M, Jafari SM, Rajabzadeh G. Extraction optimization of saffron nutraceuticals through response surface methodology. Food Anal Methods 2015; 8: 2273-85.
[http://dx.doi.org/10.1007/s12161-014-9995-3]
[51]
Melnyk JP, Wang S, Marcone MF. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res Int 2010; 43: 1981-9.
[http://dx.doi.org/10.1016/j.foodres.2010.07.033]
[52]
Tsatsaroni E. Stability of saffron pigments in aqueous extracts. J Food Sci 1993; 58: 1073-5.
[http://dx.doi.org/10.1111/j.1365-2621.1993.tb06116.x]
[53]
Tsimidou M, Biliaderis CG. Kinetic studies of saffron (Crocus sativus L.) quality deterioration. J Agric Food Chem 2002; 45: 2890-8.
[http://dx.doi.org/10.1021/jf970076n]
[54]
Noureini SK, Wink M. Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation. Asian Pac J Cancer Prev 2012; 13(5): 2305-9.
[http://dx.doi.org/10.7314/APJCP.2012.13.5.2305] [PMID: 22901211]
[55]
Mehrnia MA, Jafari SM, Makhmal-Zadeh BS, Maghsoudlou Y. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification. Int J Biol Macromol 2016; 84: 261-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.029] [PMID: 26708427]
[56]
Tao R, Wang CZ, Ye JZ, Zhou H, Chen HX, Zhang CW. Antibacterial, cytotoxic and genotoxic activity of nitrogenated and haloid derivatives of C50-C60 and C70-C120 polyprenol homologs. Lipids Health Dis 2016; 15(1): 175.
[http://dx.doi.org/10.1186/s12944-016-0345-x] [PMID: 27724930]
[57]
Tao R, Wang C, Zhang C, et al. Characterization, cytotoxicity, and genotoxicity of tio2 and folate-coupled chitosan nanoparticles loading polyprenol-based nanoemulsion. Biol Trace Elem Res 2018; 184(1): 60-74.
[http://dx.doi.org/10.1007/s12011-017-1184-y] [PMID: 28993980]
[58]
Usmani A, Mishra A, Arshad M, Jafri A. Development and evaluation of doxorubicin self nanoemulsifying drug delivery system with Nigella Sativa oil against human hepatocellular carcinoma. Artif Cells Nanomed Biotechnol 2019; 47(1): 933-44.
[http://dx.doi.org/10.1080/21691401.2019.1581791] [PMID: 30888204]
[59]
Tabassum H, Ahmad IZ. Evaluation of the anticancer activity of sprout extract-loaded nanoemulsion of N. sativa against hepatocellular carcinoma. J Microencapsul 2018; 35(7-8): 643-56.
[http://dx.doi.org/10.1080/02652048.2019.1571641]
[60]
Cao H, Wang Y, He X, et al. Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma. Mol Pharm 2015; 12(3): 922-31.
[http://dx.doi.org/10.1021/mp500755j] [PMID: 25622075]
[61]
Zhang Y, Guan DX, Shi J, et al. All-trans retinoic acid potentiates the chemotherapeutic effect of cisplatin by inducing differentiation of tumor initiating cells in liver cancer. J Hepatol 2013; 59(6): 1255-63.
[http://dx.doi.org/10.1016/j.jhep.2013.07.009] [PMID: 23867314]
[62]
Hwang TL, Fang CL, Chen CH, Fang JY. Permeation enhancer-containing water-in-oil nanoemulsions as carriers for intravesical cisplatin delivery. Pharm Res 2009; 26(10): 2314-23.
[http://dx.doi.org/10.1007/s11095-009-9947-6] [PMID: 19653070]
[63]
Abu-Fayyad A, Nazzal S. Gemcitabine-vitamin E conjugates: Synthesis, characterization, entrapment into nanoemulsions, and in-vitro deamination and antitumor activity. Int J Pharm 2017; 528(1-2): 463-70.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.031] [PMID: 28627455]
[64]
Fan M, Liang X, Li Z, Wang H, Yang D, Shi B. Chlorambucil gemcitabine conjugate nanomedicine for cancer therapy. Eur J Pharm Sci 2015; 79: 20-6.
[http://dx.doi.org/10.1016/j.ejps.2015.08.013] [PMID: 26342774]
[65]
Zhang Y, Ding J, Sun D, et al. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. Mater Sci Eng C 2015; 49: 262-8.
[http://dx.doi.org/10.1016/j.msec.2015.01.026] [PMID: 25686948]
[66]
Alkhatib MH, Alkreathy HM, Balamash KS, Abdu F. Antitumor activity of doxorubicine-loaded nanoemulsion against Ehrlich ascites carcinoma-bearing mice. Trop J Pharm Res 2016; 15: 937-43.
[http://dx.doi.org/10.4314/tjpr.v15i5.6]
[67]
El-Sherbiny M, Eldosoky M, El-Shafey M, et al. Vitamin D nanoemulsion enhances hepatoprotective effect of conventional vitamin D in rats fed with a high-fat diet. Chem Biol Interact 2018; 288: 65-75.
[http://dx.doi.org/10.1016/j.cbi.2018.04.010] [PMID: 29653100]
[68]
Abdu F, Alshehri W, Alkhatib MH. The anticancer activity of the combination therapy of Gemcitabine and Doxorubicin encapsulated in a nanoemulsion. Polym Sci 2018; 03: 9935.
[http://dx.doi.org/10.4172/2471-9935-c1-006]
[69]
Li JH, Xie XY, Zhang L, et al. Oxaliplatin and 5-fluorouracil hepatic infusion with lipiodolized chemoembolization in large hepatocellular carcinoma. World J Gastroenterol 2015; 21(13): 3970-7.
[http://dx.doi.org/10.3748/wjg.v21.i13.3970] [PMID: 25852283]
[70]
Pangeni R, Choi SW, Jeon OC, Byun Y, Park JW. Multiple nanoemulsion system for an oral combinational delivery of oxaliplatin and 5-fluorouracil: Preparation and in vivo evaluation. Int J Nanomedicine 2016; 11: 6379-99.
[http://dx.doi.org/10.2147/IJN.S121114] [PMID: 27942212]
[71]
Locatelli FM, Kawano T, Iwata H, et al. Resveratrol-loaded nanoemulsion prevents cognitive decline after abdominal surgery in aged rats. J Pharmacol Sci 2018; 137(4): 395-402.
[http://dx.doi.org/10.1016/j.jphs.2018.08.006] [PMID: 30196020]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Page: [260 - 268]
Pages: 9
DOI: 10.2174/1573394716666200302123336

Article Metrics

PDF: 23
HTML: 1