Modulating Pluripotency Network Genes with Omega-3 DHA is followed by Caspase- 3 Activation and Apoptosis in DNA Mismatch Repair-Deficient/KRAS-Mutant Colorectal Cancer Stem-Like Cells

Author(s): Nazila Mahmoudi, Nowruz Delirezh, Mohammad Reza Sam*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Targeting DNA mismatch repair-deficient/KRAS-mutant Colorectal Cancer Stem Cells (CRCSCs) with chemical compounds remains challenging. Modulating stemness factors Bmi-1, Sox-2, Oct-4 and Nanog in CRCSCs which are direct downstream targets of carcinogenesis pathways may lead to the reactivation of caspase-3 and apoptosis in these cells. Omega-3 DHA modulates different signaling pathways involved in carcinogenesis. However, little is known, whether in vitro concentrations of DHA equal to human plasma levels are able to modulate pluripotency genes expression, caspase-3 reactivation and apoptosis in DNA mismatch repair-deficient/KRAS-mutant CRC stem-like cells.

Methods: DNA mismatch repair-deficient/KRAS-mutant CRC stem-like cells (LS174T cells) were treated with DHA, after which, cell number and proliferation-rate, Bmi-1, Sox-2, Nanog and Oct-4 expression, caspase-3 activation and apoptosis were evaluated with different cellular and molecular techniques.

Results: DHA changed the morphology of cells to apoptotic forms and disrupted cell connections. After 48h treatment with 50- to 200μM DHA, cell numbers and proliferation-rates were measured to be 86%-35% and 93.6%-45.7% respectively. Treatment with 200 μM DHA dramatically decreased the expression of Bmi-1, Sox- 2, Oct-4 and Nanog by 69%, 70%, 97.5% and 53% respectively. Concurrently, DHA induced caspase-3 activation by 1.8-4.7-fold increases compared to untreated cells. An increase in the number of apoptotic cells ranging from 9.3%-38.4% was also observed with increasing DHA concentrations.

Conclusions: DHA decreases the high expression level of pluripotency network genes suggesting Bmi-1, Sox-2, Oct-4 and Nanog as promising molecular targets of DHA. DHA reactivates caspase-3 and apoptosis in DNA mismatch repair-deficient/KRAS-mutant CRC stem-like cells, representing the high potential of this safe compound for therapeutic application in CRC.

Keywords: Colorectal cancer stem cells (CRCSCs), DNA mismatch repair (dMMR), Kirsten rat sarcoma viral oncogene homolog (KRAS), Pluripotency genes, Docosahexaenoic acid (DHA), Caspase-3, Apoptosis.

[1]
Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(3), 177-193.
[http://dx.doi.org/10.3322/caac.21395] [PMID: 28248415]
[2]
Marley, A.R.; Nan, H. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet., 2016, 7(3), 105-114.
[PMID: 27766137]
[3]
Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging, 2016, 11, 967-976.
[http://dx.doi.org/10.2147/CIA.S109285] [PMID: 27486317]
[4]
Lynch, H.T.; de la Chapelle, A. Hereditary colorectal cancer. N. Engl. J. Med., 2003, 348(10), 919-932.
[http://dx.doi.org/10.1056/NEJMra012242] [PMID: 12621137]
[5]
Aaltonen, L.A.; Salovaara, R.; Kristo, P.; Canzian, F.; Hemminki, A.; Peltomäki, P.; Chadwick, R.B.; Kääriäinen, H.; Eskelinen, M.; Järvinen, H.; Mecklin, J.P.; de la Chapelle, A. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med., 1998, 338(21), 1481-1487.
[http://dx.doi.org/10.1056/NEJM199805213382101] [PMID: 9593786]
[6]
Vaughn, C.P.; Zobell, S.D.; Furtado, L.V.; Baker, C.L.; Samowitz, W.S. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer, 2011, 50(5), 307-312.
[http://dx.doi.org/10.1002/gcc.20854] [PMID: 21305640]
[7]
Kim, J.H. Chemotherapy for colorectal cancer in the elderly. World J. Gastroenterol., 2015, 21(17), 5158-5166.
[http://dx.doi.org/10.3748/wjg.v21.i17.5158] [PMID: 25954089]
[8]
Esteller, M. Epigenetics in cancer. N. Engl. J. Med., 2008, 358(11), 1148-1159.
[http://dx.doi.org/10.1056/NEJMra072067] [PMID: 18337604]
[9]
Moon, B.S.; Jeong, W.J.; Park, J.; Kim, T.I.; Min, S.; Choi, K.Y. Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/β-catenin signaling. J. Natl. Cancer Inst., 2014, 106(2), djt373
[http://dx.doi.org/10.1093/jnci/djt373] [PMID: 24491301]
[10]
Misale, S.; Yaeger, R.; Hobor, S.; Scala, E.; Janakiraman, M.; Liska, D.; Valtorta, E.; Schiavo, R.; Buscarino, M.; Siravegna, G.; Bencardino, K.; Cercek, A.; Chen, C.T.; Veronese, S.; Zanon, C.; Sartore-Bianchi, A.; Gambacorta, M.; Gallicchio, M.; Vakiani, E.; Boscaro, V.; Medico, E.; Weiser, M.; Siena, S.; Di Nicolantonio, F.; Solit, D.; Bardelli, A. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature, 2012, 486(7404), 532-536.
[http://dx.doi.org/10.1038/nature11156] [PMID: 22722830]
[11]
Luo, F.; Brooks, D.G.; Ye, H.; Hamoudi, R.; Poulogiannis, G.; Patek, C.E.; Winton, D.J.; Arends, M.J. Conditional expression of mutated K-ras accelerates intestinal tumorigenesis in Msh2- deficient mice. Oncogene, 2007, 26(30), 4415-4427.
[http://dx.doi.org/10.1038/sj.onc.1210231] [PMID: 17297472]
[12]
O’Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 2007, 445(7123), 106-110.
[http://dx.doi.org/10.1038/nature05372] [PMID: 17122772]
[13]
Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature, 2007, 445(7123), 111-115.
[http://dx.doi.org/10.1038/nature05384] [PMID: 17122771]
[14]
Hadjimichael, C.; Chanoumidou, K.; Papadopoulou, N.; Arampatzi, P.; Papamatheakis, J.; Kretsovali, A. Common stemness regulators of embryonic and cancer stem cells. World J. Stem Cells, 2015, 7(9), 1150-1184.
[PMID: 26516408]
[15]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[16]
O’Brien, C.A.; Kreso, A.; Jamieson, C.H. Cancer stem cells and self-renewal. Clin. Cancer Res., 2010, 16(12), 3113-3120.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2824] [PMID: 20530701]
[17]
Sparmann, A.; van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer, 2006, 6(11), 846-856.
[http://dx.doi.org/10.1038/nrc1991] [PMID: 17060944]
[18]
Sauvageau, M.; Sauvageau, G. Polycomb group proteins: Multi faceted regulators of somatic stem cells and cancer. Cell Stem Cell, 2010, 7(3), 299-313.
[http://dx.doi.org/10.1016/j.stem.2010.08.002] [PMID: 20804967]
[19]
Li, D.W.; Tang, H.M.; Fan, J.W.; Yan, D.W.; Zhou, C.Z.; Li, S.X.; Wang, X.L.; Peng, Z.H. Expression level of Bmi-1 oncoprotein is associated with progression and prognosis in colon cancer. J. Cancer Res. Clin. Oncol., 2010, 136(7), 997-1006.
[http://dx.doi.org/10.1007/s00432-009-0745-7] [PMID: 20024662]
[20]
Du, J.; Li, Y.; Li, J.; Zheng, J. Polycomb group protein Bmi1 expression in colon cancers predicts the survival. Med. Oncol., 2010, 27(4), 1273-1276.
[http://dx.doi.org/10.1007/s12032-009-9373-y] [PMID: 19957112]
[21]
Han, X.; Fang, X.; Lou, X.; Hua, D.; Ding, W.; Foltz, G.; Hood, L.; Yuan, Y.; Lin, B. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS One, 2012, 7(8), e41335.
[http://dx.doi.org/10.1371/journal.pone.0041335] [PMID: 22912670]
[22]
Miyoshi, N.; Fujino, S.; Ohue, M.; Yasui, M.; Takahashi, Y.; Sugimura, K.; Tomokuni, A.; Akita, H.; Kobayashi, S.; Takahashi, H.; Omori, T.; Miyata, H.; Yano, M. The POU5F1 gene expression in colorectal cancer: A novel prognostic marker. Surg. Today, 2018, 48(7), 709-715.
[http://dx.doi.org/10.1007/s00595-018-1644-9] [PMID: 29488015]
[23]
Zhou, H.; Hu, Y.U.; Wang, W.; Mao, Y.; Zhu, J.; Zhou, B.; Sun, J.; Zhang, X. Expression of Oct-4 is significantly associated with the development and prognosis of colorectal cancer. Oncol. Lett., 2015, 10(2), 691-696.
[http://dx.doi.org/10.3892/ol.2015.3269] [PMID: 26622555]
[24]
Mitsui, K.; Tokuzawa, Y.; Itoh, H.; Segawa, K.; Murakami, M.; Takahashi, K.; Maruyama, M.; Maeda, M.; Yamanaka, S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113(5), 631-642.
[http://dx.doi.org/10.1016/S0092-8674(03)00393-3] [PMID: 12787504]
[25]
Meng, H.M.; Zheng, P.; Wang, X.Y.; Liu, C.; Sui, H.M.; Wu, S.J.; Zhou, J.; Ding, Y.Q.; Li, J. Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol. Ther., 2010, 9(4), 295-302.
[http://dx.doi.org/10.4161/cbt.9.4.10666] [PMID: 20026903]
[26]
Pan, T.; Xu, J.; Zhu, Y. Self-renewal molecular mechanisms of colorectal cancer stem cells. Int. J. Mol. Med., 2017, 39(1), 9-20.
[http://dx.doi.org/10.3892/ijmm.2016.2815] [PMID: 27909729]
[27]
Kemper, K.; Rodermond, H.; Colak, S.; Grandela, C.; Medema, J.P. Targeting colorectal cancer stem cells with inducible caspase- 9. Apoptosis, 2012, 17(5), 528-537.
[http://dx.doi.org/10.1007/s10495-011-0692-z] [PMID: 22223359]
[28]
Wilson, B.J.; Schatton, T.; Frank, M.H.; Frank, N.Y. Colorectal cancer stem cells: biology and therapeutic implications. Curr. Colorectal Cancer Rep., 2011, 7(2), 128-135.
[http://dx.doi.org/10.1007/s11888-011-0093-2] [PMID: 21552371]
[29]
Hall, M.N.; Chavarro, J.E.; Lee, I.M.; Willett, W.C.; Ma, J. A 22- year prospective study of fish, n-3 fatty acid intake, and colorectal cancer risk in men. Cancer Epidemiol. Biomarkers Prev., 2008, 17(5), 1136-1143.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2803] [PMID: 18483335]
[30]
Habermann, N.; Christian, B.; Luckas, B.; Pool-Zobel, B.L.; Lund, E.K.; Glei, M. Effects of fatty acids on metabolism and cell growth of human colon cell lines of different transformation state. Biofactors, 2009, 35(5), 460-467.
[http://dx.doi.org/10.1002/biof.60] [PMID: 19798733]
[31]
D’Eliseo, D.; Velotti, F. Omega-3 fatty acids and cancer cell cytotoxicity: Implication for multi-targeted cancer therapy. J. Clin. Med., 2016, 5(2), E15.
[http://dx.doi.org/10.3390/jcm5020015] [PMID: 26821053]
[32]
Calviello, G.; Serini, S.; Piccioni, E. n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: Molecular mechanisms involved. Curr. Med. Chem., 2007, 14(29), 3059-3069.
[http://dx.doi.org/10.2174/092986707782793934] [PMID: 18220742]
[33]
Kato, T.; Hancock, R.L.; Mohammadpour, H.; McGregor, B.; Manalo, P.; Khaiboullina, S.; Hall, M.R.; Pardini, L.; Pardini, R.S. Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett., 2002, 187(1-2), 169-177.
[http://dx.doi.org/10.1016/S0304-3835(02)00432-9] [PMID: 12359365]
[34]
Kato, T.; Kolenic, N.; Pardini, R.S. Docosahexaenoic acid (DHA), a primary tumor suppressive omega-3 fatty acid, inhibits growth of colorectal cancer independent of p53 mutational status. Nutr. Cancer, 2007, 58(2), 178-187.
[http://dx.doi.org/10.1080/01635580701328362] [PMID: 17640164]
[35]
Kuan, C.Y.; Walker, T.H.; Luo, P.G.; Chen, C.F. Long-chain polyunsaturated fatty acids promote paclitaxel cytotoxicity via inhibition of the MDR1 gene in the human colon cancer Caco-2 cell line. J. Am. Coll. Nutr., 2011, 30(4), 265-273.
[http://dx.doi.org/10.1080/07315724.2011.10719969] [PMID: 21917707]
[36]
Fahrmann, J.F.; Ballester, O.F.; Ballester, G.; Witte, T.R.; Salazar, A.J.; Kordusky, B.; Cowen, K.G.; Ion, G.; Primerano, D.A.; Boskovic, G.; Denvir, J.; Hardman, W.E. Inhibition of nuclear factor kappa B activation in early-stage chronic lymphocytic leukemia by omega-3 fatty acids. Cancer Invest., 2013, 31(1), 24-38.
[http://dx.doi.org/10.3109/07357907.2012.743553] [PMID: 23193970]
[37]
Burns, C.P.; Halabi, S.; Clamon, G.H.; Hars, V.; Wagner, B.A.; Hohl, R.J.; Lester, E.; Kirshner, J.J.; Vinciguerra, V.; Paskett, E. Phase I clinical study of fish oil fatty acid capsules for patients with cancer cachexia: Cancer and leukemia group B study 9473. Clin. Cancer Res., 1999, 5(12), 3942-3947.
[PMID: 10632323]
[38]
Ahmed, D.; Eide, P.W.; Eilertsen, I.A.; Danielsen, S.A.; Eknæs, M.; Hektoen, M.; Lind, G.E.; Lothe, R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, 2013, 2, e71.
[http://dx.doi.org/10.1038/oncsis.2013.35] [PMID: 24042735]
[39]
Giannini, G.; Ristori, E.; Cerignoli, F.; Rinaldi, C.; Zani, M.; Viel, A.; Ottini, L.; Crescenzi, M.; Martinotti, S.; Bignami, M.; Frati, L.; Screpanti, I.; Gulino, A. Human MRE11 is inactivated in mismatch repair-deficient cancers. EMBO Rep., 2002, 3(3), 248-254.
[http://dx.doi.org/10.1093/embo-reports/kvf044] [PMID: 11850399]
[40]
Kreso, A.; van Galen, P.; Pedley, N.M.; Lima-Fernandes, E.; Frelin, C.; Davis, T.; Cao, L.; Baiazitov, R.; Du, W.; Sydorenko, N.; Moon, Y.C.; Gibson, L.; Wang, Y.; Leung, C.; Iscove, N.N.; Arrowsmith, C.H.; Szentgyorgyi, E.; Gallinger, S.; Dick, J.E.; O’Brien, C.A. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med., 2014, 20(1), 29-36.
[http://dx.doi.org/10.1038/nm.3418] [PMID: 24292392]
[41]
Valk-Lingbeek, M.E.; Bruggeman, S.W.; van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell, 2004, 118(4), 409-418.
[http://dx.doi.org/10.1016/j.cell.2004.08.005] [PMID: 15315754]
[42]
Rosin-Arbesfeld, R.; Cliffe, A.; Brabletz, T.; Bienz, M. Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J., 2003, 22(5), 1101-1113.
[http://dx.doi.org/10.1093/emboj/cdg105] [PMID: 12606575]
[43]
Nusse, R.; Clevers, H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell, 2017, 169(6), 985-999.
[http://dx.doi.org/10.1016/j.cell.2017.05.016] [PMID: 28575679]
[44]
Bracht, K.; Nicholls, A.M.; Liu, Y.; Bodmer, W.F. 5-Fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency. Br. J. Cancer, 2010, 103(3), 340-346.
[http://dx.doi.org/10.1038/sj.bjc.6605780] [PMID: 20606684]
[45]
Efstathiou, J.A.; Liu, D.; Wheeler, J.M.; Kim, H.C.; Beck, N.E.; Ilyas, M.; Karayiannakis, A.J.; Mortensen, N.J.; Kmiot, W.; Playford, R.J.; Pignatelli, M.; Bodmer, W.F. Mutated epithelial cadherin is associated with increased tumorigenicity and loss of adhesion and of responsiveness to the motogenic trefoil factor 2 in colon carcinoma cells. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2316-2321.
[http://dx.doi.org/10.1073/pnas.96.5.2316] [PMID: 10051639]
[46]
Dalerba, P.; Dylla, S.J.; Park, I.K.; Liu, R.; Wang, X.; Cho, R.W.; Hoey, T.; Gurney, A.; Huang, E.H.; Simeone, D.M.; Shelton, A.A.; Parmiani, G.; Castelli, C.; Clarke, M.F. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA, 2007, 104(24), 10158-10163.
[http://dx.doi.org/10.1073/pnas.0703478104] [PMID: 17548814]
[47]
Vaish, M. Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications. Mol. Cancer, 2007, 6, 26.
[http://dx.doi.org/10.1186/1476-4598-6-26] [PMID: 17407576]
[48]
Sam, M.R.; Tavakoli-Mehr, M.; Safaralizadeh, R. Omega-3 fatty acid DHA modulates p53, survivin, and microRNA-16-1 expression in KRAS-mutant colorectal cancer stem-like cells. Genes Nutr., 2018, 13, 8.
[http://dx.doi.org/10.1186/s12263-018-0596-4] [PMID: 29619114]
[49]
Sam, M.R.; Esmaeillou, M.; Shokrgozar, M.A. Fish-oil-derived DHA-mediated enhancement of apoptosis in acute lymphoblastic leukemia cells is associated with accumulation of p53, downregulation of survivin, and caspase-3 activation. Nutr. Cancer, 2017, 69(1), 64-73.
[http://dx.doi.org/10.1080/01635581.2017.1247884] [PMID: 27880058]
[50]
Chamras, H.; Ardashian, A.; Heber, D.; Glaspy, J.A. Fatty acid modulation of MCF-7 human breast cancer cell proliferation, apoptosis and differentiation. J. Nutr. Biochem., 2002, 13(12), 711-716.
[http://dx.doi.org/10.1016/S0955-2863(02)00230-9] [PMID: 12550055]
[51]
Abdi, J.; Garssen, J.; Faber, J.; Redegeld, F.A. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells. J. Nutr. Biochem., 2014, 25(12), 1254-1262.
[http://dx.doi.org/10.1016/j.jnutbio.2014.06.013] [PMID: 25277647]
[52]
Hosseini, F.; Sam, M.R.; Jabbari, N.; Mozdarani, H. Modulating survivin as a radioresistant factor, caspase-3, and apoptosis by omega-3 docosahexaenoic acid sensitizes mutant-p53 colorectal cancer cells to γ-Irradiation. Cancer Biother. Radiopharm., 2018, 33(9), 387-395.
[http://dx.doi.org/10.1089/cbr.2018.2445] [PMID: 30395490]
[53]
Yang, T.; Fang, S.; Zhang, H.X.; Xu, L.X.; Zhang, Z.Q.; Yuan, K.T.; Xue, C.L.; Yu, H.L.; Zhang, S.; Li, Y.F.; Shi, H.P.; Zhang, Y. N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J. Nutr. Biochem., 2013, 24(5), 744-753.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.023] [PMID: 22854319]
[54]
Sam, M.R.; Ahangar, P.; Nejati, V.; Habibian, R. Treatment of LS174T colorectal cancer stem-like cells with n-3 PUFAs induces growth suppression through inhibition of survivin expression and induction of caspase-3 activation. Cell Oncol. (Dordr.), 2016, 39(1), 69-77.
[http://dx.doi.org/10.1007/s13402-015-0254-4] [PMID: 26671842]
[55]
Shmelkov, S.V.; Butler, J.M.; Hooper, A.T.; Hormigo, A.; Kushner, J.; Milde, T.; St Clair, R.; Baljevic, M.; White, I.; Jin, D.K.; Chadburn, A.; Murphy, A.J.; Valenzuela, D.M.; Gale, N.W.; Thurston, G.; Yancopoulos, G.D.; D’Angelica, M.; Kemeny, N.; Lyden, D.; Rafii, S. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J. Clin. Invest., 2008, 118(6), 2111-2120.
[http://dx.doi.org/10.1172/JCI34401] [PMID: 18497886]
[56]
Subramaniam, D.; Ramalingam, S.; Houchen, C.W.; Anant, S. Cancer stem cells: A novel paradigm for cancer prevention and treatment. Mini Rev. Med. Chem., 2010, 10(5), 359-371.
[http://dx.doi.org/10.2174/138955710791330954] [PMID: 20370703]
[57]
Lugli, A.; Iezzi, G.; Hostettler, I.; Muraro, M.G.; Mele, V.; Tornillo, L.; Carafa, V.; Spagnoli, G.; Terracciano, L.; Zlobec, I. Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br. J. Cancer, 2010, 103(3), 382-390.
[http://dx.doi.org/10.1038/sj.bjc.6605762] [PMID: 20606680]
[58]
Langan, R.C.; Mullinax, J.E.; Raiji, M.T.; Upham, T.; Summers, T.; Stojadinovic, A.; Avital, I. Colorectal cancer biomarkers and the potential role of cancer stem cells. J. Cancer, 2013, 4(3), 241-250.
[http://dx.doi.org/10.7150/jca.5832] [PMID: 23459666]
[59]
Abetov, D.; Mustapova, Z.; Saliev, T.; Bulanin, D. Biomarkers and signaling pathways of colorectal cancer stem cells. Tumour Biol., 2015, 36(3), 1339-1353.
[http://dx.doi.org/10.1007/s13277-015-3198-4] [PMID: 25680406]
[60]
Yashiro, M.; Hirakawa, K.; Boland, C.R. Mutations in TGFbeta- RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability. BMC Cancer, 2010, 10, 303.
[http://dx.doi.org/10.1186/1471-2407-10-303] [PMID: 20565851]
[61]
Voutsadakis, I.A. Pluripotency transcription factors in the pathogenesis of colorectal cancer and implications for prognosis. Biomarkers Med., 2015, 9(4), 349-361.
[http://dx.doi.org/10.2217/bmm.15.4] [PMID: 25808439]
[62]
Zhang, J.; Espinoza, L.A.; Kinders, R.J.; Lawrence, S.M.; Pfister, T.D.; Zhou, M.; Veenstra, T.D.; Thorgeirsson, S.S.; Jessup, J.M. NANOG modulates stemness in human colorectal cancer. Oncogene, 2013, 32(37), 4397-4405.
[http://dx.doi.org/10.1038/onc.2012.461] [PMID: 23085761]
[63]
Xie, X.; Piao, L.; Cavey, G.S.; Old, M.; Teknos, T.N.; Mapp, A.K.; Pan, Q. Phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. Oncogene, 2014, 33(16), 2040-2052.
[http://dx.doi.org/10.1038/onc.2013.173] [PMID: 23708658]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 10
Year: 2020
Page: [1221 - 1232]
Pages: 12
DOI: 10.2174/1871520620666200302113722
Price: $65

Article Metrics

PDF: 68
HTML: 1