A General Method for the Synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes Using Naturally Occurring Mandelic Acid as an Efficient Organo-catalyst in Aqueous Ethanol at Room Temperature

Author(s): Arvind Singh, Gurpreet Kaur, Amninder Kaur, Vivek K. Gupta, Bubun Banerjee*

Journal Name: Current Green Chemistry

Volume 7 , Issue 1 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

A simple, facile, straightforward and environmentally benign protocol has been developed for the efficient synthesis of pharmaceutically interesting 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol- 3-yl)(aryl)methanes and tris(indol-3-yl)methanes using a catalytic amount of mandelic acid as an efficient, naturally occurring, low-cost, commercially available organo-catalyst in aqueous ethanol at room temperature.

Keywords: bis(indol-3-yl)(aryl)methanes, 3, 3-bis(indol-3-yl)indolin-2-ones, tris(1H-indol-3-yl)methane, mandelic acid, room temperature, sustainable synthesis.

[1]
Ruiz-Sanchis, P.; Savina, S.A.; Albericio, F.; Álvarez, M. Structure, bioactivity and synthesis of natural products with hexahydropyrrolo[2,3-b]indole. Chemistry, 2011, 17(5), 1388-1408.
[http://dx.doi.org/10.1002/chem.201001451] [PMID: 21268138]
[2]
Gribble, G.W. Heterocyclic scaffolds II: Reactions and applications of indoles. Top. Heterocycl. Chem., 2010, 26, 1-480.
[http://dx.doi.org/10.1007/978-3-642-15733-2]
[3]
Vicente, R. Recent advances in indole syntheses: new routes for a classic target. Org. Biomol. Chem., 2011, 9(19), 6469-6480.
[http://dx.doi.org/10.1039/c1ob05750b] [PMID: 21779596]
[4]
Lounasmaa, M.; Tolvanen, A. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2000, 17(2), 175-191.
[http://dx.doi.org/10.1039/a809402k] [PMID: 10821112]
[5]
Hibino, S.; Choshi, T. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2001, 18(1), 66-87.
[http://dx.doi.org/10.1039/b004055j] [PMID: 11245401]
[6]
Wu, Y-J. New indole-containing medicinal compounds. Top. Heterocycl. Chem., 2010, 26, 1-29.
[http://dx.doi.org/10.1007/7081_2010_37]
[7]
Chao, W.R.; Yean, D.; Amin, K.; Green, C.; Jong, L. Computer-aided rational drug design: a novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling. J. Med. Chem., 2007, 50(15), 3412-3415.
[http://dx.doi.org/10.1021/jm070040e] [PMID: 17602463]
[8]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Landi, L.; Prata, C.; Berridge, M.V.; Grasso, C.; Fiebig, H.H.; Kelter, G.; Burger, A.M.; Kunkel, M.W. Antitumor activity of bis-indole derivatives. J. Med. Chem., 2008, 51(15), 4563-4570.
[http://dx.doi.org/10.1021/jm800194k] [PMID: 18598018]
[9]
Praveena, P.J.; Parameswaran, P.S.; Majik, M.S. Bis(indolyl) methane alkaloids: Isolation, bioactivity, and syntheses. Synthesis, 2015, 47, 1827-1837.
[http://dx.doi.org/10.1055/s-0034-1380415]
[10]
Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and trisindolylmethanes (BIMs and TIMs). Chem. Rev., 2010, 110(4), 2250-2293.
[http://dx.doi.org/10.1021/cr900195a] [PMID: 20041637]
[11]
Gaisina, I.N.; Gallier, F.; Ougolkov, A.V.; Kim, K.H.; Kurome, T.; Guo, S.; Holzle, D.; Luchini, D.N.; Blond, S.Y.; Billadeau, D.D.; Kozikowski, A.P. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3β inhibitors that suppress proliferation and survival of pancreatic cancer cells. J. Med. Chem., 2009, 52(7), 1853-1863.
[http://dx.doi.org/10.1021/jm801317h] [PMID: 19338355]
[12]
Queiroz, M.J.; Abreu, A.S.; Carvalho, M.S.D.; Ferreira, P.M.T.; Nazareth, N.; São-José Nascimento, M. Synthesis of new heteroaryl and heteroannulated indoles from dehydrophenylalanines: Antitumor evaluation. Bioorg. Med. Chem., 2008, 16(10), 5584-5589.
[http://dx.doi.org/10.1016/j.bmc.2008.04.004] [PMID: 18439831]
[13]
Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: a comprehensive review from 2000-2008. Anticancer. Agents Med. Chem., 2009, 9(4), 397-414.
[http://dx.doi.org/10.2174/1871520610909040397] [PMID: 19442041]
[14]
Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull. (Tokyo), 1994, 42(12), 2449-2451.
[http://dx.doi.org/10.1248/cpb.42.2449] [PMID: 7697760]
[15]
Veluri, R.; Oka, I.; Wagner-Döbler, I.; Laatsch, H. New indole alkaloids from the North Sea bacterium Vibrio parahaemolyticus Bio249. J. Nat. Prod., 2003, 66(11), 1520-1523.
[http://dx.doi.org/10.1021/np030288g] [PMID: 14640534]
[16]
Qin, W-B.; Chang, Q.; Bao, Y-H.; Wang, N.; Chen, Z-W.; Liu, L-X. Metal-free catalyzed oxidative trimerization of indoles by using TEMPO in air: a biomimetic approach to 2-(1H-indol-3-yl)-2,3′-biindolin-3-ones. Org. Biomol. Chem., 2012, 10(44), 8814-8821.
[http://dx.doi.org/10.1039/c2ob26390d] [PMID: 23044781]
[17]
Cai, S.X.; Li, D.H.; Zhu, T.J.; Wang, F.P.; Xiao, X.; Gu, Q.Q. Two new indole alkaloids from the marine-derived bacterium Aeromonas sp. CB101. Helv. Chim. Acta, 2010, 93, 791-795.
[http://dx.doi.org/10.1002/hlca.200900360]
[18]
Bell, R.; Carmeli, S.; Vibrindole, A. A metabolite of the marine bacterium, Vzbrzo parahaemolytzcus, isolated from the toxic mucus of the boxfish Ostraczon cubzcus. J. Nat. Prod., 1994, 57, 1587-1590.
[http://dx.doi.org/10.1021/np50113a022] [PMID: 7853008]
[19]
Zendah el Euch, I.; Shaaban, K.; Helmke, E.; Maier, A.; Fiebig, H.H. Laatsch. H. Barakacin: A thiazolylindole alkaloid isolated from a ruminal Pseudomonas sp. Z. Naturforsch. B, 2012, 67b, 417-420.
[http://dx.doi.org/10.5560/znb.2011-0277]
[20]
Lin, L.P.; Yuan, P.; Jiang, N.; Mei, Y.N.; Zhang, W.J.; Wu, H.M.; Zhang, A.H.; Cao, J.M.; Xiong, Z.X.; Lu, Y.; Tan, R.X. Gene-inspired mycosynthesis of skeletally new indole alkaloids. Org. Lett., 2015, 17(11), 2610-2613.
[http://dx.doi.org/10.1021/acs.orglett.5b00882] [PMID: 25985278]
[21]
Osawa, T.; Namiki, M. Structure elucidation of streptindole, A novel genotoxic metabolite isolated from Intestinal bacteria. Tetrahedron Lett., 1983, 24, 4719-4722.
[http://dx.doi.org/10.1016/S0040-4039(00)86237-1]
[22]
Queiroz, M.M.F.; Queiroz, E.F.; Zeraik, M.L.; Ebrahimi, S.N.; Marcourt, L.; Cuendet, M.; Castro-Gamboa, I.; Hamburger, M.; da Silva Bolzani, V.; Wolfender, J-L. Chemical composition of the bark of Tetrapterys mucronata and identification of acetylcholinesterase inhibitory constituents. J. Nat. Prod., 2014, 77(3), 650-656.
[http://dx.doi.org/10.1021/np401003p] [PMID: 24521095]
[23]
Fahy, E.; Potts, B.C.M.; Faulkner, D.J. 6-Bromotryptamine derivatives from the Gulf of California tunicate Didemnum candidum. J. Nat. Prod., 1991, 54, 564-569.
[http://dx.doi.org/10.1021/np50074a032]
[24]
Paira, P.; Hazra, A.; Kumar, S.; Paira, R.; Sahu, K.B.; Naskar, S.; Saha, P.; Mondal, S.; Maity, A.; Banerjee, S.; Mondal, N.B. Efficient synthesis of 3,3-diheteroaromatic oxindole analogues and their in vitro evaluation for spermicidal potential. Bioorg. Med. Chem. Lett., 2009, 19(16), 4786-4789.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.049] [PMID: 19564109]
[25]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[26]
Natarajan, A.; Fan, Y.H.; Chen, H.; Guo, Y.; Iyasere, J.; Harbinski, F.; Christ, W.J.; Aktas, H.; Halperin, J.A. 3,3-diaryl-1,3-dihydroindol-2-ones as antiproliferatives mediated by translation initiation inhibition. J. Med. Chem., 2004, 47(8), 1882-1885.
[http://dx.doi.org/10.1021/jm0499716] [PMID: 15055987]
[27]
Kamal, A.; Srikanth, Y.V.V.; Khan, M.N.A.; Shaik, T.B.; Ashraf, M. Synthesis of 3,3-diindolyl oxyindoles efficiently catalysed by FeCl3 and their in vitro evaluation for anticancer activity. Bioorg. Med. Chem. Lett., 2010, 20(17), 5229-5231.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.152] [PMID: 20673629]
[28]
Subba Reddy, B.V.; Rajeswari, N.; Sarangapani, M.; Prashanthi, Y.; Ganji, R.J.; Addlagatta, A. Iodine-catalyzed condensation of isatin with indoles: a facile synthesis of di(indolyl)indolin-2-ones and evaluation of their cytotoxicity. Bioorg. Med. Chem. Lett., 2012, 22(7), 2460-2463.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.011] [PMID: 22386528]
[29]
Praveen, C.; Ayyanar, A.; Perumal, P.T. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones. Bioorg. Med. Chem. Lett., 2011, 21(13), 4072-4077.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.117] [PMID: 21621411]
[30]
Imran, S.; Taha, M.; Ismail, N.H.; Fayyaz, S.; Khan, K.M.; Choudhary, M.I. Synthesis, biological evaluation, and docking studies of novel thiourea derivatives of bisindolylmethane as carbonic anhydrase II inhibitor. Bioorg. Chem., 2015, 62, 83-93.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.001] [PMID: 26275866]
[31]
Giannini, G.; Marzi, M.; Marzo, M.D.; Battistuzzi, G.; Pezzi, R.; Brunetti, T.; Cabri, W.; Vesci, L.; Pisano, C. Exploring bis-(indolyl)methane moiety as an alternative and innovative CAP group in the design of histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(10), 2840-2843.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.101] [PMID: 19359173]
[32]
Praveen, C.; DheenKumar, P.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20(24), 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075] [PMID: 21071222]
[33]
Mandal, S.M.; Pegu, R.; Porto, W.F.; Franco, O.L.; Pratihar, S. Novel boronic acid derivatives of bis(indolyl) methane as anti-MRSA agents. Bioorg. Med. Chem. Lett., 2017, 27(10), 2135-2138.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.070] [PMID: 28377058]
[34]
Jamsheena, V.; Shilpa, G.; Saranya, J.; Harry, N.A.; Lankalapalli, R.S.; Priya, S. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells. Chem. Biol. Interact., 2016, 247, 11-21.
[http://dx.doi.org/10.1016/j.cbi.2016.01.017] [PMID: 26807764]
[35]
Sarva, S.; Harinath, J.S.; Sthanikam, S.P.; Ethiraj, S.; Vaithiyalingam, M.; Cirandur, S.R. Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chin. Chem. Lett., 2016, 27, 16-20.
[http://dx.doi.org/10.1016/j.cclet.2015.08.012]
[36]
Grosso, C.; Cardoso, A.L.; Lemos, A.; Varela, J.; Rodrigues, M.J.; Custódio, L.; Barreira, L.; Pinho e Melo, T.M.V.D. Novel approach to bis(indolyl)methanes: de novo synthesis of 1-hydroxyiminomethyl derivatives with anti-cancer properties. Eur. J. Med. Chem., 2015, 93, 9-15.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.050] [PMID: 25644672]
[37]
Maestro, A.; Martín-Encinas, E.; Alonso, C.; Martinez de Marigorta, E.; Rubiales, G.; Vicario, J.; Palacios, F. Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. Eur. J. Med. Chem., 2018, 158, 874-883.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.011] [PMID: 30253344]
[38]
Sathiyaraj, S.; Shanavas, A.; Kumar, K.A.; Sathiyaseelan, A.; Senthilselvan, J.; Kalaichelvan, P.T.; Nasar, A.S. The first example of bis(indolyl)methane based hyperbranched polyurethanes: synthesis, solar cell application and anti-bacterial and anti-oxidant properties. Eur. Polym. J., 2017, 95, 216-231.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.08.021]
[39]
Sujatha, K.; Perumal, P.T.; Muralidharan, D.; Rajendran, M. Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes. Indian J. Chem., 2009, 48B, 267-272.
[40]
Marrelli, M.; Cachet, X.; Conforti, F.; Sirianni, R.; Chimento, A.; Pezzi, V.; Michel, S.; Statti, G.A.; Menichini, F. Synthesis of a new bis(indolyl)methane that inhibits growth and induces apoptosis in human prostate cancer cells. Nat. Prod. Res., 2013, 27(21), 2039-2045.
[http://dx.doi.org/10.1080/14786419.2013.824440] [PMID: 23962092]
[41]
Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methane and synthetic analogs. Cancer Lett., 2008, 269(2), 326-338.
[http://dx.doi.org/10.1016/j.canlet.2008.04.021] [PMID: 18501502]
[42]
Dwivedi, K.D.; Reddy, M.S.; Nandigama, S.K.; Chowhan, L.R. Exploring TiO2 NPs as efficient catalyst for 1,6-Michael addition of 3-methyl-5-pyrazolone on 3-methyl-4-nitro-5-alkenyl isoxazoles and rapid synthesis of 3,3-bis(indolyl)oxindoles in water. Synth. Commun., 2018, 48, 2695-2707.
[http://dx.doi.org/10.1080/00397911.2018.1518456]
[43]
Azizian, J.; Mohammadi, A.A.; Karimi, N.; Mohammadizadeh, M.R.; Karimi, A.R. Silica sulfuric acid a novel and heterogeneous catalyst for the synthesis of some new oxindole derivatives. Catal. Commun., 2006, 7, 752-755.
[http://dx.doi.org/10.1016/j.catcom.2006.01.026]
[44]
Karimi, N.; Oskooi, H.; Heravi, M.; Saeedi, M.; Zakeri, M.; Tavakoli, N. On water: bronsted acidic ionic liquid [(CH2)4SO3HMIM][HSO4] catalysed synthesis of oxindoles derivatives. Chin. J. Chem., 2011, 29, 321-323.
[http://dx.doi.org/10.1002/cjoc.201190085]
[45]
Azizian, J.; Mohammadi, A.A.; Karimi, A.R.; Mohammadizadeh, M.R. KAl(SO4)2.12H2O as a recyclable Lewis acid catalyst for synthesis of some new oxindoles in aqueous media. J. Chem. Res., 2004, 2004, 424-426.
[http://dx.doi.org/10.3184/0308234041423600]
[46]
Tayade, Y.A.; Patil, D.R.; Wagh, Y.B.; Jangle, A.D.; Dalal, D.S. An efficient synthesis of 3-indolyl-3-hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones catalyzed by sulfonated β-CD as a supramolecular catalyst in water. Tetrahedron Lett., 2015, 56, 666-673.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.012]
[47]
Wang, S-Y.; Ji, S-J. Facile synthesis of 3,3-di(heteroaryl)indolin-2-one derivatives catalyzed by ceric ammonium nitrate (CAN) under ultrasound irradiation. Tetrahedron, 2006, 62, 1527-1535.
[http://dx.doi.org/10.1016/j.tet.2005.11.011]
[48]
Chakrabarty, M.; Sarkar, S.; Harigaya, Y. A facile clay-mediated synthesis of 3,3-diindolyl-2-indolinones from isatins. J. Chem. Res., 2005, 2005, 540-542.
[http://dx.doi.org/10.3184/030823405774663264]
[49]
Nikpassand, M.; Mamaghani, M.; Tabatabaeian, K.; Samimi, H.A. An efficient and clean synthesis of symmetrical and unsymmetrical 3,3-di(indolyl)indolin-2-ones using KSF. Synth. Commun., 2010, 40, 3552-3560.
[http://dx.doi.org/10.1080/00397910903457399]
[50]
Sarrafi, Y.; Alimohammadi, K.; Sadatshahabi, M.; Norozipoor, N. An improved catalytic method for the synthesis of 3,3-di(indolyl)oxindoles using Amberlyst 15 as a heterogeneous and reusable catalyst in water. Monatsh. Chem., 2012, 143, 1519-1522.
[http://dx.doi.org/10.1007/s00706-012-0723-7]
[51]
Yadav, J.S.; Reddy, B.V.S.; Gayathri, K.U.; Meraj, S.; Prasad, A.R. Bismuth(III) triflate catalyzed condensation of isatin with indoles and pyrroles¬: A facile synthesis of 3,3-diindolyl- and 3,3-dipyrrolyl oxindoles. Synthesis, 2006, 24, 4121-4123.
[http://dx.doi.org/10.1055/s-2006-950373]
[52]
Saffar-Teluri, A. Boron trifluoride supported on nano-SiO2: An efficient and reusable heterogeneous catalyst for the synthesis of bis(indolyl)methanes and oxindole derivatives. Res. Chem. Intermed., 2014, 40, 1061-1067.
[http://dx.doi.org/10.1007/s11164-013-1021-7]
[53]
Gao, G.; Han, Y.; Zhang, Z.H. Catalyst free synthesis of bis(indolyl)methanes and 3,3-bis (indolyl)oxindoles in aqueous ethyl lactate. ChemistrySelect, 2017, 2, 11561-11564.
[http://dx.doi.org/10.1002/slct.201702326]
[54]
Deb, M.L.; Bhuyan, P.J. Water-promoted synthesis of 3,3′-di(indolyl)oxindoles. Synth. Commun., 2009, 39, 2240-2243.
[http://dx.doi.org/10.1080/00397910802654690]
[55]
Brahmachari, G.; Banerjee, B. Facile and one-pot access of 3,3-bis(indol-3-yl)indolin-2-ones and 2,2-bis(indol-3-yl)acenaphthylen-1(2H) one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 2802-2812.
[http://dx.doi.org/10.1021/sc500575h]
[56]
Borse, A.U.; Patil, M.N.; Patil, N.L. Expeditious, mild and solvent free synthesis of bis(indolyl)methanes, using a mixture of phosphorus pentoxide in methanesulfonic acid. E-J. Chem., 2012, 9, 1313-1319.
[http://dx.doi.org/10.1155/2012/637536]
[57]
Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R.; Crooks, P.A. An eco-friendly improved protocol for the synthesis of bis(3-indolyl)methanes using poly(4-vinylpyridinium)hydrogen sulfate as efficient, heterogeneous, and recyclable solid acid catalyst. ISRN Org. Chem., 2013, 2013, 616932
[http://dx.doi.org/10.1155/2013/616932] [PMID: 24052864]
[58]
Hosseini-Sarvari, M. Synthesis of bis(indolyl)methanes using a catalytic amount of ZnO under solvent-free conditions. Synth. Commun., 2008, 38, 832-840.
[http://dx.doi.org/10.1080/00397910701845274]
[59]
Li, J-T.; Dai, H.G.; Xu, W-Z.; Li, T.S. An efficient and practical synthesis of bis(indolyl)methanes catalyzed by aminosulfonic acid under ultrasound. Ultrason. Sonochem., 2006, 13(1), 24-27.
[http://dx.doi.org/10.1016/j.ultsonch.2004.12.004] [PMID: 16223682]
[60]
Azizi, N.; Torkian, L.; Saidi, M.R. Highly efficient synthesis of bis(indolyl)methanes in water. J. Mol. Catal. Chem., 2007, 275, 109-112.
[http://dx.doi.org/10.1016/j.molcata.2007.05.024]
[61]
Silveira, C.C.; Mendes, S.R.; Líbero, F.M.; Lenardao, E.J.; Perin, G. Glycerin and CeCl3.7H2O: A new and efficient recyclable medium for the synthesis of bis(indolyl)methanes. Tetrahedron Lett., 2009, 50, 6060-6063.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.062]
[62]
Chen, D.; Yu, L.; Wang, P.G. Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones. Tetrahedron Lett., 1996, 37, 4467-4470.
[http://dx.doi.org/10.1016/0040-4039(96)00958-6]
[63]
Sheng, S-R.; Wang, Q-Y.; Ding, Y.; Liu, X-L.; Cai, M-Z. Synthesis of bis(indolyl)methanes using recyclable PEG-supported sulfonic acid as catalyst. Catal. Lett., 2009, 128, 418-422.
[http://dx.doi.org/10.1007/s10562-008-9767-z]
[64]
Babu, G.; Sridhar, N.; Perumal, P.T. A convenient method of synthesis of bisindolylmethanes: Indium trichloridecatalyzed reactions of indole with aldehydes and schiff’s bases. Synth. Commun., 2000, 30, 1609-1614.
[http://dx.doi.org/10.1080/00397910008087197]
[65]
Vijayakumar, B.; Shakthi, N.D. A facile synthesis of indole derivatives catalyzed by CeCl3.7H2O under microwave irradiation. Ind. J. Adv. Chem. Sci., 2013, 1, 221-227.
[66]
Hasaninejad, A.; Zare, A.; Sharghi, H.; Khalifeh, R.; Reza, A. Zare. M. PCl5 as a mild and efficient catalyst for the synthesis of bis(indolyl)methanes and di-bis(indolyl)methanes. Bull. Chem. Soc. Ethiop., 2008, 22, 453-458.
[http://dx.doi.org/10.4314/bcse.v22i3.61243]
[67]
Zhang, Z-H.; Yin, L.; Wang, Y-M. An efficient and practical process for the synthesis of bis(indolyl)methanes catalyzed by zirconium tetrachloride. Synthesis, 2005, 2005, 1949-1954.
[http://dx.doi.org/10.1055/s-2005-869959]
[68]
Chakrabarty, M.; Ghosh, N.; Basak, R.; Harigaya, Y. Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: A mild, expedient synthesis of diindolylalkanes and vibrindole A. Tetrahedron Lett., 2002, 43, 4075-4078.
[http://dx.doi.org/10.1016/S0040-4039(02)00682-2]
[69]
Maiti, A.K.; Bhattacharyya, P. Montmorillonite clay-catalysed synthesis of bis(indol-3-yl)methanes and 1,2-bis(indol-3-yl)ethanes. J. Chem. Res. (S), 1997, 1997, 424-425.
[http://dx.doi.org/10.1039/a701355h]
[70]
Handy, S.; Westbrook, N.M. A mild synthesis of bis(indolyl)methanes using a deep eutectic solvent. Tetrahedron Lett., 2014, 55, 4969-4971.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.024]
[71]
Merinos, J.P.G.; Ruíz, H.L.; López, Y.; Lima, S.R. Synthesis of bis(indolyl)methanes Catalyzed by Triethylborane. Lett. Org. Chem., 2015, 12(5), 332-336.
[http://dx.doi.org/10.2174/1570178612666150220225335] [PMID: 26120289]
[72]
Kidwai, M.; Chauhan, R.; Bhatnagar, D. Nafion-H catalyzed efficient condensation of indoles with aromatic aldehydes in PEG-water solvent system: A green approach. Arab. J. Chem., 2016, 9, S2004-S2010.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.009]
[73]
Bartoli, G.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L. Solvent-free indoles addition to carbonyl compounds promoted by CeCl3.7H2O-NaI-SiO2: An efficient method for the synthesis of streptindole. Synthesis, 2004, 2004, 0895-0900.
[74]
Zare, A.; Parhami, A.; Moosavi-Zare, A.R.; Hasaninejad, A.; Khalafi-Nezhad, A.; Beyzavi, M.H. A catalyst-free protocol for the green and efficient condensation of indoles with aldehydes in ionic liquids. Can. J. Chem., 2009, 87, 416-421.
[http://dx.doi.org/10.1139/V08-172]
[75]
Hasaninejad, A.; Zare, A.; Sharghi, H.; Niknam, K. Shekouhya. M. P2O5/SiO2 as an efficient, mild, and heterogeneous catalytic system for the condensation of indoles with carbonyl compounds under solvent-free conditions. ARKIVOC, 2007, xiv, 39-50.
[76]
Ghorbani-Vaghei, R.; Veisia, H. Poly(N,N′-dichloro-N-ethyl-benzene-1,3-disulfonamide) and N,N,N′,N’tetrachlorobenzene-1,3-disulfonamide as novel catalytic reagents for synthesis of bis-indolyl, tris-indolyl, di(bis-indolyl), tri(bis-indolyl) and tetra(bis-indolyl) methanes under solid-state, solvent and water conditions. J. Braz. Chem. Soc., 2010, 21, 193-201.
[http://dx.doi.org/10.1590/S0103-50532010000200002]
[77]
Khaksar, S.; Ustad, S.M. Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives. J. Fluor. Chem., 2011, 132, 937-939.
[http://dx.doi.org/10.1016/j.jfluchem.2011.07.011]
[78]
Mhaldar, S.N.; Mandrekar, K.S.; Gawde, M.K.; Shet, R.V.; Tilve, S.G. Solventless mechano-synthesis of bis(indolyl)methanes. Synth. Commun., 2019, 49, 94-101.
[http://dx.doi.org/10.1080/00397911.2018.1542732]
[79]
Ghorbani-Vaghei, R.; Veisi, H.; Keypour, H.; Dehghani-Firouzabadi, A.A. A practical and efficient synthesis of bis(indolyl)methanes in water, and synthesis of di-, tri-, and tetra(bis-indolyl)methanes under thermal conditions catalyzed by oxalic acid dihydrate. Mol. Divers., 2010, 14(1), 87-96.
[http://dx.doi.org/10.1007/s11030-009-9150-z] [PMID: 19449112]
[80]
Swetha, A.; Babu, B.M.; Meshram, H.M. An efficient and rapid protocol for the synthesis of diversely functionalized bisindolylmethanes. Tetrahedron Lett., 2016, 56, 1775-1779.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.032]
[81]
Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Silica supported sodium hydrogen sulfate and amberlyst-15: two efficient heterogeneous catalysts for facile synthesis of bis and tris(1h-indol-3-yl)methanes from indoles and carbonyl compounds. Adv. Synth. Catal., 2003, 345, 557-559.
[http://dx.doi.org/10.1002/adsc.200303022]
[82]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[83]
Banerjee, B.; Brahmachari, G. Room temperature metal-free synthesis of aryl/heteroaryl-substituted bis(6-aminouracil-5-yl)methanes using sulfamic acid (NH2SO3H) as an efficient and eco-friendly organo-catalyst. Curr. Organocatal., 2016, 3, 125-132.
[http://dx.doi.org/10.2174/2213337202666150812231130]
[84]
Brahmachari, G.; Banerjee, B. Sulfamic acid-catalyzed carbon-carbon and carbon-heteroatom bond forming reactions: An overview. Curr. Organocatal., 2016, 3, 93-124.
[http://dx.doi.org/10.2174/2213337202666150812230830]
[85]
Oliveira, V.G.; Cardoso, M.F.C.; Forezi, L.S.M. Organocatalysis: A brief overview on its evolution and applications. Catalysts, 2018, 8, 605.
[http://dx.doi.org/10.3390/catal8120605]
[86]
Banerjee, B.; Bhardwaj, V.; Kaur, A.; Kaur, G.; Singh, A. Catalytic applications of saccharin and its derivatives in organic synthesis. Curr. Org. Chem., 2019, 23, 3191-3205.
[http://dx.doi.org/10.2174/1385272823666191121144758]
[87]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multicomponent synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[88]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5, 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[89]
Kaur, G.; Thakur, S.; Kaundal, P.; Chandel, K.; Banerjee, B. p-Dodecylbenzenesulfonic acid: An efficient brønsted acid-surfactant-combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect, 2018, 3, 12918-12936.
[http://dx.doi.org/10.1002/slct.201802824]
[90]
Kaur, G.; Singh, A.; Bala, K.; Devi, M.; Kumari, A.; Devi, S.; Devi, R.; Gupta, V.K.; Banerjee, B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem., 2019, 23, 1778-1788.
[http://dx.doi.org/10.2174/1385272822666190924182538]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 1
Year: 2020
Published on: 14 May, 2020
Page: [128 - 140]
Pages: 13
DOI: 10.2174/2213346107666200228125715
Price: $25

Article Metrics

PDF: 15
HTML: 1