A Review of IGF1 Signaling and IGF1-related Long Noncoding RNAs in Chemoresistance of Cancer

Author(s): Li Liu, Xiaomao Li*

Journal Name: Current Cancer Drug Targets

Volume 20 , Issue 5 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cancer is still a serious public issue that humans face. Chemoresistance is one of the most important reasons for relapse and poor prognosis. The accumulated data support that the polymorphisms in IGF1 are correlated with both circulating IGF1 levels and cancer risk and activation of IGF1signaling enhances the progression of cancer. Here, we emphasize the role of IGF1 in resistance to various chemotherapies. Dysregulation of IGF1-related lncRNAs may also play an important role in the regulation of chemoresistance by IGF1. Finally, targeting the IGF1 pathway and lncRNAs is effective for increasing the sensitivity of cancer cells to chemotherapies. More basic and clinical studies need to be conducted to investigate the value of targeting IGF1 and IGF1-related lncRNAs in restoring sensitivity to chemotherapies.

Keywords: Cancer, IGF1, chemoresistance, lncRNAs, therapy, chemotherapy.

[1]
Heron, M. Deaths: Leading Causes for 2015. Natl. Vital Stat. Rep., 2017, 66(5), 1-76.
[PMID: 29235984]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[5]
Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol. Ther., 2016, 160, 145-158.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.008] [PMID: 26899500]
[6]
Santos, J.C.; Ribeiro, M.L.; Sarian, L.O.; Ortega, M.M.; Derchain, S.F. Exosomes-mediate microRNAs transfer in breast cancer chemoresistance regulation. Am. J. Cancer Res., 2016, 6(10), 2129-2139.
[PMID: 27822407]
[7]
Martz, C.A.; Ottina, K.A.; Singleton, K.R.; Jasper, J.S.; Wardell, S.E.; Peraza-Penton, A.; Anderson, G.R.; Winter, P.S.; Wang, T.; Alley, H.M.; Kwong, L.N.; Cooper, Z.A.; Tetzlaff, M.; Chen, P.L.; Rathmell, J.C.; Flaherty, K.T.; Wargo, J.A.; McDonnell, D.P.; Sabatini, D.M.; Wood, K.C. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci. Signal., 2014, 7(357), ra121.
[http://dx.doi.org/10.1126/scisignal.aaa1877] [PMID: 25538079]
[8]
Magee, P.; Shi, L.; Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl. Med., 2015, 3(21), 332.
[PMID: 26734642]
[9]
Neirijnck, Y.; Calvel, P.; Kilcoyne, K.R.; Kühne, F.; Stévant, I.; Griffeth, R.J.; Pitetti, J.L.; Andric, S.A.; Hu, M.C.; Pralong, F.; Smith, L.B.; Nef, S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB J., 2018, 32(6), 3321-3335.
[http://dx.doi.org/10.1096/fj.201700769RR] [PMID: 29401624]
[10]
Dyer, A.H.; Vahdatpour, C.; Sanfeliu, A.; Tropea, D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience, 2016, 325, 89-99.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.056] [PMID: 27038749]
[11]
Boguszewski, C.L.; Boguszewski, M.C.D.S. Growth Hormone’s Links to Cancer. Endocr. Rev., 2019, 40(2), 558-574.
[http://dx.doi.org/10.1210/er.2018-00166] [PMID: 30500870]
[12]
Yao, R.W.; Wang, Y.; Chen, L.L. Cellular functions of long noncoding RNAs. Nat. Cell Biol., 2019, 21(5), 542-551.
[http://dx.doi.org/10.1038/s41556-019-0311-8] [PMID: 31048766]
[13]
Li, Z.; Wei, D.; Yang, C.; Sun, H.; Lu, T.; Kuang, D. Overexpression of long noncoding RNA, NEAT1 promotes cell proliferation, invasion and migration in endometrial endometrioid adenocarcinoma. Biomed. Pharmacother., 2016, 84, 244-251.
[http://dx.doi.org/10.1016/j.biopha.2016.09.008] [PMID: 27664948]
[14]
Chen, X.; Dong, H.; Liu, S.; Yu, L.; Yan, D.; Yao, X.; Sun, W.; Han, D.; Gao, G. Long noncoding RNA MHENCR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway. Am. J. Transl. Res., 2017, 9(1), 90-102.
[PMID: 28123636]
[15]
Lei, Q.; Pan, Q.; Li, N.; Zhou, Z.; Zhang, J.; He, X.; Peng, S.; Li, G.; Sidhu, K.; Chen, S.; Hua, J. H19 regulates the proliferation of bovine male germline stem cells via IGF-1 signaling pathway. J. Cell. Physiol., 2018, 234(1), 915-926.
[http://dx.doi.org/10.1002/jcp.26920] [PMID: 30069947]
[16]
Chang, H-P.; Yang, S-F.; Wang, S-L.; Su, P-H. Associations among IGF-1, IGF2, IGF-1R, IGF-2R, IGFBP-3, insulin genetic polymorphisms and central precocious puberty in girls. BMC Endocr. Disord., 2018, 18(1), 66.
[http://dx.doi.org/10.1186/s12902-018-0271-1] [PMID: 30249230]
[17]
Bruchim, I.; Sarfstein, R.; Werner, H. The IGF Hormonal Network in Endometrial Cancer: Functions, Regulation, and Targeting Approaches. Front. Endocrinol. (Lausanne), 2014, 5, 76.
[http://dx.doi.org/10.3389/fendo.2014.00076] [PMID: 24904527]
[18]
Laron, Z. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency. Hormones (Athens), 2008, 7(1), 24-27.
[http://dx.doi.org/10.14310/horm.2002.1111034] [PMID: 18359741]
[19]
Bach, L.A. IGF-binding proteins. J. Mol. Endocrinol., 2018, 61(1), T11-T28.
[http://dx.doi.org/10.1530/JME-17-0254] [PMID: 29255001]
[20]
Philippou, A.; Maridaki, M.; Pneumaticos, S.; Koutsilieris, M. The complexity of the IGF1 gene splicing, posttranslational modification and bioactivity. Mol. Med., 2014, 20, 202-214.
[http://dx.doi.org/10.2119/molmed.2014.00011] [PMID: 24637928]
[21]
Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[22]
Roux, P.P.; Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev., 2004, 68(2), 320-344.
[http://dx.doi.org/10.1128/MMBR.68.2.320-344.2004] [PMID: 15187187]
[23]
Frago, S.; Nicholls, R.D.; Strickland, M.; Hughes, J.; Williams, C.; Garner, L.; Surakhy, M.; Maclean, R.; Rezgui, D.; Prince, S.N.; Zaccheo, O.J.; Ebner, D.; Sanegre, S.; Yu, S.; Buffa, F.M.; Crump, M.P.; Hassan, A.B. Functional evolution of IGF2:IGF2R domain 11 binding generates novel structural interactions and a specific IGF2 antagonist. Proc. Natl. Acad. Sci. USA, 2016, 113(20), E2766-E2775.
[http://dx.doi.org/10.1073/pnas.1513023113] [PMID: 27140600]
[24]
Hughes, J.; Surakhy, M.; Can, S.; Ducker, M.; Davies, N.; Szele, F.; Bühnemann, C.; Carter, E.; Trikin, R.; Crump, M.P.; Frago, S.; Hassan, A.B. Maternal transmission of an Igf2r domain 11: IGF2 binding mutant allele (Igf2rI1565A) results in partial lethality, overgrowth and intestinal adenoma progression. Sci. Rep., 2019, 9(1), 11388.
[http://dx.doi.org/10.1038/s41598-019-47827-9] [PMID: 31388182]
[25]
Guevara-Aguirre, J.; Guevara, A.; Palacios, I.; Pérez, M.; Prócel, P.; Terán, E. GH and GHR signaling in human disease. Growth Horm. IGF Res., 2018, 38, 34-38.
[http://dx.doi.org/10.1016/j.ghir.2017.12.006] [PMID: 29395968]
[26]
Varewijck, A.J.; Janssen, J.A.M.J.L. Insulin and its analogues and their affinities for the IGF1 receptor. Endocr. Relat. Cancer, 2012, 19(5), F63-F75.
[http://dx.doi.org/10.1530/ERC-12-0026] [PMID: 22420005]
[27]
Nguyen, L.K.; Kolch, W.; Kholodenko, B.N. When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun. Signal., 2013, 11, 52.
[http://dx.doi.org/10.1186/1478-811X-11-52] [PMID: 23902637]
[28]
Morselli, E.; Santos, R.S.; Gao, S.; Ávalos, Y.; Criollo, A.; Palmer, B.F.; Clegg, D.J. Impact of estrogens and estrogen receptor-α in brain lipid metabolism. Am. J. Physiol. Endocrinol. Metab., 2018, 315(1), E7-E14.
[http://dx.doi.org/10.1152/ajpendo.00473.2017] [PMID: 29509437]
[29]
Gu, F.; Schumacher, F.R.; Canzian, F.; Allen, N.E.; Albanes, D.; Berg, C.D.; Berndt, S.I.; Boeing, H.; Bueno-de-Mesquita, H.B.; Buring, J.E.; Chabbert-Buffet, N.; Chanock, S.J.; Clavel-Chapelon, F.; Dumeaux, V.; Gaziano, J.M.; Giovannucci, E.L.; Haiman, C.A.; Hankinson, S.E.; Hayes, R.B.; Henderson, B.E.; Hunter, D.J.; Hoover, R.N.; Johansson, M.; Key, T.J.; Khaw, K.T.; Kolonel, L.N.; Lagiou, P.; Lee, I.M.; LeMarchand, L.; Lund, E.; Ma, J.; Onland-Moret, N.C.; Overvad, K.; Rodriguez, L.; Sacerdote, C.; Sánchez, M.J.; Stampfer, M.J.; Stattin, P.; Stram, D.O.; Thomas, G.; Thun, M.J.; Tjønneland, A.; Trichopoulos, D.; Tumino, R.; Virtamo, J.; Weinstein, S.J.; Willett, W.C.; Yeager, M.; Zhang, S.M.; Kaaks, R.; Riboli, E.; Ziegler, R.G.; Kraft, P. Eighteen insulin-like growth factor pathway genes, circulating levels of IGF-I and its binding protein, and risk of prostate and breast cancer. Cancer Epidemiol. Biomarkers Prev., 2010, 19(11), 2877-2887.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0507] [PMID: 20810604]
[30]
Palles, C.; Johnson, N.; Coupland, B.; Taylor, C.; Carvajal, J.; Holly, J.; Fentiman, I.S.; Silva, Idos.S.; Ashworth, A.; Peto, J.; Fletcher, O. Identification of genetic variants that influence circulating IGF1 levels: a targeted search strategy. Hum. Mol. Genet., 2008, 17(10), 1457-1464.
[http://dx.doi.org/10.1093/hmg/ddn034] [PMID: 18250100]
[31]
Patel, A.V.; Cheng, I.; Canzian, F.; Le Marchand, L.; Thun, M.J.; Berg, C.D.; Buring, J.; Calle, E.E.; Chanock, S.; Clavel-Chapelon, F.; Cox, D.G.; Dorronsoro, M.; Dossus, L.; Haiman, C.A.; Hankinson, S.E.; Henderson, B.E.; Hoover, R.; Hunter, D.J.; Kaaks, R.; Kolonel, L.N.; Kraft, P.; Linseisen, J.; Lund, E.; Manjer, J.; McCarty, C.; Peeters, P.H.; Pike, M.C.; Pollak, M.; Riboli, E.; Stram, D.O.; Tjonneland, A.; Travis, R.C.; Trichopoulos, D.; Tumino, R.; Yeager, M.; Ziegler, R.G.; Feigelson, H.S. IGF-1, IGFBP-1, and IGFBP-3 polymorphisms predict circulating IGF levels but not breast cancer risk: findings from the Breast and Prostate Cancer Cohort Consortium (BPC3). PLoS One, 2008, 3(7) e2578
[http://dx.doi.org/10.1371/journal.pone.0002578] [PMID: 18596909]
[32]
Al-Zahrani, A.; Sandhu, M.S.; Luben, R.N.; Thompson, D.; Baynes, C.; Pooley, K.A.; Luccarini, C.; Munday, H.; Perkins, B.; Smith, P.; Pharoah, P.D.; Wareham, N.J.; Easton, D.F.; Ponder, B.A.; Dunning, A.M. IGF1 and IGFBP3 tagging polymorphisms are associated with circulating levels of IGF1, IGFBP3 and risk of breast cancer. Hum. Mol. Genet., 2006, 15(1), 1-10.
[http://dx.doi.org/10.1093/hmg/ddi398] [PMID: 16306136]
[33]
Ennishi, D.; Shitara, K.; Ito, H.; Hosono, S.; Watanabe, M.; Ito, S.; Sawaki, A.; Yatabe, Y.; Yamao, K.; Tajima, K.; Tanimoto, M.; Tanaka, H.; Hamajima, N.; Matsuo, K. Association between insulin-like growth factor-1 polymorphisms and stomach cancer risk in a Japanese population. Cancer Sci., 2011, 102(12), 2231-2235.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02062.x] [PMID: 21854509]
[34]
Dong, X.; Li, Y.; Tang, H.; Chang, P.; Hess, K.R.; Abbruzzese, J.L.; Li, D. Insulin-like growth factor axis gene polymorphisms modify risk of pancreatic cancer. Cancer Epidemiol., 2012, 36(2), 206-211.
[http://dx.doi.org/10.1016/j.canep.2011.05.013] [PMID: 21852217]
[35]
Cheng, I.; Stram, D.O.; Penney, K.L.; Pike, M.; Le Marchand, L.; Kolonel, L.N.; Hirschhorn, J.; Altshuler, D.; Henderson, B.E.; Freedman, M.L. Common genetic variation in IGF1 and prostate cancer risk in the Multiethnic Cohort. J. Natl. Cancer Inst., 2006, 98(2), 123-134.
[http://dx.doi.org/10.1093/jnci/djj013] [PMID: 16418515]
[36]
Xu, G.P.; Chen, W.X.; Xie, W.Y.; Wu, L.F. The association between IGF1 gene rs1520220 polymorphism and cancer susceptibility: a meta-analysis based on 12,884 cases and 58,304 controls. Environ. Health Prev. Med., 2018, 23(1), 38.
[http://dx.doi.org/10.1186/s12199-018-0727-y] [PMID: 30111277]
[37]
Wong, H.L.; Koh, W.P.; Probst-Hensch, N.M.; Van den Berg, D.; Yu, M.C.; Ingles, S.A. Insulin-like growth factor-1 promoter polymorphisms and colorectal cancer: a functional genomics approach. Gut, 2008, 57(8), 1090-1096.
[http://dx.doi.org/10.1136/gut.2007.140855] [PMID: 18308828]
[38]
Chang, C.F.; Pao, J.B.; Yu, C.C.; Huang, C.Y.; Huang, S.P.; Yang, Y.P.; Huang, C.N.; Chang, T.Y.; You, B.J.; Lee, H.Z.; Hour, T.C.; Bao, B.Y. Common variants in IGF1 pathway genes and clinical outcomes after radical prostatectomy. Ann. Surg. Oncol., 2013, 20(7), 2446-2452.
[http://dx.doi.org/10.1245/s10434-013-2884-y] [PMID: 23397154]
[39]
Muendlein, A.; Lang, A.H.; Geller-Rhomberg, S.; Winder, T.; Gasser, K.; Drexel, H.; Decker, T.; Mueller-Holzner, E.; Chamson, M.; Marth, C.; Hubalek, M. Association of a common genetic variant of the IGF-1 gene with event-free survival in patients with HER2-positive breast cancer. J. Cancer Res. Clin. Oncol., 2013, 139(3), 491-498.
[http://dx.doi.org/10.1007/s00432-012-1355-3] [PMID: 23180020]
[40]
Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.W. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol., 2010, 11(6), 530-542.
[http://dx.doi.org/10.1016/S1470-2045(10)70095-4] [PMID: 20472501]
[41]
Kucera, R.; Treskova, I.; Vrzalova, J.; Svobodova, S.; Topolcan, O.; Fuchsova, R.; Rousarova, M.; Treska, V.; Kydlicek, T. Evaluation of IGF1 serum levels in malignant melanoma and healthy subjects. Anticancer Res., 2014, 34(9), 5217-5220.
[PMID: 25202118]
[42]
Olivo-Marston, S.E.; Hursting, S.D.; Lavigne, J.; Perkins, S.N.; Maarouf, R.S.; Yakar, S.; Harris, C.C. Genetic reduction of circulating insulin-like growth factor-1 inhibits azoxymethane-induced colon tumorigenesis in mice. Mol. Carcinog., 2009, 48(12), 1071-1076.
[http://dx.doi.org/10.1002/mc.20577] [PMID: 19760669]
[43]
Al-Delaimy, W.K.; Flatt, S.W.; Natarajan, L.; Laughlin, G.A.; Rock, C.L.; Gold, E.B.; Caan, B.J.; Parker, B.A.; Pierce, J.P. IGF1 and risk of additional breast cancer in the WHEL study. Endocr. Relat. Cancer, 2011, 18(2), 235-244.
[PMID: 21263044]
[44]
Gao, Y.; Katki, H.; Graubard, B.; Pollak, M.; Martin, M.; Tao, Y.; Schoen, R.E.; Church, T.; Hayes, R.B.; Greene, M.H.; Berndt, S.I. Serum IGF1, IGF2 and IGFBP3 and risk of advanced colorectal adenoma. Int. J. Cancer, 2012, 131(2), E105-E113.
[http://dx.doi.org/10.1002/ijc.26438] [PMID: 21932422]
[45]
Huang, Y.F.; Cheng, W.F.; Wu, Y.P.; Cheng, Y.M.; Hsu, K.F.; Chou, C.Y. Circulating IGF system and treatment outcome in epithelial ovarian cancer. Endocr. Relat. Cancer, 2014, 21(2), 217-229.
[http://dx.doi.org/10.1530/ERC-13-0274] [PMID: 24273235]
[46]
Schumacher, F.R.; Cheng, I.; Freedman, M.L.; Mucci, L.; Allen, N.E.; Pollak, M.N.; Hayes, R.B.; Stram, D.O.; Canzian, F.; Henderson, B.E.; Hunter, D.J.; Virtamo, J.; Manjer, J.; Gaziano, J.M.; Kolonel, L.N.; Tjønneland, A.; Albanes, D.; Calle, E.E.; Giovannucci, E.; Crawford, E.D.; Haiman, C.A.; Kraft, P.; Willett, W.C.; Thun, M.J.; Le Marchand, L.; Kaaks, R.; Feigelson, H.S.; Bueno-de-Mesquita, H.B.; Palli, D.; Riboli, E.; Lund, E.; Amiano, P.; Andriole, G.; Dunning, A.M.; Trichopoulos, D.; Stampfer, M.J.; Key, T.J.; Ma, J. A comprehensive analysis of common IGF1, IGFBP1 and IGFBP3 genetic variation with prospective IGF-I and IGFBP-3 blood levels and prostate cancer risk among Caucasians. Hum. Mol. Genet., 2010, 19(15), 3089-3101.
[http://dx.doi.org/10.1093/hmg/ddq210] [PMID: 20484221]
[47]
Shiratsuchi, I.; Akagi, Y.; Kawahara, A.; Kinugasa, T.; Romeo, K.; Yoshida, T.; Ryu, Y.; Gotanda, Y.; Kage, M.; Shirouzu, K. Expression of IGF-1 and IGF-1R and their relation to clinicopathological factors in colorectal cancer. Anticancer Res., 2011, 31(7), 2541-2545.
[PMID: 21873172]
[48]
Hirakawa, T.; Yashiro, M.; Doi, Y.; Kinoshita, H.; Morisaki, T.; Fukuoka, T.; Hasegawa, T.; Kimura, K.; Amano, R.; Hirakawa, K. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia. PLoS One, 2016, 11(8) e0159912
[http://dx.doi.org/10.1371/journal.pone.0159912] [PMID: 27487118]
[49]
Qu, L.; Ding, J.; Chen, C.; Wu, Z.J.; Liu, B.; Gao, Y.; Chen, W.; Liu, F.; Sun, W.; Li, X.F.; Wang, X.; Wang, Y.; Xu, Z.Y.; Gao, L.; Yang, Q.; Xu, B.; Li, Y.M.; Fang, Z.Y.; Xu, Z.P.; Bao, Y.; Wu, D.S.; Miao, X.; Sun, H.Y.; Sun, Y.H.; Wang, H.Y.; Wang, L.H. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell, 2016, 29(5), 653-668.
[http://dx.doi.org/10.1016/j.ccell.2016.03.004] [PMID: 27117758]
[50]
Yang, S.; Liu, W.; Li, M.; Wen, J.; Zhu, M.; Xu, S. insulin-like growth factor-1 modulates polycomb cbx8 expression and inhibits colon cancer cell apoptosis. Cell Biochem. Biophys., 2015, 71(3), 1503-1507.
[http://dx.doi.org/10.1007/s12013-014-0373-y] [PMID: 25398592]
[51]
Shi, W.D.; Meng, Z.Q.; Chen, Z.; Lin, J.H.; Zhou, Z.H.; Liu, L.M. Identification of liver metastasis-related genes in a novel human pancreatic carcinoma cell model by microarray analysis. Cancer Lett., 2009, 283(1), 84-91.
[http://dx.doi.org/10.1016/j.canlet.2009.03.030] [PMID: 19375852]
[52]
Chen, S.; Li, C.; Wu, B.; Zhang, C.; Liu, C.; Lin, X.; Wu, X.; Sun, L.; Liu, C.; Chen, B.; Zhong, Z.; Xu, L.; Li, E. Identification of differentially expressed genes and their subpathways in recurrent versus primary bone giant cell tumors. Int. J. Oncol., 2014, 45(3), 1133-1142.
[http://dx.doi.org/10.3892/ijo.2014.2501] [PMID: 24969034]
[53]
Lau, M.T.; Leung, P.C. The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett., 2012, 326(2), 191-198.
[http://dx.doi.org/10.1016/j.canlet.2012.08.016] [PMID: 22922215]
[54]
Li, Z.J.; Ying, X.J.; Chen, H.L.; Ye, P.J.; Chen, Z.L.; Li, G.; Jiang, H.F.; Liu, J.; Zhou, S.Z. Insulin-like growth factor-1 induces lymphangiogenesis and facilitates lymphatic metastasis in colorectal cancer. World J. Gastroenterol., 2013, 19(43), 7788-7794.
[http://dx.doi.org/10.3748/wjg.v19.i43.7788] [PMID: 24282367]
[55]
Liu, L.; Wang, X.; Li, X.; Wu, X.; Tang, M.; Wang, X. Upregulation of IGF1 by tumor-associated macrophages promotes the proliferation and migration of epithelial ovarian cancer cells. Oncol. Rep., 2018, 39(2), 818-826.
[PMID: 29251331]
[56]
Chun, Y.S.; Huang, M.; Rink, L.; Von Mehren, M. Expression levels of insulin-like growth factors and receptors in hepatocellular carcinoma: a retrospective study. World J. Surg. Oncol., 2014, 12(1), 231.
[http://dx.doi.org/10.1186/1477-7819-12-231] [PMID: 25052889]
[57]
Amemiya, Y.; Yang, W.; Benatar, T.; Nofech-Mozes, S.; Yee, A.; Kahn, H.; Holloway, C.; Seth, A. Insulin like growth factor binding protein-7 reduces growth of human breast cancer cells and xenografted tumors. Breast Cancer Res. Treat., 2011, 126(2), 373-384.
[http://dx.doi.org/10.1007/s10549-010-0921-0] [PMID: 20464481]
[58]
Hou, Y-L.; Luo, P.; Ji, G-Y.; Chen, H. Clinical significance of serum IGFBP-3 in colorectal cancer. J. Clin. Lab. Anal., 2019, 33(6) e22912
[http://dx.doi.org/10.1002/jcla.22912] [PMID: 31218761]
[59]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[60]
Suda, K.; Rivard, C.J.; Mitsudomi, T.; Hirsch, F.R. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev. Anticancer Ther., 2017, 17(9), 779-786.
[http://dx.doi.org/10.1080/14737140.2017.1355243] [PMID: 28701107]
[61]
Bodzin, A.S.; Wei, Z.; Hurtt, R.; Gu, T.; Doria, C. Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. J. Cell. Physiol., 2012, 227(7), 2947-2952.
[http://dx.doi.org/10.1002/jcp.23041] [PMID: 21959795]
[62]
Löw, S.; Vougioukas, V.I.; Hielscher, T.; Schmidt, U.; Unterberg, A.; Halatsch, M.E. Pathogenetic pathways leading to glioblastoma multiforme: association between gene expressions and resistance to erlotinib. Anticancer Res., 2008, 28(6A), 3729-3732.
[PMID: 19189657]
[63]
Lippolis, C.; Refolo, M.G.; D’Alessandro, R.; Carella, N.; Messa, C.; Cavallini, A.; Carr, B.I. Resistance to multikinase inhibitor actions mediated by insulin like growth factor-1. J. Exp. Clin. Cancer Res., 2015, 34(1), 90.
[http://dx.doi.org/10.1186/s13046-015-0210-1] [PMID: 26329608]
[64]
Masago, K.; Fujita, S.; Togashi, Y.; Kim, Y.H.; Hatachi, Y.; Fukuhara, A.; Nagai, H.; Irisa, K.; Sakamori, Y.; Mio, T.; Mishima, M. Clinical significance of epidermal growth factor receptor mutations and insulin-like growth factor 1 and its binding protein 3 in advanced non-squamous non-small cell lung cancer. Oncol. Rep., 2011, 26(4), 795-803.
[http://dx.doi.org/10.3892/or.2011.1354] [PMID: 21805046]
[65]
Lyu, H.; Yang, X.H.; Edgerton, S.M.; Thor, A.D.; Wu, X.; He, Z.; Liu, B. The erbB3- and IGF-1 receptor-initiated signaling pathways exhibit distinct effects on lapatinib sensitivity against trastuzumab-resistant breast cancer cells. Oncotarget, 2016, 7(3), 2921-2935.
[http://dx.doi.org/10.18632/oncotarget.6404] [PMID: 26621843]
[66]
Giampieri, R.; Scartozzi, M.; Del Prete, M.; Maccaroni, E.; Bittoni, A.; Faloppi, L.; Bianconi, M.; Cecchini, L.; Cascinu, S. Molecular biomarkers of resistance to anti-EGFR treatment in metastatic colorectal cancer, from classical to innovation. Crit. Rev. Oncol. Hematol., 2013, 88(2), 272-283.
[http://dx.doi.org/10.1016/j.critrevonc.2013.05.008] [PMID: 23806981]
[67]
Chung, Y.J.; Kim, T.M.; Kim, D.W.; Namkoong, H.; Kim, H.K.; Ha, S.A.; Kim, S.; Shin, S.M.; Kim, J.H.; Lee, Y.J.; Kang, H.M.; Kim, J.W. Gene expression signatures associated with the resistance to imatinib. Leukemia, 2006, 20(9), 1542-1550.
[http://dx.doi.org/10.1038/sj.leu.2404310] [PMID: 16855633]
[68]
Peled, N.; Wynes, M.W.; Ikeda, N.; Ohira, T.; Yoshida, K.; Qian, J.; Ilouze, M.; Brenner, R.; Kato, Y.; Mascaux, C.; Hirsch, F.R. Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell Oncol. (Dordr.), 2013, 36(4), 277-288.
[http://dx.doi.org/10.1007/s13402-013-0133-9] [PMID: 23619944]
[69]
Alkema, N.G.; Wisman, G.B.; van der Zee, A.G.; van Vugt, M.A.; de Jong, S. Studying platinum sensitivity and resistance in high-grade serous ovarian cancer: Different models for different questions. Drug Resist. Updat., 2016, 24, 55-69.
[http://dx.doi.org/10.1016/j.drup.2015.11.005] [PMID: 26830315]
[70]
Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol. Res., 2016, 106, 27-36.
[http://dx.doi.org/10.1016/j.phrs.2016.01.001] [PMID: 26804248]
[71]
Cortés-Sempere, M.; de Miguel, M.P.; Pernía, O.; Rodriguez, C.; de Castro Carpeño, J.; Nistal, M.; Conde, E.; López-Ríos, F.; Belda-Iniesta, C.; Perona, R.; Ibanez de Caceres, I. IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene, 2013, 32(10), 1274-1283.
[http://dx.doi.org/10.1038/onc.2012.146] [PMID: 22543588]
[72]
Bu, Y.; Jia, Q.A.; Ren, Z.G.; Zhang, J.B.; Jiang, X.M.; Liang, L.; Xue, T.C.; Zhang, Q.B.; Wang, Y.H.; Zhang, L.; Xie, X.Y.; Tang, Z.Y. Maintenance of stemness in oxaliplatin-resistant hepatocellular carcinoma is associated with increased autocrine of IGF1. PLoS One, 2014, 9(3) e89686
[http://dx.doi.org/10.1371/journal.pone.0089686] [PMID: 24632571]
[73]
Koti, M.; Gooding, R.J.; Nuin, P.; Haslehurst, A.; Crane, C.; Weberpals, J.; Childs, T.; Bryson, P.; Dharsee, M.; Evans, K.; Feilotter, H.E.; Park, P.C.; Squire, J.A. Identification of the IGF1/PI3K/NF κB/ERK gene signalling networks associated with chemotherapy resistance and treatment response in high-grade serous epithelial ovarian cancer. BMC Cancer, 2013, 13(1), 549.
[http://dx.doi.org/10.1186/1471-2407-13-549] [PMID: 24237932]
[74]
Eckstein, N.; Servan, K.; Hildebrandt, B.; Pölitz, A.; von Jonquières, G.; Wolf-Kümmeth, S.; Napierski, I.; Hamacher, A.; Kassack, M.U.; Budczies, J.; Beier, M.; Dietel, M.; Royer-Pokora, B.; Denkert, C.; Royer, H.D. Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res., 2009, 69(7), 2996-3003.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3153] [PMID: 19318572]
[75]
Zhang, N.; Liu, H.; Cui, M.; Du, Y.; Liu, Z.; Liu, S. Direct determination of the binding sites of cisplatin on insulin-like growth factor-1 by top-down mass spectrometry. J. Biol. Inorg. Chem., 2015, 20(1), 1-10.
[http://dx.doi.org/10.1007/s00775-014-1202-x] [PMID: 25344342]
[76]
Long, X.; Xiong, W.; Zeng, X.; Qi, L.; Cai, Y.; Mo, M.; Jiang, H.; Zhu, B.; Chen, Z.; Li, Y. Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling. Cell Death Dis., 2019, 10(5), 375.
[http://dx.doi.org/10.1038/s41419-019-1581-6] [PMID: 31076571]
[77]
Galletti, E.; Magnani, M.; Renzulli, M.L.; Botta, M. Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. ChemMedChem, 2007, 2(7), 920-942.
[http://dx.doi.org/10.1002/cmdc.200600308] [PMID: 17530726]
[78]
Gooch, J.L.; Van Den Berg, C.L.; Yee, D. Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death--proliferative and anti-apoptotic effects. Breast Cancer Res. Treat., 1999, 56(1), 1-10.
[http://dx.doi.org/10.1023/A:1006208721167] [PMID: 10517338]
[79]
Pal, S.; Shankar, B.S.; Sainis, K.B. Cytokines from the tumor microenvironment modulate sirtinol cytotoxicity in A549 lung carcinoma cells. Cytokine, 2013, 64(1), 196-207.
[http://dx.doi.org/10.1016/j.cyto.2013.07.029] [PMID: 23972545]
[80]
Wu, X.; Wu, Q.; Zhou, X.; Huang, J. SphK1 functions downstream of IGF-1 to modulate IGF-1-induced EMT, migration and paclitaxel resistance of A549 cells: A preliminary in vitro study. J. Cancer, 2019, 10(18), 4264-4269.
[http://dx.doi.org/10.7150/jca.32646] [PMID: 31413745]
[81]
Niu, X.B.; Fu, G.B.; Wang, L.; Ge, X.; Liu, W.T.; Wen, Y.Y.; Sun, H.R.; Liu, L.Z.; Wang, Z.J.; Jiang, B.H. Insulin-like growth factor-I induces chemoresistence to docetaxel by inhibiting miR-143 in human prostate cancer. Oncotarget, 2017, 8(63), 107157-107166.
[http://dx.doi.org/10.18632/oncotarget.22362] [PMID: 29291019]
[82]
Zhang, H.H.; Zhang, Z.Y.; Che, C.L.; Mei, Y.F.; Shi, Y.Z. Array analysis for potential biomarker of gemcitabine identification in non-small cell lung cancer cell lines. Int. J. Clin. Exp. Pathol., 2013, 6(9), 1734-1746.
[PMID: 24040438]
[83]
Juan, H.C.; Tsai, H.T.; Chang, P.H.; Huang, C.Y.F.; Hu, C.P.; Wong, F.H. Insulin-like growth factor 1 mediates 5-fluorouracil chemoresistance in esophageal carcinoma cells through increasing survivin stability. Apoptosis, 2011, 16(2), 174-183.
[http://dx.doi.org/10.1007/s10495-010-0555-z] [PMID: 21082354]
[84]
Beech, D.J.; Perer, E.; Helms, J.; Gratzer, A.; Deng, N. Insulin-like growth factor-I receptor activation blocks doxorubicin cytotoxicity in sarcoma cells. Oncol. Rep., 2003, 10(1), 181-184.
[http://dx.doi.org/10.3892/or.10.1.181] [PMID: 12469167]
[85]
Ellis, B.C.; Graham, L.D.; Molloy, P.L. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim. Biophys. Acta, 2014, 1843(2), 372-386.
[http://dx.doi.org/10.1016/j.bbamcr.2013.10.016] [PMID: 24184209]
[86]
Han, L.; Zhang, K.; Shi, Z.; Zhang, J.; Zhu, J.; Zhu, S.; Zhang, A.; Jia, Z.; Wang, G.; Yu, S.; Pu, P.; Dong, L.; Kang, C. LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int. J. Oncol., 2012, 40(6), 2004-2012.
[PMID: 22446686]
[87]
Li, Z.; Cai, B.; Abdalla, B.A.; Zhu, X.; Zheng, M.; Han, P.; Nie, Q.; Zhang, X. LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. J. Cachexia Sarcopenia Muscle, 2019, 10(2), 391-410.
[http://dx.doi.org/10.1002/jcsm.12374] [PMID: 30701698]
[88]
Trimarchi, T.; Bilal, E.; Ntziachristos, P.; Fabbri, G.; Dalla-Favera, R.; Tsirigos, A.; Aifantis, I. Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell, 2014, 158(3), 593-606.
[http://dx.doi.org/10.1016/j.cell.2014.05.049] [PMID: 25083870]
[89]
Zhang, J.; Zhao, B.; Chen, X.; Wang, Z.; Xu, H.; Huang, B. Silence of long noncoding RNA NEAT1 inhibits malignant biological behaviors and chemotherapy resistance in gastric cancer. Pathol. Oncol. Res. Por., 2017, (6), 1-5.
[90]
Parasramka, M.; Yan, I.K.; Wang, X.; Nguyen, P.; Matsuda, A.; Maji, S.; Foye, C.; Asmann, Y.; Patel, T. BAP1 dependent expression of long non-coding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma. Mol. Cancer, 2017, 16(1), 22.
[http://dx.doi.org/10.1186/s12943-017-0587-x] [PMID: 28122578]
[91]
Jiang, P.; Wu, X.; Wang, X.; Huang, W.; Feng, Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 2016, 7(28), 43337-43351.
[http://dx.doi.org/10.18632/oncotarget.9712] [PMID: 27270317]
[92]
Gao, H.; Song, X.; Kang, T.; Yan, B.; Feng, L.; Gao, L.; Ai, L.; Liu, X.; Yu, J.; Li, H. Long noncoding RNA CRNDE functions as a competing endogenous RNA to promote metastasis and oxaliplatin resistance by sponging miR-136 in colorectal cancer. OncoTargets Ther., 2017, 10, 205-216.
[http://dx.doi.org/10.2147/OTT.S116178] [PMID: 28115855]
[93]
Han, P.; Li, J.W.; Zhang, B.M.; Lv, J.C.; Li, Y.M.; Gu, X.Y.; Yu, Z.W.; Jia, Y.H.; Bai, X.F.; Li, L.; Liu, Y.L.; Cui, B.B. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer, 2017, 16(1), 9.
[http://dx.doi.org/10.1186/s12943-017-0583-1] [PMID: 28086904]
[94]
Arnaldez, F.I.; Helman, L.J. Targeting the insulin growth factor receptor 1. Hematol. Oncol. Clin. North Am., 2012, 26(3), 527-542. vii-viii
[http://dx.doi.org/10.1016/j.hoc.2012.01.004] [PMID: 22520978]
[95]
Iams, W.T.; Lovly, C.M. Molecular pathways: Clinical applications and future direction of insulin-like growth factor-1 receptor pathway blockade. Clin. Cancer Res., 2015, 21(19), 4270-4277.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2518] [PMID: 26429980]
[96]
Ukaji, T.; Lin, Y.; Banno, K.; Okada, S.; Umezawa, K. inhibition of igf-1-mediated cellular migration and invasion by migracin a in ovarian clear cell carcinoma cells. PLoS One, 2015, 10(9) e0137663
[http://dx.doi.org/10.1371/journal.pone.0137663] [PMID: 26360832]
[97]
Jones, R.L.; Kim, E.S.; Nava-Parada, P.; Alam, S.; Johnson, F.M.; Stephens, A.W.; Simantov, R.; Poondru, S.; Gedrich, R.; Lippman, S.M.; Kaye, S.B.; Carden, C.P. Phase I study of intermittent oral dosing of the insulin-like growth factor-1 and insulin receptors inhibitor OSI-906 in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(4), 693-700.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0265] [PMID: 25208878]
[98]
Du, J.; Shi, H.R.; Ren, F.; Wang, J.L.; Wu, Q.H.; Li, X.; Zhang, R.T. Inhibition of the IGF signaling pathway reverses cisplatin resistance in ovarian cancer cells. BMC Cancer, 2017, 17(1), 851.
[http://dx.doi.org/10.1186/s12885-017-3840-1] [PMID: 29241458]
[99]
Yaktapour, N.; Übelhart, R.; Schüler, J.; Aumann, K.; Dierks, C.; Burger, M.; Pfeifer, D.; Jumaa, H.; Veelken, H.; Brummer, T.; Zirlik, K. Insulin-like growth factor-1 receptor (IGF1R) as a novel target in chronic lymphocytic leukemia. Blood, 2013, 122(9), 1621-1633.
[http://dx.doi.org/10.1182/blood-2013-02-484386] [PMID: 23863897]
[100]
Martins, A.S.; Mackintosh, C.; Martín, D.H.; Campos, M.; Hernández, T.; Ordóñez, J.L.; de Alava, E. Insulin-like growth factor I receptor pathway inhibition by ADW742, alone or in combination with imatinib, doxorubicin, or vincristine, is a novel therapeutic approach in Ewing tumor. Clin. Cancer Res., 2006, 12(11 Pt 1), 3532-3540.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1778] [PMID: 16740780]
[101]
Ma, Y.; Tang, N.; Thompson, R.C.; Mobley, B.C.; Clark, S.W.; Sarkaria, J.N.; Wang, J. InsR/IGF1R pathway mediates resistance to egfr inhibitors in glioblastoma. Clin. Cancer Res., 2016, 22(7), 1767-1776.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1677] [PMID: 26561558]
[102]
Park, J.H.; Choi, Y.J.; Kim, S.Y.; Lee, J.E.; Sung, K.J.; Park, S.; Kim, W.S.; Song, J.S.; Choi, C.M.; Sung, Y.H.; Rho, J.K.; Lee, J.C. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget, 2016, 7(16), 22005-22015.
[http://dx.doi.org/10.18632/oncotarget.8013] [PMID: 26980747]
[103]
Franks, S.E.; Jones, R.A.; Briah, R.; Murray, P.; Moorehead, R.A. BMS-754807 is cytotoxic to non-small cell lung cancer cells and enhances the effects of platinum chemotherapeutics in the human lung cancer cell line A549. BMC Res. Notes, 2016, 9(1), 134.
[http://dx.doi.org/10.1186/s13104-016-1919-4] [PMID: 26928578]
[104]
Spiliotaki, M.; Markomanolaki, H.; Mela, M.; Mavroudis, D.; Georgoulias, V.; Agelaki, S. Targeting the insulin-like growth factor I receptor inhibits proliferation and VEGF production of non-small cell lung cancer cells and enhances paclitaxel-mediated anti-tumor effect. Lung Cancer, 2011, 73(2), 158-165.
[http://dx.doi.org/10.1016/j.lungcan.2010.11.010] [PMID: 21190751]
[105]
Tang, Y.; Parmakhtiar, B.; Simoneau, A.R.; Xie, J.; Fruehauf, J.; Lilly, M.; Zi, X. Lycopene enhances docetaxel’s effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. Neoplasia, 2011, 13(2), 108-119.
[http://dx.doi.org/10.1593/neo.101092] [PMID: 21403837]
[106]
Molife, L.R.; Fong, P.C.; Paccagnella, L.; Reid, A.H.M.; Shaw, H.M.; Vidal, L.; Arkenau, H.T.; Karavasilis, V.; Yap, T.A.; Olmos, D.; Spicer, J.; Postel-Vinay, S.; Yin, D.; Lipton, A.; Demers, L.; Leitzel, K.; Gualberto, A.; de Bono, J.S. The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. Br. J. Cancer, 2010, 103(3), 332-339.
[http://dx.doi.org/10.1038/sj.bjc.6605767] [PMID: 20628389]
[107]
Beech, D.J.; Parekh, N.; Pang, Y. Insulin-like growth factor-I receptor antagonism results in increased cytotoxicity of breast cancer cells to doxorubicin and taxol. Oncol. Rep., 2001, 8(2), 325-329.
[http://dx.doi.org/10.3892/or.8.2.325] [PMID: 11182049]
[108]
Zhou, H.; Qian, W.; Uckun, F.M.; Wang, L.; Wang, Y.A.; Chen, H.; Kooby, D.; Yu, Q.; Lipowska, M.; Staley, C.A.; Mao, H.; Yang, L. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano, 2015, 9(8), 7976-7991.
[http://dx.doi.org/10.1021/acsnano.5b01288] [PMID: 26242412]
[109]
Hao, Y.; Yang, X.; Zhang, D.; Luo, J.; Chen, R. Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through epithelial-mesenchymal-transition in lung cancer. Gene, 2017, 608, 1-12.
[http://dx.doi.org/10.1016/j.gene.2017.01.023] [PMID: 28119085]
[110]
Ren, K.; Xu, R.; Huang, J.; Zhao, J.; Shi, W. Knockdown of long non-coding RNA KCNQ1OT1 depressed chemoresistance to paclitaxel in lung adenocarcinoma. Cancer Chemother. Pharmacol., 2017, 80(2), 243-250.
[http://dx.doi.org/10.1007/s00280-017-3356-z] [PMID: 28600629]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 5
Year: 2020
Page: [325 - 334]
Pages: 10
DOI: 10.2174/1568009620666200228123754
Price: $65

Article Metrics

PDF: 18
HTML: 1