Synthesis, Docking, in silico ADMET and Pharmacological Evaluation of Some N-acetyl Pyrazole and Quinoline Conjugates

Author(s): Nargisbano Ayyub Peerzade, Shravan Yegu Jadhav*, Raghunath Bhikaji Bhosale, Amol Anantrao Kulkarni, Bhushan Dnyandeo Varpe

Journal Name: Letters in Drug Design & Discovery

Volume 17 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Pyrazolines are reported having anti-inflammatory, anti-oxidant and antidiabetic activities in the literature. Drugs like celecoxib, antipyrine, etc. are structurally similar to the designed compounds.

Objectives: To synthesize and characterize N-acetyl pyrazole and quinoline conjugates and test them for Anti-inflammatory, Antioxidant, Antibacterial, Antiamylase and Antimalarial activities.

Methods: A series of methoxy substituted quinoline based pyrazoline derivatives (2a-2j) were synthesized in good to excellent yield from corresponding quinoline chalcones (1a-1j). The synthesized compounds were characterized and screened for their in vitro anti-inflammatory, antioxidant, antiamylase, antibacterial and antimalarial activities. Docking and in silico ADMET studies were performed with PDB: 3LN1.

Results: Compounds 2b, 2i and 2j showed significant anti-inflammatory activity as compared to standard sodium diclofenac. All compounds (2a-2j) showed excellent antioxidant activity for DPPH even more than standard ascorbic acid. Compounds 2e, 2f, 2h and 2i showed excellent antioxidant activity for NO. as compared to standard ascorbic acid. Compound 2f showed significant antioxidant activity for SOR. Almost all the compounds showed significant antibacterial as well as anti-amylase activity with few exceptions, whereas compounds 2f, 2h and 2j showed potent antimalarial activity.

Conclusion: Compounds have shown good anti-inflammatory activities as compared with diclofenac. All the synthesized pyrazoline derivatives showed excellent anti-amylase activity as compared to standard acarbose. Also, compounds have shown good antioxidant antibacterial and antimalarial activities.

Keywords: Quinoline-pyrazolines, anti-inflammatory, antioxidant, antibacterial, antiamylase, antimalarial activity, docking, ADMET.

[1]
Juárez-Reyes, K.; Brindis, F.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Bye, R.; Linares, E.; Mata, R. Hypoglycemic, antihyperglycemic, and antioxidant effects of the edible plant Anoda cristata. J. Ethnopharmacol., 2015, 161, 36-45.
[http://dx.doi.org/10.1016/j.jep.2014.11.052] [PMID: 25490313]
[2]
Asif, M. A mini review: Biological significance of nitrogen heteroatom containing heterocyclic compounds. Intl. J. Bioorg. Chem, 2017, 2(3), 146-152.
[3]
Vongtau, O.; Abbah, J.; Mosugu, O.; Chindo, A.; Ngazal, E.; Salawu, O.; Kwanashie, O.; Gamaniel, S. Antinociceptive profile of the methanolic extract of Neorautanenia mitis root in rats and mice. J. Ethnopharmacol., 2004, 92(2-3), 317-324.
[http://dx.doi.org/10.1016/j.jep.2004.03.014]
[4]
Geronikaki, A.A.; Gavalas, A.M. Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Comb. Chem. High Throughput Screen., 2006, 9(6), 425-442.
[http://dx.doi.org/10.2174/138620706777698481] [PMID: 16842224]
[5]
Ozyürek, M.; Bektaşoğlu, B.; Güçlü, K.; Apak, R. Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method. Anal. Chim. Acta, 2009, 636(1), 42-50.
[http://dx.doi.org/10.1016/j.aca.2009.01.037] [PMID: 19231354]
[6]
Nishida, J.; Kawabata, J. DPPH radical scavenging reaction of hydroxy- and methoxychalcones. Biosci. Biotechnol. Biochem., 2006, 70(1), 193-202.
[http://dx.doi.org/10.1271/bbb.70.193] [PMID: 16428837]
[7]
Joshi, R.S.; Mandhane, P.G.; Diwakar, S.D.; Dabhade, S.K.; Gill, C.H. Synthesis, analgesic and anti-inflammatory activities of some novel pyrazolines derivatives. Bioorg. Med. Chem. Lett., 2010, 20(12), 3721-3725.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.082] [PMID: 20529688]
[8]
Jadhav, S.Y.; Shirame, S.P.; Kulkarni, S.D.; Patil, S.B.; Pasale, S.K.; Bhosale, R.B. PEG mediated synthesis and pharmacological evaluation of some fluoro substituted pyrazoline derivatives as antiinflammatory and analgesic agents. Bioorg. Med. Chem. Lett., 2013, 23(9), 2575-2578.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.105] [PMID: 23541672]
[9]
Murlidharan, V.; Asha, C.; Raja, S. A review on anti-inflammatory potential of substituted pyrazoline derivatives synthesized from chalcones. Int. J. Pharm. Pharm. Sci., 2018, 10(2), 9-14.
[http://dx.doi.org/10.22159/ijpps.2018v10i2.23772]
[10]
Kaplancikli, Z.A.; Ozdemir, A.; Turan-Zitouni, G.; Altintop, M.D.; Can, O.D. New pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem., 2010, 45(9), 4383-4387.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.011] [PMID: 20587366]
[11]
Bhosle, M.R.; Deshmukh, A.R.; Pal, S.; Srivastava, A.K.; Mane, R.A. Synthesis of new thiazolylmethoxyphenyl pyrimidines and antihyperglycemic evaluation of the pyrimidines, analogues isoxazolines and pyrazolines. Bioorg. Med. Chem. Lett., 2015, 25(11), 2442-2446.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.068] [PMID: 25937008]
[12]
Lone, I.; Lhan, K.; Fozdar, B. Synthesis, physicochemical properties, antimicrobial and antioxidant studies of pyrazoline derivatives bearing pyridyl moiety. Med. Chem. Res., 2014, 23(1), 363-369.
[http://dx.doi.org/10.1007/s00044-013-0643-z]
[13]
Hassan, S.Y. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 2013, 18(3), 2683-2711.
[http://dx.doi.org/10.3390/molecules18032683] [PMID: 23449067]
[14]
Mishra, V.K.; Mishra, M.; Kashaw, V.; Kashaw, S.K. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg. Med. Chem., 2017, 25(6), 1949-1962.
[http://dx.doi.org/10.1016/j.bmc.2017.02.025] [PMID: 28237557]
[15]
Rostom, S.A.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.; Abdel Wahab, A.E. Synthesis of some pyrazolines and pyrimidines derived from polymethoxy chalcones as anticancer and antimicrobial agents. Arch. Pharm. (Weinheim), 2011, 344(9), 572-587.
[http://dx.doi.org/10.1002/ardp.201100077] [PMID: 21755528]
[16]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[17]
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23(16), 5098-5119.
[http://dx.doi.org/10.1016/j.bmc.2014.12.018] [PMID: 25593097]
[18]
Sarveswari, S.; Vijayakumar, V.; Siva, R.; Priya, R. Synthesis of 4-hydroxy-2(1H)-quinolone derived chalcones, pyrazolines and their antimicrobial, in silico antimalarial evaluations. Appl. Biochem. Biotechnol., 2015, 175(1), 43-64.
[http://dx.doi.org/10.1007/s12010-014-1256-9] [PMID: 25238919]
[19]
Deshmukh, R.A.; Dhumal, S.T.; Bhalerao, M.B.; Mishra, A.; Srivastav, A.K.; Mane, R.A. Design, synthesis and antidiabetic evaluation of new cyanoquinoloxybenzylidenyl 2,4-thiazolidinediones. Chem. Bio. Interface., 2016, 6(4), 189-197.
[20]
Murugavel, S.; Jacob Prasanna Stephen, C.S.; Subashini, R.; AnanthaKrishnan, D. Synthesis, structural elucidation, antioxidant, CT-DNA binding and molecular docking studies of novel chloroquinoline derivatives: Promising antioxidant and anti-diabetic agents. J. Photochem. Photobiol. B, 2017, 173, 216-230.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.043] [PMID: 28599239]
[21]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[22]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[23]
Ansari, I.; Khan, S. Synthesis and antimicrobial activity of some novel quinoline-pyrazoline based coumarinylthiazole derivatives. Med. Chem. Res., 2017, 26(7), 1481-1496.
[http://dx.doi.org/10.1007/s00044-017-1855-4]
[24]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143(143), 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[25]
Salve, P.; Alegao, S. Synthesis of new 7-chloro-4-phenoxyquinoline analogues as potential antitubercular agents. Med. Chem. Res., 2018, 27(10), 1-14.
[http://dx.doi.org/10.1007/s00044-017-1970-2]
[26]
El-Feky, S.A.; Abd El-Samii, Z.K.; Osman, N.A.; Lashine, J.; Kamel, M.A.; Thabet, H.Kh. Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II. Bioorg. Chem., 2015, 58, 104-116.
[http://dx.doi.org/10.1016/j.bioorg.2014.12.003] [PMID: 25590381]
[27]
Chaaban, I.; Rizk, O.H.; Ibrahim, T.M.; Henen, S.S.; El-Khawass, E.M.; Bayad, A.E.; El-Ashmawy, I.M.; Nematalla, H.A. Synthesis, anti-inflammatory screening, molecular docking, and COX-1,2/-5-LOX inhibition profile of some novel quinoline derivatives. Bioorg. Chem., 2018, 78, 220-235.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.023] [PMID: 29602046]
[28]
Puskullu, M.O.; Shirinzadeh, H.; Nenni, M.; Gurer-Orhan, H.; Suzen, S. Synthesis and evaluation of antioxidant activity of new quinoline-2-carbaldehyde hydrazone derivatives: bioisosteric melatonin analogues. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 121-125.
[http://dx.doi.org/10.3109/14756366.2015.1005012] [PMID: 25942363]
[29]
Syed, Anti-HIV screening of (2E)-3-(2-chloro-6-methyl/methoxyquinolin-3-yl)-1-(aryl)prop-2-ene-1-ones. Med. Chem. Res., 2014, 23(1), 402-407.
[http://dx.doi.org/10.1007/s00044-013-0652-y]
[30]
Hameed, A.; Abdullah, M.I.; Ahmed, E.; Sharif, A.; Irfan, A.; Masood, S. Anti-HIV cytotoxicity enzyme inhibition and molecular docking studies of quinoline based chalcones as potential non-nucleoside reverse transcriptase inhibitors (NNRT). Bioorg. Chem., 2016, 65, 175-182.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.008] [PMID: 26964017]
[31]
Muhammad, A.; Munawar, A.; Hamid, L.S. Antimicrobial activity and synthesis of quinoline based chalcones. J App Sci, 2007, 7(17), 2485-2489.
[http://dx.doi.org/10.3923/jas.2007.2485.2489]
[32]
Arty, I.S.; Timmerman, H.; Samhoedi, M.; Sastrohamidjojo, ; Sugiyanto, ; van der Goot, H. Synthesis of benzylideneacetophenones and their inhibition of lipid peroxidation. Eur. J. Med. Chem., 2000, 35(4), 449-457.
[http://dx.doi.org/10.1016/S0223-5234(00)00137-9] [PMID: 10858605]
[33]
Lamal, M. Synthesis, Characterisation, Antimicrobial evaluation of some novel quinoline derivatives bearing different heterocyclic moieties. B-FOPCU., 2016, 54, 263-273.
[34]
Vandana, T.; Parvez, A.; Jyotsana, M. Microwave assisted synthesis of 3-(2-chloroquinolin-3-yl)-1-substituted phenylprop-2-en-1-ones using K2CO3 as Mild, Cheap and inexpensive catalyst. Int. J. Chemtech Res., 2010, 2, 1031-1035.
[35]
Kamal, M.E. Synthesis and antimicrobial screening of new chalcones and 1,5-benzodiazepines containing quinoline nucleus. Am. J. Chem., 2014, 4, 82-87.
[36]
Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol., 1968, 20(3), 169-173.
[http://dx.doi.org/10.1111/j.2042-7158.1968.tb09718.x] [PMID: 4385045]
[37]
Opie, E.L. On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med., 1962, 115, 597-608.
[http://dx.doi.org/10.1084/jem.115.3.597] [PMID: 14482110]
[38]
Dey, P.; Chatterji, P.; Chandra, S.; Bhattacharya, S. Comparative in vitro evaluation of anti-inflammatory effects of aerial parts and roots from MIKANIA Scandens. J. Adv. Pharm. Educ. Res., 2011, 1, 271-277.
[39]
Kumar, A.; Varadaraj, B.G.; Singla, R.K. Synthesis and evaluation of antioxidant activity of novel 3, 5-disubstituted-2-pyrazolines. Bull. Fac. Pharm. Cairo Univ., 2013, 51, 167-173.
[http://dx.doi.org/10.1016/j.bfopcu.2013.04.002]
[40]
O’Toole, G.A.; Kolter, R. Initiation of biofilm formation Pseudomonasfluorescens WCS365 proceeds via multiple, convergent. Mol. Microbiol., 1998, 28(3), 449-461.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00797.x] [PMID: 9632250]
[41]
Deharo, E.; García, R.N.; Oporto, P.; Gimenez, A.; Sauvain, M.; Jullian, V.; Ginsburg, H. A non-radiolabelled ferriprotoporphyrin IX biomineralisation inhibition test for the high throughput screening of antimalarial compounds. Exp. Parasitol., 2002, 100(4), 252-256.
[http://dx.doi.org/10.1016/S0014-4894(02)00027-9] [PMID: 12128052]
[42]
Bernfeld, P. Amylase, α and β in Methods in Enzymology; Academic Press: New York, NY, USA, 1955, pp. 149-158.
[43]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[44]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[45]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[46]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[47]
Release, S. 2019-1:QikProp; Schrödinger, LLC: New York, NY, 2019.
[48]
Muralidharan, V.; Deepti, A.; Raja, S. A review on anti-inflammatory potential of substituted pyrazoline derivatives synthesized from chalcones. Int. J. Pharm. Pharm. Sci., 2018, 10(2), 9-14.
[49]
Desai, N.C.; Joshi, V.V.; Rajpara, K.M.; Vaghani, H.M.; Satodiya, H.M. Synthesis of quinoline-pyrazoline based thiazole derivatives endowed with antimicrobial activity. Indian J. Chem., 2013, 52B, 1191-1201.
[50]
Vidyashree, S.; Balkrishna, K.J.; Kotathattu, S.G. Synthesis and antioxidant activity study of pyrazoline carryingan arylfuran/arylthiophene moiety. J. Serb. Chem. Soc., 2014, 79(12), 1469-1475.
[http://dx.doi.org/10.2298/JSC140109090J]
[51]
Ferrer, R.; Lobo, G.; Gamboa, N.; Rodrigues, J.; Abramjuk, C.; Jung, K.; Lein, M. Synthesis of [(7-Chloroquinolin-4-yl)amino]chalcones: Potential Antimalarial and Anticancer Agents. Sci. Pharm., 2009, 77(4), 725-742.
[http://dx.doi.org/10.3797/scipharm.0905-07]
[52]
Lee, H.W.; Yang, J.Y.; Lee, H.S. Quinoline-2-carboxylic acid isolated from Ephedra pachyclada and its structural derivatives show inhibitory effects against α-glucosidase and α-amylase. J KOREAN SOC APPL BI, 2014, 57(4), 441-444.
[http://dx.doi.org/10.1007/s13765-014-4156-3]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 8
Year: 2020
Page: [1015 - 1026]
Pages: 12
DOI: 10.2174/1570180817666200228123347
Price: $65

Article Metrics

PDF: 16
HTML: 2