Surface Modification of Poly(Vinylchloride) for Manufacturing Advanced Catheters

Author(s): Oana Cristina Duta, Aurel Mihail Ţîţu, Alexandru Marin, Anton Ficai, Denisa Ficai*, Ecaterina Andronescu

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 10 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Polymeric materials, due to their excellent physicochemical properties and versatility found applicability in multiples areas, including biomaterials used in tissue regeneration, prosthetics (hip, artificial valves), medical devices, controlled drug delivery systems, etc. Medical devices and their applications are very important in modern medicine and the need to develop new materials with improved properties or to improve the existent materials is increasing every day. Numerous reasearches are activated in this domain in order to obtain materials/surfaces that does not have drawbacks such as structural failure, calcifications, infections or thrombosis. One of the most used material is poly(vinylchloride) (PVC) due to its unique properties, availability and low cost. The most common method used for obtaining tubular devices that meet the requirements of medical use is the surface modification of polymers without changing their physical and mechanical properties, in bulk. PVC is a hydrophobic polymer and therefore many research studies were conducted in order to increase the hydrophilicity of the surface by chemical modification in order to improve biocompatibility, to enhance wettability, reduce friction or to make lubricious or antimicrobial coatings. Surface modification of PVC can be achieved by several strategies, in only one step or, in some cases, in two or more steps by applying several techniques consecutively to obtain the desired modification / performances. The most common processes used for modifying the surface of PVC devices are: plasma treatment, corona discharge, chemical grafting, electric discharge, vapour deposition of metals, flame treatment, direct chemical modification (oxidation, hydrolysis, etc.) or even some physical modification of the roughness of the surface.

Keywords: Catheters, poly(vinylchloride), surface modification, biomaterials, antibiofilm surfaces, chemical modification.

[1]
Lellouche, J.; Friedman, A.; Lahmi, R.; Gedanken, A.; Banin, E. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int. J. Nanomedicine, 2012, 7, 1175-1188.
[http://dx.doi.org/10.2147/IJN.S26770] [PMID: 22419866]
[2]
Herrero, M.; Navarro, R.; Reinecke, H.; Mijangos, C. Controlled wet-chemical modification and bacterial adhesion on PVC-surfaces. Polym. Degrad. Stabil., 2006, 91, 1915-1918.
[http://dx.doi.org/10.1016/j.polymdegradstab.2006.02.013]
[3]
Merchan, M.; Sedlarikova, J.; Vesel, A.; Machovsky, M.; Sedlarik, V.; Saha, P. Antimicrobial silver nitrate-doped polyvinyl chloride cast films: influence of solvent on morphology and mechanical properties. Int. J. Polym. Mater., 2012, 62(2), 101-108.
[http://dx.doi.org/10.1080/00914037.2012.670821]
[4]
Sowe, M.; Polaskova, M.; Kuritka, I.; Sedlacek, T.; Merchan, M. Analysis of antibacterial action of polyvinyl chloride surface modified with gentian violet. Int. J. Polym. Anal. Charact., 2009, 14(8), 678-685.
[http://dx.doi.org/10.1080/10236660903298327]
[5]
Lakshmi, S.N.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci., 2007, 32(8-9), 762-798.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017]
[6]
Zuñiga-Zamoranoa, I.; Meléndez-Ortiz, H.I.; Costoya, A.; Alvarez-Lorenzo, C.; Concheiro, A.; Bucio, E. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents. Radiat. Phys. Chem., 2018, 142, 107-114.
[http://dx.doi.org/10.1016/j.radphyschem.2017.02.008]
[7]
Agnihotri, S. Antimicrobial surface modification of polymeric biomaterials in: Handbook of Antimicrobial Coatings; Tiwari, A., Ed.; Elsevier Science B. V: Amsterdam, 2018, pp. 435-486.
[8]
Timsit, J.F.; Dubois, Y.; Minet, C.; Bonadona, A.; Lugosi, M.; Ara-Somohano, C.; Hamidfar-Roy, R.; Schwebel, C. New materials and devices for preventing catheter-related infections. Ann. Intensive Care, 2011, 1(34)
[http://dx.doi.org/10.1186/2110-5820-1-34] [PMID: 21906266]
[9]
Global catheters market (product types and geography) - size, share, global trends, company profiles, analysis, segmentation and forecast 2013-2020 2014.
[10]
Kerr, M. Bio-compatible catheter. U.S. Patent US8936564B2, 2015.
[11]
Catheter tubing specifications. 2016. Available at: http://www.norfolkaccess.com/pdf/Catheter%20Materials%20Comparison%20Chart.pdf (Accessed Date: 20.09.2016)
[12]
Acquarulo, L.A. Nanocomposites for drug delivery catheters. Drug Des. Deliv., 2013, 13(7), 24-27.
[13]
Polyurethane Catheter Tubing. Micro-Renathane, 2016. Available at: http://www.braintreesci.com/ (Accessed Date: 20.09.2016)
[14]
Pino-Ramos, V.H.; Flores-Rojas, G.G.; Alvarez-Lorenzo, C.; Concheiro, A.; Bucio, E. Graft copolymerization by ionization radiations, characterization and enzymatic activity of temperature responsive SR-g-PNVCL loaded with lysozyme. React. Funct. Polym., 2018, 126, 74-82.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.03.002]
[15]
Arjunan, S.; Shanmugavealyutham, G.; Rodríguez, C.S. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties. Journal of Physics D: Applied Phisics, 2017, 50(14)
[http://dx.doi.org/10.1088/1361-6463/aa5f06]
[16]
Kyziol, A.; Kyziol, K. Surface functionalization with biopolymers via plasma-assisted surface grafting and plasma-induced graft polymerization - materials for biomedical applications in: Biopolymer grafting applications-advances in polymer and fibers; Thakur, V.J., Ed.; Elsevier Science B. V: Amsterdam, 2018, pp. 115-151.
[http://dx.doi.org/10.1016/B978-0-12-810462-0.00004-1]
[17]
Randolph, A.G.; Cook, D.J.; Gonzales, C.A.; Andrew, M. Benefit of heparin in central venous and pulmonary artery catheters Chest, 1998, 113(1), 165-171.
[http://dx.doi.org/10.1378/chest.113.1.165] [PMID: 9440585]
[18]
Wang, A.Y.; Ivany, J.N.; Perkovic, V.; Gallagher, M.P.; Jardine, M.J. Anticoagulant therapies for the prevention of intravascular catheters malfunction in patients undergoing haemodialysis: systematic review and meta-analysis of randomized, controlled trials. Nephrol. Dial. Transplant., 2013, 28(11), 2875-2888.
[http://dx.doi.org/10.1093/ndt/gft406] [PMID: 24169613]
[19]
Patterson, B.O.; Hinchliffe, R.; Loftus, I.M.; Thompson, M.M.; Holt, P.J. Indications for catheter-directed thrombolysis in the management of acute proximal deep venous thrombosis. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 669-674.
[http://dx.doi.org/10.1161/ATVBAHA.109.200766] [PMID: 20237328]
[20]
Pai, M.; Crowther, M.A. Anticoagulation for the prevention of central venous catheter associated-thrombosis: an evidence based commentary. Pol. Arch. Med. Wewn., 2007, 117(11-12), 494-496.
[PMID: 18363248]
[21]
Gehrke, S.H.; Fisher, J.P.; McBride, J.F.; O’Connor, S.M.; Zhu, H. Gel-coated catheters as drug delivery systems. ACS Symposium Series, 1999, 728(4), 43-53.
[http://dx.doi.org/10.1021/bk-1999-0728.ch004]
[22]
Waugh, D.G.; Toccaceli, C.; Gillett, A.R.; Ng, C.H.; Hodgson, S.D.; Lawrence, J. Surface treatments to modulate bioadhesion in: Progress in Adhesion and Adhesives; K.L, Mittal, Ed.; , 2017, pp. 67-99.
[http://dx.doi.org/10.1002/9781119407485.ch3]
[23]
Curtis, J.; Klykken, K. A comparative assessment of three common catheter materials; Dow Corning Corporation, 2008.
[24]
Raza, Z.A.; Riaz, S.; Banat, I.M. Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol. Prog., 2018, 34(1), 29-41.
[http://dx.doi.org/10.1002/btpr.2565] [PMID: 28960792]
[25]
Xie, Y.; Yang, Q. Surface modification of poly(vinyl chloride) for antithrombogenicity study. J. Appl. Polym. Sci., 2002, 85(5), 1013-1018.
[http://dx.doi.org/10.1002/app.10483]
[26]
Singh, J.; Agarwal, K.K. Modification of poly(vinyl chloride) for biocompatibility improvement and biomedical application-review. Polym. Plast. Technol. Eng., 1992, 31(3-4), 203-212.
[http://dx.doi.org/10.1080/03602559208017742]
[27]
Medical plastics market by type (PVC, PP, Engg Plastics, PE, PS, Silicones & Others), by application (implants, disposables, drug delivery devices, syringes, diagnostic instruments, surgical instruments, catheters, & others) and by region - Forecast to 20 2015.
[28]
Catheter materials: An Overview., 2014. Available at: https://www.180medical.com/blog/catheter-materials-an-overview/ [Accessed date: September 20, 2016].
[29]
Zhao, X.; Courtney, J.M.; Qian, H. Blood interface biomaterials. In: Biomaterials and Devices for the Circulatory System; Woodhead Publishing Limited, 2010; pp. 24-28.
[http://dx.doi.org/10.1533/9780857090553.1.24]
[30]
McKeen, L.W. Plastics used in medical devices in: Handbook of Polymer Applications in Medicine and Medical Devices, Modjarrad, K; Ebnesajjad, S., Ed.; Elsevier Science B. V: Amsterdam, 2013, pp. 21-53.
[http://dx.doi.org/10.1016/B978-0-323-22805-3.00003-7]
[31]
Healthcare, G. Thoracic catheters Redax, 2016. Available at: www.gbukhealthcare.com (Accessed Date: 20.09.2016)
[32]
Yoda, R. Elastomers for biomedical applications. J. Biomater. Sci. Polym. Ed., 1998, 9(6), 561-626.
[http://dx.doi.org/10.1163/156856298X00046] [PMID: 9659600]
[33]
Steward, P.A.; Hearn, J.; Wilkinson, M.C. An overview of polymer latex film formation and properties. Adv. Colloid Interface Sci., 2000, 86(3), 195-267.
[http://dx.doi.org/10.1016/S0001-8686(99)00037-8] [PMID: 10997764]
[34]
Popoola, A.A.; Bamgbola, I.O.K.T.; Babata, A.L. Toxic catheters and urethral strictures: A concern about types of catheters used in resource-poor countries. Afr. J. Urol., 2012, 18(4), 157-160.
[http://dx.doi.org/10.1016/j.afju.2012.10.002]
[35]
Renner, T.; Pek, L. Comparing strength properties of natural and synthetic rubber mixtures; Sustainable Construction and Design, 2011, pp. 134-141.
[36]
Inc., C.R.B. Specialty Foley Catheters. Sales training reference guide, 2016. Available at: http://www.bardmedical.com/ (Accessed Date: ???)
[37]
Hwang, C.J.; Cha, J.Y. Mechanical and biological comparison of latex and silicone rubber bands. Am. J. Orthod. Dentofacial Orthop., 2003, 124(4), 379-386.
[http://dx.doi.org/10.1016/S0889-5406(03)00564-X] [PMID: 14560267]
[38]
Krueger, D.L.; Yeh, G. Morphology of high-strenght transparent polyethylene prepared under controlled conditions. J. Appl. Phys., 1972, 43(11), 4339-4343.
[http://dx.doi.org/10.1063/1.1660924]
[39]
Engineering Properties of Polyethylene, in American Water Works Association Manual, 2005.
[40]
Raea, P.J.; Dattelbaum, D.M. The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer (Guildf.), 2004, 45(22), 7615-7625.
[http://dx.doi.org/10.1016/j.polymer.2004.08.064]
[41]
Demirel, B.; Yarad, A.; Elcicek, H. Crystallization behavior of PET materials. Fen Bil. Enst. Dergisi Cilt, 2011, 13(1), 26-35.
[42]
Webb, H.K.; Arnott, J.; Crawford, R.; Ivanova, E.P. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel), 2013, 5(1), 1-18.
[http://dx.doi.org/10.3390/polym5010001]
[43]
Ostapchenko, G.J. Polyethylene terephthalate articles having desirable adhesion and non-blocking characteristics, and a preparative process therefor. 1998. Patent number: US5721023.
[44]
Jiang, J.; Hao, W.; Li, Y-z.; Chen, J.; Yao, J-n.; Shao, Z-z.; Li, H.; Yang, J-j.; Chen, S-y. Biocompatibility evaluation of polyethylene terephthalate artificial ligament coating hydroxyapatite by fibroblasts cells in vitro. J. Shanghai Jiaotong Univ., 2012, 17(6), 717-722.
[http://dx.doi.org/10.1007/s12204-012-1352-3]
[45]
Schaible, S.G. Catheter with a transparent shaft. United States Patent 7641838, 2005.
[46]
Gan, K.; Liu, H.; Liu, X.; Niu, D. Research progress of polyether ether ketone biocomposites. Ann Materials Sci Eng., 2015, 2(1), 1020.
[47]
Lăzăroaie, C.; Rusen, E.; Mǎrculescu, B.; Zecheru, T.; Hubca, G. Chemical modification of PVC for polymer matrices with special properties. U.P.B. Sci. Bull. Series B, 2010, 72(2), 127-140.
[48]
Wyndaele, J.J. Intermittent catheterization: which is the optimal technique? Spinal Cord, 2002, 40(9), 432-437.
[http://dx.doi.org/10.1038/sj.sc.3101312] [PMID: 12185603]
[49]
Johansson, K.; Greis, G.; Johansson, B.; Grundtmann, A.; Pahlby, Y.; Törn, S.; Axelberg, H.; Carlsson, P. Evaluation of a new PVC-free catheter material for intermittent catheterization. Scand. J. Urol. Nephrol, 2013, 47(1), 33-37.
[http://dx.doi.org/10.3109/00365599.2012.696136] [PMID: 22762536]
[50]
Lawrence, E.L.; Turner, I.G. Materials for urinary catheters: a review of their history and development in the UK. Med. Eng. Phys., 2005, 27(6), 443-453.
[http://dx.doi.org/10.1016/j.medengphy.2004.12.013] [PMID: 15990061]
[51]
Filosso, P.L.; Sandri, A.; Guerrera, F.; Ferraris, A.; Marchisio, F.; Bora, G.; Costardi, L.; Solidoro, P.; Ruffini, E.; Oliaro, A. When size matters: changing opinion in the management of pleural space-the rise of small-bore pleural catheters. J. Thorac. Dis., 2016, 8(7), E503-E510.
[http://dx.doi.org/10.21037/jtd.2016.06.25] [PMID: 27499983]
[52]
Lareau, R.; Bell, B.; Santerre, J.P.; Ho, J. Catheters with high-purity fluoropolymer additives, US Patents US8603070B1, 2015.
[53]
Polyimide liners for cardiovascular catheter tubing. Putnam Technology Sheet, 2016. Available at: http://www.putnamplastics.com/ (Accessed Date: 20.09.2016)
[54]
Ong, Y-L.; Razatos, A.; Georgiou, G.; Sharma, M.M. Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir, 1999, 15(8), 2719-2725.
[http://dx.doi.org/10.1021/la981104e]
[55]
Islas, L.; Ruiz, J-C.; Muñoz-Muñoz, F.; Isoshima, F.; Burillo, G. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethyleneglicol)methacrylate using gamma radiation. Appl. Surf. Sci., 2016, 384, 135-142.
[http://dx.doi.org/10.1016/j.apsusc.2016.04.169]
[56]
Balakrishnan, B.; Kumar, D.S.; Yoshida, Y.; Jayakrishnan, A. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials, 2005, 26(17), 3495-3502.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.032] [PMID: 15621239]
[57]
Asadinezhad, A.; Lehocky, M.; Saha, P.; Mozetic, M. Recent progress in surface modification of polyvinyl chloride. Mater. Res., 2012, 5(12), 2937-2959.
[http://dx.doi.org/10.3390/ma5122937]
[58]
Sacristan, J.; Reinecke, H.; Mijangos, C. Surface modification of PVC films in solvent - non-solvent mixtures. Polym. Degrad. Stabil., 2000, 41, 5577-5582.
[http://dx.doi.org/10.1016/S0032-3861(99)00784-3]
[59]
Martinez-Cocoletzi, A.; Juan-Carlos, R.; Kasparek, E.; Ortega, A.; Garcia-Uriostegui, L.; Girard-Lauriault, P-L.; Burillo, G. Primary-amine surface funtionalization of polytetrafluoroethylene films by radiation grafting of aminated polyacyloyl chloride. Radiat. Phys. Chem., 2018, 149, 65-72.
[http://dx.doi.org/10.1016/j.radphyschem.2018.03.011]
[60]
Anjum, S.; Singh, S.; Benedicte, L.; Roger, P.; Panigrahi, M.; Gupta, B. Biomodification strategies for the development of antiicrobial urinary catheters: overview and advances; Global Challenges, 2017.
[http://dx.doi.org/10.1002/gch2.201700068]
[61]
Herrero, M.; Tiemblo, P.; Reyes-Labarta, J.; Mijangos, C.; Reinecke, H. PVC modification with new functional groups. Inflence of hydrogen bonds on reactivity, stiffness and specific volume. Polymer (Guildf.), 2002, 43(9), 2631-2636.
[http://dx.doi.org/10.1016/S0032-3861(02)00064-2]
[62]
Inagaki, N. Plasma surface modification and plasma polymerization; Technomic Publishing: Basel, 1995.
[63]
D’Agostino, R.; Pietro, F.; Fracasi, F. Plasma processing of polymers; Springer Link, 1997.
[64]
Elementary Plasma-chemical reactions in: Plasma chemistry; Fridman, A. (Ed.), Cambridge University Press, 2008, pp. 12-21.
[http://dx.doi.org/10.1017/CBO9780511546075.004]
[65]
Coeur, F.L.; Pelletier, J.; Lacoste, Y.A.A. Ion Implantation by plasma immersion: interest, limitations and perspectives. Surf. Coat. Tech., 2000, 125(1-3), 71-78.
[http://dx.doi.org/10.1016/S0257-8972(99)00554-X]
[66]
Bento, W.C.A.; Honda, R.Y.; Kayama, M.E.; Schreiner, W.H.; Cruz, N.C.; Rangel, E.C. Hydrophilization of PVC Surfaces by argon plasma immersion ion implantation. Plasmas and polymers, 2003, 8(1), 1-11.
[http://dx.doi.org/10.1023/A:1022827307458]
[67]
Zhang, W.; Chu, P.K.; Ji, J.; Zhang, Y.; Liu, X.; Fu, R.K.; Ha, P.C.; Yan, Q. Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties. Biomaterials, 2006, 27(1), 44-51.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.067] [PMID: 16005957]
[68]
Asadinezhad, A.; Novák, I.; Lehocký, M.; Sedlařík, V.; Vesel, A.; Junkar, I.; Sáha, P.; Chodák, I. A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: irgasan coating. Plasma Process. Polym., 2010, 7(6), 504-514.
[http://dx.doi.org/10.1002/ppap.200900132]
[69]
Kuwahata, H.; Yamaguchi, T.; Ohyama, R.; Ito, A. Inactivation of Escherichia coli using atmospheric-pressure plasma jet. Jpn. J. Appl. Phys., 2014, 54(1S)01AG08
[http://dx.doi.org/10.7567/JJAP.54.01AG08]
[70]
Lauer, J.L.; Shohet, J.L.; Albrecht, R.M.; Pratoomtong, C.; Murugesan, R.; Bathke, R.D.; Esnault, S.; Malter, J.S.; Shohet, S.B.; von Andrian, U.H. Control of uniformity of plasma-surface modification inside of small-diameter polyethylene tubing using microplasma diagnostics. IEEE International conference on plasma science, 2004, pp. 113.
[http://dx.doi.org/10.1109/PLASMA.2004.1339608]
[71]
Tanaka, K.; Inomata, T.; Kogoma, M. Improvement in adhesive strenght of fluorinated polymer films by atmospheric presurre glow plasma. Thin Solid Films, 2001, 386(2), 217-221.
[http://dx.doi.org/10.1016/S0040-6090(00)01653-9]
[72]
Kitazaki, S.; Hayashi, N. Sterilization characteristics of tube inner surface using oxygen plasma produced by AC HV discharge. IEEE Trans. Plasma Sci., 2008, 36(4), 1304-1305.
[http://dx.doi.org/10.1109/TPS.2008.922451]
[73]
Wen, X.Q.; Liu, X.H.; Liu, G.S. Improvement in the hydrophilic property of inner surface of polyvinyl chloride tube by DC glow discharge plasma. Vacuum, 2010, 85(3), 406-410.
[http://dx.doi.org/10.1016/j.vacuum.2010.08.002]
[74]
Yousefi, R.A.; Ayhan, H.; Kisa, U.; Pişkin, E. Adhesion of different bacterial strains to low-temperature plasma treated biomedical PVC catheter surfaces. J. Biomater. Sci. Polym. Ed., 1998, 9(9), 915-929.
[http://dx.doi.org/10.1163/156856298X00244] [PMID: 9747985]
[75]
Lee, D.; Cohen, R.E.; Rubner, M.F. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir, 2005, 21(21), 9651-9659.
[http://dx.doi.org/10.1021/la0513306] [PMID: 16207049]
[76]
Nedelcu, I.A.; Ficai, A.; Sonmez, M.; Ficai, D.; Oprea, O.; Andronescu, E. Silver based materials for biomedical applications. Curr. Org. Chem., 2014, 18(2), 173-184.
[http://dx.doi.org/10.2174/13852728113176660141]
[77]
Fernández, A.; Soriano, E.; Hernández-Muñoz, P.; Gavara, R. Migration of antimicrobial silver from composites of polylactide with silver zeolites. J. Food Sci., 2010, 75(3), E186-E193.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01549.x] [PMID: 20492293]
[78]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662:AID-JBM10>3.0.CO;2-3] [PMID: 11033548]
[79]
Balazs, D.J.; Triandafillu, K.; Wood, P.; Chevolot, Y.; van Delden, C.; Harms, H.; Hollenstein, C.; Mathieu, H.J. Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge. Biomaterials, 2004, 25(11), 2139-2151.
[http://dx.doi.org/10.1016/j.biomaterials.2003.08.053] [PMID: 14741629]
[80]
Hart, H.; Hadad, C.M.; Craine, L.E.; Hart, D.J. Organic chemistry: a short course, 10th ed; Houghton Mifflin: New York, 1998.
[81]
Balazs, D.J.; Triandafillu, K.; Chevolot, Y.; Aronsson, B.O.; Harms, H.; Descouts, P.; Mathieu, H.J. Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surf. Interface Anal., 2003, 35(3), 301-309.
[http://dx.doi.org/10.1002/sia.1533]
[82]
Shin, S.M.; Jeon, H.S.; Kim, Y.H.; Yoshioka, T.; Okuwaki, A. Plasticizer leaching from flexible PVC in low temperature caustic solution. Polym. Degrad. Stabil., 2002, 78(3), 511-517.
[http://dx.doi.org/10.1016/S0141-3910(02)00198-2]
[83]
Gupta, B.; Hilborn, J.; Hollenstein, C.H.; Plummer, C.J.G.; Houriet, R.; Xanthopoulos, N. Surface modification of polyester films by RF plasma. J. Appl. Polym. Sci., 2000, 78(5), 1083-1091.
[http://dx.doi.org/10.1002/1097-4628(20001031)78:5<1083:AID-APP170>3.0.CO;2-5]
[84]
Sakamoto, I.; Umemura, Y.; Nakano, H.; Nihira, H.; Kitano, T. Efficacy of an antibiotic coated indwelling catheter: a preliminary report. J. Biomed. Mater. Res., 1985, 19(9), 1031-1041.
[http://dx.doi.org/10.1002/jbm.820190915] [PMID: 3910651]
[85]
Lai, N.M.; Chaiyakunapruk, N.; Lai, N.A.; O’Riordan, E.; Pau, W.S.; Saint, S. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst. Rev., 2016, 3CD007878
[http://dx.doi.org/10.1002/14651858.CD007878.pub3] [PMID: 26982376]
[86]
Kurtz, P.; Rosa, P.; Penna, G.; Braga, F.; Kezen, J.; Drumond, L.E.; Freitas, M.; Almeida, G.; Vegni, R.; Kalichsztein, M.; Nobre, G. Antibiotic coated catheter to decrease infection: pilot study. Rev. Bras. Ter. Intensiva, 2008, 20(2), 160-164.
[PMID: 25307004]
[87]
Samuel, U.; Guggenbichler, J.P. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int. J. Antimicrob. Agents, 2004, 23(S1), S75-S78.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.12.004] [PMID: 15037331]
[88]
Roe, D.; Karandikar, B.; Bonn-Savage, N.; Gibbins, B.; Roullet, J.B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother., 2008, 61(4), 869-876.
[http://dx.doi.org/10.1093/jac/dkn034] [PMID: 18305203]
[89]
Karandlkar, B. M. Antimicrobial silver compositions. US 2007/0003603 A1, 2007.
[90]
Darouiche, R.O. Anti-infective efficacy of silver-coated medical prostheses. Clin. Infect. Dis., 1999, 29(6), 1371-1377.
[http://dx.doi.org/10.1086/313561] [PMID: 10585781]
[91]
Oloffs, A.; Grosse-Siestrup, C.; Bisson, S.; Rinck, M.; Rudolph, R.; Gross, U. Biocompatibility of silver-coated polyurethane catheters and silver-coated Dacron material. Biomaterials, 1994, 15(10), 753-758.
[http://dx.doi.org/10.1016/0142-9612(94)90028-0] [PMID: 7986938]
[92]
Crump, J.A.; Collignon, P.J. Intravascular catheter-associated infections. Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19(1), 1-8.
[http://dx.doi.org/10.1007/s100960050001] [PMID: 10706172]
[93]
Courtney, J.M.; Zhao, X.B.; Qian, H.; Sharma, A. Modification of polymer surfaces: optimization of approaches. Perfusion, 2003, 18(Suppl. 1), 33-39.
[http://dx.doi.org/10.1191/0267659103pf633oa] [PMID: 12708763]
[94]
Reyes-Labarta, J.; Tiemblo, M.H.P.; Mijangos, C.; Reinecke, H. Wetchemical surface modification of plasticized PVC. Characterization by FTIR-ATR and Raman microscopy. Polymer (Guildf.), 2003, 44(8), 2263-2269.
[http://dx.doi.org/10.1016/S0032-3861(03)00140-X]
[95]
Gabriel, M.; Strand, D.; Vahl, C.F. Cell adhesive and antifouling polyvinyl chloride surfaces via wet chemical modification. Artif. Organs, 2012, 36(9), 839-844.
[http://dx.doi.org/10.1111/j.1525-1594.2012.01462.x] [PMID: 22747750]
[96]
Singh, M.; Mishra, R.R.; Jaiswal, S.; Kapusetti, G.; Misra, N. Chemical modification of poly (vinyl chloride) sheet with thiourea for cell study. AIP Conference Proceedings, 2013, 1536(1), 1157-1158.
[97]
McGinty, K.M.; Brittian, W.J. Hydrophilic surface modification of poly (vinyl chloride) film and tubing using physisorbed free radical grafting technique. Polymer (Guildf.), 2008, 49(20), 4350-4357.
[http://dx.doi.org/10.1016/j.polymer.2008.07.063]
[98]
Zou, Y.; Lai, B.F.; Kizhakkedathu, J.N.; Brooks, D.E. Inhibitory effect of hydrophilic polymer brushes on surface-induced platelet activation and adhesion. Macromol. Biosci., 2010, 10(12), 1432-1443.
[http://dx.doi.org/10.1002/mabi.201000223] [PMID: 20954202]
[99]
Yu, J-L.; Johansson, S.; Ljungh, A. Fibronectin exposes different domains after adsorption to a heparinized and an unheparinized poly(vinyl chloride) surface. Biomaterials, 1997, 18(5), 421-427.
[http://dx.doi.org/10.1016/S0142-9612(96)00154-8] [PMID: 9061183]
[100]
Zha, Z.; Ma, Y.; Yue, X.; Liu, M.; Dai, Z. Self-assembled hemocompatible coating on ploy (vinyl chloride) surface. Appl. Surf. Sci., 2009, 256(3), 805-814.
[http://dx.doi.org/10.1016/j.apsusc.2009.08.065]
[101]
Lamba, N.M.K.; Courtney, J.M.; Gaylor, J.D.; Lowe, G.D. In vitro investigation of the blood response to medical grade PVC and the effect of heparin on the blood response. Biomaterials, 2000, 21(1), 89-96.
[http://dx.doi.org/10.1016/S0142-9612(99)00145-3] [PMID: 10619682]
[102]
James, N.R.; Jayakrishnan, A. Surface thiocyanation of plasticized poly(vinyl chloride) and its effect on bacterial adhesion. Biomaterials, 2003, 24(13), 2205-2212.
[http://dx.doi.org/10.1016/S0142-9612(03)00022-X] [PMID: 12699656]
[103]
Lakshmi, S.; Jayakrishnan, A. Migration resistant, blood-compatible plasticized polyvinyl chloride for medical and related applications. Artif. Organs, 1998, 22(3), 222-229.
[http://dx.doi.org/10.1046/j.1525-1594.1998.06124.x] [PMID: 9527283]
[104]
Lakshmi, S.; Jayakrishnan, A. Synthesis, surface properties and performance of thiosulphate-substituted plasticized poly(vinyl chloride). Biomaterials, 2002, 23(24), 4855-4862.
[http://dx.doi.org/10.1016/S0142-9612(02)00243-0] [PMID: 12361626]
[105]
Jayakrishnan, A.; Lakshmi, S. Immobile plasticizer in flexible PVC. Nature, 1998, 396(6712), 638.
[http://dx.doi.org/10.1038/25275] [PMID: 9872310]
[106]
Nilsson, U.R.; Larm, O.; Nilsson, B.; Storm, K.E.; Elwing, H.; Nilsson, E.K. Modification of the complement binding properties of polystyrene: effects of end-point heparin attachment. Scand. J. Immunol., 1993, 37(3), 349-354.
[http://dx.doi.org/10.1111/j.1365-3083.1993.tb02564.x] [PMID: 8441922]
[107]
Elnaggar, M.Y.; Fathy, E.S.; Hassan, M.M. Investigation of physico-mechanical properties of flexible poly (vinyl chloride) filled with antimony trioxide using ionizing radiation. Environ. Technol., 2019, 40(23), 3054-3061.
[http://dx.doi.org/10.1080/09593330.2018.1461247] [PMID: 29613848]
[108]
Jeong, J-O.; Lim, Y-M.; Park, J-S. Improving thermal stability of mechanical performance of polypropylene/polyurethane blend prepared by radiation-based techniques. Eur. Polym. J., 2017, 94, 366-375.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.07.028]
[109]
Walo, M. Radiation-induced grafting in: Applications of ionizing radiation in materials processing; Sun, Y; Chmielewski, A.G., Ed.; , 2017, pp. 193-210.
[110]
Tamada, M. Radiation processing of polymes and its applications in: Radiations applications-an advanced course in nuclear engineering; Hisaki, K., Ed.; Springer Link, 2011, pp. 63-80.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 10
Year: 2020
Page: [1616 - 1633]
Pages: 18
DOI: 10.2174/0929867327666200227152150
Price: $65

Article Metrics

PDF: 28
HTML: 2
EPUB: 1
PRC: 1