The Effects of General Anesthetics on Synaptic Transmission

Author(s): Xuechao Hao, Mengchan Ou, Donghang Zhang, Wenling Zhao, Yaoxin Yang, Jin Liu, Hui Yang, Tao Zhu, Yu Li*, Cheng Zhou*

Journal Name: Current Neuropharmacology

Volume 18 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.

Keywords: Neuropharmacology, general anesthetics, ion channels, neurotransmitter, synaptic transmission, synaptic plasticity.

[1]
Meara, J.G.; Leather, A.J.; Hagander, L.; Alkire, B.C.; Alonso, N.; Ameh, E.A.; Bickler, S.W.; Conteh, L.; Dare, A.J.; Davies, J.; Mérisier, E.D.; El-Halabi, S.; Farmer, P.E.; Gawande, A.; Gillies, R.; Greenberg, S.L.; Grimes, C.E.; Gruen, R.L.; Ismail, E.A.; Kamara, T.B.; Lavy, C.; Lundeg, G.; Mkandawire, N.C.; Raykar, N.P.; Riesel, J.N.; Rodas, E.; Rose, J.; Roy, N.; Shrime, M.G.; Sullivan, R.; Verguet, S.; Watters, D.; Weiser, T.G.; Wilson, I.H.; Yamey, G.; Yip, W. Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet, 2015, 386(9993), 569-624.
[http://dx.doi.org/10.1016/S0140-6736(15)60160-X] [PMID: 25924834]
[2]
Missner, A.; Pohl, P. 110 years of the Meyer-Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem, 2009, 10(9-10), 1405-1414.
[http://dx.doi.org/10.1002/cphc.200900270] [PMID: 19514034]
[3]
Herold, K.F.; Sanford, R.L.; Lee, W.; Andersen, O.S.; Hemmings, H.C., Jr Clinical concentrations of chemically diverse general anesthetics minimally affect lipid bilayer properties. Proc. Natl. Acad. Sci. USA, 2017, 114(12), 3109-3114.
[http://dx.doi.org/10.1073/pnas.1611717114] [PMID: 28265069]
[4]
Herold, K.F.; Andersen, O.S.; Hemmings, H.C., Jr Divergent effects of anesthetics on lipid bilayer properties and sodium channel function. Eur. Biophys. J., 2017, 46(7), 617-626.
[http://dx.doi.org/10.1007/s00249-017-1239-1] [PMID: 28695248]
[5]
Hemmings, H.C., Jr; Akabas, M.H.; Goldstein, P.A.; Trudell, J.R.; Orser, B.A.; Harrison, N.L. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol. Sci., 2005, 26(10), 503-510.
[http://dx.doi.org/10.1016/j.tips.2005.08.006] [PMID: 16126282]
[6]
Franks, N.P. Molecular targets underlying general anaesthesia. Br. J. Pharmacol., 2006, 147(Suppl. 1), S72-S81.
[http://dx.doi.org/10.1038/sj.bjp.0706441] [PMID: 16402123]
[7]
Schafer, D.P.; Lehrman, E.K.; Stevens, B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia, 2013, 61(1), 24-36.
[http://dx.doi.org/10.1002/glia.22389] [PMID: 22829357]
[8]
Levine, D.N. Sherrington’s “The Integrative action of the nervous system”: a centennial appraisal. J. Neurol. Sci., 2007, 253(1-2), 1-6.
[http://dx.doi.org/10.1016/j.jns.2006.12.002] [PMID: 17223135]
[9]
Garcia, R. Stress, hippocampal plasticity, and spatial learning. Synapse, 2001, 40(3), 180-183.
[http://dx.doi.org/10.1002/syn.1040] [PMID: 11304755]
[10]
Südhof, T.C. The molecular machinery of neurotransmitter release (Nobel lecture). Angew. Chem. Int. Ed. Engl., 2014, 53(47), 12696-12717.
[http://dx.doi.org/10.1002/anie.201406359] [PMID: 25339369]
[11]
Jahn, R.; Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. Nature, 2012, 490(7419), 201-207.
[http://dx.doi.org/10.1038/nature11320] [PMID: 23060190]
[12]
Ramakrishnan, N.A.; Drescher, M.J.; Drescher, D.G. The SNARE complex in neuronal and sensory cells. Mol. Cell. Neurosci., 2012, 50(1), 58-69.
[http://dx.doi.org/10.1016/j.mcn.2012.03.009] [PMID: 22498053]
[13]
Iqbal, F.; Thompson, A.J.; Riaz, S.; Pehar, M.; Rice, T.; Syed, N.I. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J. Neurophysiol., 2019, 122(2), 760-787.
[http://dx.doi.org/10.1152/jn.00210.2019] [PMID: 31242059]
[14]
Hudson, A.E.; Hemmings, H.C., Jr Are anaesthetics toxic to the brain? Br. J. Anaesth., 2011, 107(1), 30-37.
[http://dx.doi.org/10.1093/bja/aer122] [PMID: 21616941]
[15]
Jevtovic-Todorovic, V. General anesthetics and neurotoxicity: how much do we know? Anesthesiol. Clin., 2016, 34(3), 439-451.
[http://dx.doi.org/10.1016/j.anclin.2016.04.001] [PMID: 27521190]
[16]
Pittson, S.; Himmel, A.M.; MacIver, M.B. Multiple synaptic and membrane sites of anesthetic action in the CA1 region of rat hippocampal slices. BMC Neurosci., 2004, 5, 52.
[http://dx.doi.org/10.1186/1471-2202-5-52] [PMID: 15579203]
[17]
Ou, M. The General Anesthetic isoflurane bilaterally modulates neuronal excitability iScience, 2020.23(1), 100760.
[18]
Mikulec, A.A.; Pittson, S.; Amagasu, S.M.; Monroe, F.A.; MacIver, M.B. Halothane depresses action potential conduction in hippocampal axons. Brain Res., 1998, 796(1-2), 231-238.
[http://dx.doi.org/10.1016/S0006-8993(98)00348-5] [PMID: 9689473]
[19]
Ouyang, W.; Hemmings, H.C., Jr Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals. J. Pharmacol. Exp. Ther., 2005, 312(2), 801-808.
[http://dx.doi.org/10.1124/jpet.104.074609] [PMID: 15375177]
[20]
Miao, N.; Frazer, M.J.; Lynch, C. III Volatile anesthetics depress Ca2+ transients and glutamate release in isolated cerebral synaptosomes. Anesthesiology, 1995, 83(3), 593-603.
[http://dx.doi.org/10.1097/00000542-199509000-00019] [PMID: 7661360]
[21]
Dickinson, R.; Peterson, B.K.; Banks, P.; Simillis, C.; Martin, J.C.; Valenzuela, C.A.; Maze, M.; Franks, N.P. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology, 2007, 107(5), 756-767.
[http://dx.doi.org/10.1097/01.anes.0000287061.77674.71] [PMID: 18073551]
[22]
Buggy, D.J.; Nicol, B.; Rowbotham, D.J.; Lambert, D.G. Effects of intravenous anesthetic agents on glutamate release: a role for GABAA receptor-mediated inhibition. Anesthesiology, 2000, 92(4), 1067-1073.
[http://dx.doi.org/10.1097/00000542-200004000-00025] [PMID: 10754627]
[23]
Minami, K.; Wick, M.J.; Stern-Bach, Y.; Dildy-Mayfield, J.E.; Brozowski, S.J.; Gonzales, E.L.; Trudell, J.R.; Harris, R.A. Sites of volatile anesthetic action on kainate (Glutamate receptor 6) receptors. J. Biol. Chem., 1998, 273(14), 8248-8255.
[http://dx.doi.org/10.1074/jbc.273.14.8248] [PMID: 9525931]
[24]
Kirson, E.D.; Yaari, Y.; Perouansky, M. Presynaptic and postsynaptic actions of halothane at glutamatergic synapses in the mouse hippocampus. Br. J. Pharmacol., 1998, 124(8), 1607-1614.
[http://dx.doi.org/10.1038/sj.bjp.0701996] [PMID: 9756375]
[25]
Richards, C.D. Anaesthetic modulation of synaptic transmission in the mammalian CNS. Br. J. Anaesth., 2002, 89(1), 79-90.
[http://dx.doi.org/10.1093/bja/aef162] [PMID: 12173243]
[26]
Hemmings, H.C., Jr Sodium channels and the synaptic mechanisms of inhaled anaesthetics. Br. J. Anaesth., 2009, 103(1), 61-69.
[http://dx.doi.org/10.1093/bja/aep144] [PMID: 19508978]
[27]
Berg-Johnsen, J.; Langmoen, I.A. The effect of isoflurane on unmyelinated and myelinated fibres in the rat brain. Acta Physiol. Scand., 1986, 127(1), 87-93.
[http://dx.doi.org/10.1111/j.1748-1716.1986.tb07879.x] [PMID: 3728047]
[28]
Wall, P.D. The mechanisms of general anesthesia. Anesthesiology, 1967, 28(1), 46-53.
[http://dx.doi.org/10.1097/00000542-196701000-00006] [PMID: 6017439]
[29]
Bieda, M.C.; MacIver, M.B. Major role for tonic GABAA conductances in anesthetic suppression of intrinsic neuronal excitability. J. Neurophysiol., 2004, 92(3), 1658-1667.
[http://dx.doi.org/10.1152/jn.00223.2004] [PMID: 15140905]
[30]
Liao, M.; Sonner, J.M.; Jurd, R.; Rudolph, U.; Borghese, C.M.; Harris, R.A.; Laster, M.J.; Eger, E.I., II Beta3-containing gamma-aminobutyric acidA receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth. Analg., 2005, 101(2), 412-418. [table of contents
[http://dx.doi.org/10.1213/01.ANE.0000154196.86587.35] [PMID: 16037154]
[31]
Kotani, N.; Akaike, N. The effects of volatile anesthetics on synaptic and extrasynaptic GABA-induced neurotransmission. Brain Res. Bull., 2013, 93, 69-79.
[http://dx.doi.org/10.1016/j.brainresbull.2012.08.001] [PMID: 22925739]
[32]
Richards, C.D.; Smaje, J.C. Anaesthetics depress the sensitivity of cortical neurones to L-glutamate. Br. J. Pharmacol., 1976, 58(3), 347-357.
[http://dx.doi.org/10.1111/j.1476-5381.1976.tb07711.x] [PMID: 990590]
[33]
Maclver, M.B.; Mikulec, A.A.; Amagasu, S.M.; Monroe, F.A. Volatile anesthetics depress glutamate transmission via presynaptic actions. Anesthesiology, 1996, 85(4), 823-834.
[http://dx.doi.org/10.1097/00000542-199610000-00018] [PMID: 8873553]
[34]
Murugaiah, K.D.; Hemmings, H.C., Jr Effects of intravenous general anesthetics on [3H]GABA release from rat cortical synaptosomes. Anesthesiology, 1998, 89(4), 919-928.
[http://dx.doi.org/10.1097/00000542-199810000-00017] [PMID: 9778010]
[35]
Ito, S.; Sugiyama, H.; Kitahara, S.; Ikemoto, Y.; Yokoyama, T. Effects of propofol and pentobarbital on calcium concentration in presynaptic boutons on a rat hippocampal neuron. J. Anesth., 2011, 25(5), 727-733.
[http://dx.doi.org/10.1007/s00540-011-1186-4] [PMID: 21720930]
[36]
Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci., 2004, 27, 509-547.
[http://dx.doi.org/10.1146/annurev.neuro.26.041002.131412] [PMID: 15217342]
[37]
Pocock, G.; Richards, C.D. Anesthetic action on stimulus-secretion coupling. Ann. N. Y. Acad. Sci., 1991, 625, 71-81.
[http://dx.doi.org/10.1111/j.1749-6632.1991.tb33830.x] [PMID: 2058919]
[38]
Schlame, M.; Hemmings, H.C., Jr Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology, 1995, 82(6), 1406-1416.
[http://dx.doi.org/10.1097/00000542-199506000-00012] [PMID: 7793654]
[39]
Baumgart, J.P.; Zhou, Z.Y.; Hara, M.; Cook, D.C.; Hoppa, M.B.; Ryan, T.A.; Hemmings, H.C. Jr Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling. Proc. Natl. Acad. Sci. USA, 2015, 112(38), 11959-11964.
[http://dx.doi.org/10.1073/pnas.1500525112] [PMID: 26351670]
[40]
Ouyang, W.; Wang, G.; Hemmings, H.C., Jr Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol. Pharmacol., 2003, 64(2), 373-381.
[http://dx.doi.org/10.1124/mol.64.2.373] [PMID: 12869642]
[41]
Perouansky, M.; Hemmings, H.C.; Pearce, R.A. Anesthetic effects on glutamatergic neurotransmission: lessons learned from a large synapse. Anesthesiology, 2004, 100(3), 470-472.
[http://dx.doi.org/10.1097/00000542-200403000-00003] [PMID: 15108957]
[42]
Hemmings, H.C., Jr; Yan, W.; Westphalen, R.I.; Ryan, T.A. The general anesthetic isoflurane depresses synaptic vesicle exocytosis. Mol. Pharmacol., 2005, 67(5), 1591-1599.
[http://dx.doi.org/10.1124/mol.104.003210] [PMID: 15728262]
[43]
Ratnakumari, L.; Hemmings, H.C., Jr Inhibition by propofol of [3H]-batrachotoxinin-A 20-alpha-benzoate binding to voltage-dependent sodium channels in rat cortical synaptosomes. Br. J. Pharmacol., 1996, 119(7), 1498-1504.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16064.x] [PMID: 8968561]
[44]
Ratnakumari, L.; Vysotskaya, T.N.; Duch, D.S.; Hemmings, H.C., Jr Differential effects of anesthetic and nonanesthetic cyclobutanes on neuronal voltage-gated sodium channels. Anesthesiology, 2000, 92(2), 529-541.
[http://dx.doi.org/10.1097/00000542-200002000-00037] [PMID: 10691242]
[45]
Hall, A.C.; Lieb, W.R.; Franks, N.P. Insensitivity of P-type calcium channels to inhalational and intravenous general anesthetics. Anesthesiology, 1994, 81(1), 117-123.
[http://dx.doi.org/10.1097/00000542-199407000-00017] [PMID: 8042779]
[46]
Wu, X.S.; Sun, J.Y.; Evers, A.S.; Crowder, M.; Wu, L.G. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology, 2004, 100(3), 663-670.
[http://dx.doi.org/10.1097/00000542-200403000-00029] [PMID: 15108983]
[47]
Larsen, M.; Grøndahl, T.O.; Haugstad, T.S.; Langmoen, I.A. The effect of the volatile anesthetic isoflurane on Ca(2+)-dependent glutamate release from rat cerebral cortex. Brain Res., 1994, 663(2), 335-337.
[http://dx.doi.org/10.1016/0006-8993(94)91282-3] [PMID: 7874520]
[48]
van Swinderen, B.; Saifee, O.; Shebester, L.; Roberson, R.; Nonet, M.L.; Crowder, C.M. A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 1999, 96(5), 2479-2484.
[http://dx.doi.org/10.1073/pnas.96.5.2479] [PMID: 10051668]
[49]
Bickler, P.E.; Buck, L.T.; Feiner, J.R. Volatile and intravenous anesthetics decrease glutamate release from cortical brain slices during anoxia. Anesthesiology, 1995, 83(6), 1233-1240.
[http://dx.doi.org/10.1097/00000542-199512000-00014] [PMID: 8533916]
[50]
Westphalen, R.I.; Hemmings, H.C. Jr Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J. Pharmacol. Exp. Ther., 2003, 304(3), 1188-1196.
[http://dx.doi.org/10.1124/jpet.102.044685] [PMID: 12604696]
[51]
Westphalen, R.I.; Desai, K.M.; Hemmings, H.C., Jr Presynaptic inhibition of the release of multiple major central nervous system neurotransmitter types by the inhaled anaesthetic isoflurane. Br. J. Anaesth., 2013, 110(4), 592-599.
[http://dx.doi.org/10.1093/bja/aes448] [PMID: 23213036]
[52]
Keita, H.; Henzel-Rouellé, D.; Dupont, H.; Desmonts, J.M.; Mantz, J. Halothane and isoflurane increase spontaneous but reduce the N-methyl-D-aspartate-evoked dopamine release in rat striatal slices: evidence for direct presynaptic effects. Anesthesiology, 1999, 91(6), 1788-1797.
[http://dx.doi.org/10.1097/00000542-199912000-00033] [PMID: 10598623]
[53]
Mantz, J.; Varlet, C.; Lecharny, J.B.; Henzel, D.; Lenot, P.; Desmonts, J.M. Effects of volatile anesthetics, thiopental, and ketamine on spontaneous and depolarization-evoked dopamine release from striatal synaptosomes in the rat. Anesthesiology, 1994, 80(2), 352-363.
[http://dx.doi.org/10.1097/00000542-199402000-00015] [PMID: 8311317]
[54]
Adachi, Y.U.; Watanabe, K.; Higuchi, H.; Satoh, T.; Zsilla, G. Halothane decreases impulse-dependent but not cytoplasmic release of dopamine from rat striatal slices. Brain Res. Bull., 2001, 56(6), 521-524.
[http://dx.doi.org/10.1016/S0361-9230(01)00619-0] [PMID: 11786236]
[55]
Silva, J.H.; Gomez, R.S.; Diniz, P.H.; Gomez, M.V.; Guatimosim, C. The effect of sevoflurane on the release of [3H]dopamine from rat brain cortical slices. Brain Res. Bull., 2007, 72(4-6), 309-314.
[http://dx.doi.org/10.1016/j.brainresbull.2007.01.011] [PMID: 17452291]
[56]
el-Maghrabi, E.A.; Eckenhoff, R.G. Inhibition of dopamine transport in rat brain synaptosomes by volatile anesthetics. Anesthesiology, 1993, 78(4), 750-756.
[http://dx.doi.org/10.1097/00000542-199304000-00019] [PMID: 8466075]
[57]
Adachi, Y.U.; Watanabe, K.; Higuchi, H.; Satoh, T.; Zsilla, G. Halothane enhances acetylcholine release by decreasing dopaminergic activity in rat striatal slices. Neurochem. Int., 2002, 40(3), 189-193.
[http://dx.doi.org/10.1016/S0197-0186(01)00092-4] [PMID: 11741001]
[58]
Salord, F.; Keita, H.; Lecharny, J.B.; Henzel, D.; Desmonts, J.M.; Mantz, J. Halothane and isoflurane differentially affect the regulation of dopamine and gamma-aminobutyric acid release mediated by presynaptic acetylcholine receptors in the rat striatum. Anesthesiology, 1997, 86(3), 632-641.
[http://dx.doi.org/10.1097/00000542-199703000-00016] [PMID: 9066330]
[59]
Westphalen, R.I.; Hemmings, H.C. Jr Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: basal release. J. Pharmacol. Exp. Ther., 2006, 316(1), 208-215.
[http://dx.doi.org/10.1124/jpet.105.090647] [PMID: 16174801]
[60]
Westphalen, R.I.; Hemmings, H.C., Jr Volatile anesthetic effects on glutamate versus GABA release from isolated rat cortical nerve terminals: 4-aminopyridine-evoked release. J. Pharmacol. Exp. Ther., 2006, 316(1), 216-223.
[http://dx.doi.org/10.1124/jpet.105.090662] [PMID: 16174800]
[61]
Ratnakumari, L.; Hemmings, H.C., Jr Effects of propofol on sodium channel-dependent sodium influx and glutamate release in rat cerebrocortical synaptosomes. Anesthesiology, 1997, 86(2), 428-439.
[http://dx.doi.org/10.1097/00000542-199702000-00018] [PMID: 9054261]
[62]
Westphalen, R.I.; Kwak, N.B.; Daniels, K.; Hemmings, H.C., Jr Regional differences in the effects of isoflurane on neurotransmitter release. Neuropharmacology, 2011, 61(4), 699-706.
[http://dx.doi.org/10.1016/j.neuropharm.2011.05.013] [PMID: 21651920]
[63]
Lingamaneni, R.; Birch, M.L.; Hemmings, H.C., Jr Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol. Anesthesiology, 2001, 95(6), 1460-1466.
[http://dx.doi.org/10.1097/00000542-200112000-00027] [PMID: 11748406]
[64]
Diniz, P.H.; Guatimosim, C.; Binda, N.S.; Costa, F.L.; Gomez, M.V.; Gomez, R.S. The effects of volatile anesthetics on the extracellular accumulation of [(3)H]GABA in rat brain cortical slices. Cell. Mol. Neurobiol., 2014, 34(1), 71-81.
[http://dx.doi.org/10.1007/s10571-013-9988-6] [PMID: 24081560]
[65]
Hirota, K.; Kudo, M.; Kudo, T.; Matsuki, A.; Lambert, D.G. Inhibitory effects of intravenous anaesthetic agents on K+-evoked norepinephrine and dopamine release from rat striatal slices: possible involvement of P/Q-type voltage-sensitive Ca2+ channels. Br. J. Anaesth., 2000, 85(6), 874-880.
[http://dx.doi.org/10.1093/bja/85.6.874] [PMID: 11732523]
[66]
Gomez, R.S.; Gomez, M.V.; Prado, M.A. The effect of isoflurane on the release of [(3)H]-acetylcholine from rat brain cortical slices. Brain Res. Bull., 2000, 52(4), 263-267.
[http://dx.doi.org/10.1016/S0361-9230(00)00259-8] [PMID: 10856823]
[67]
Kikuchi, T.; Wang, Y.; Sato, K.; Okumura, F. In vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats. Br. J. Anaesth., 1998, 80(5), 644-648.
[http://dx.doi.org/10.1093/bja/80.5.644] [PMID: 9691870]
[68]
Sato, K.; Wu, J.; Kikuchi, T.; Wang, Y.; Watanabe, I.; Okumura, F. Differential effects of ketamine and pentobarbitone on acetylcholine release from the rat hippocampus and striatum. Br. J. Anaesth., 1996, 77(3), 381-384.
[http://dx.doi.org/10.1093/bja/77.3.381] [PMID: 8949815]
[69]
Anzawa, N.; Kushikata, T.; Ohkawa, H.; Yoshida, H.; Kubota, T.; Matsuki, A. Increased noradrenaline release from rat preoptic area during and after sevoflurane and isoflurane anesthesia. Can. J. Anaesth., 2001, 48(5), 462-465.
[http://dx.doi.org/10.1007/BF03028309] [PMID: 11394514]
[70]
Pashkov, V.N.; Hemmings, H.C., Jr The effects of general anesthetics on norepinephrine release from isolated rat cortical nerve terminals. Anesth. Analg., 2002, 95(5), 1274-1281.
[http://dx.doi.org/10.1097/00000539-200211000-00032] [PMID: 12401610]
[71]
Westphalen, R.I.; Gomez, R.S.; Hemmings, H.C., Jr Nicotinic receptor-evoked hippocampal norepinephrine release is highly sensitive to inhibition by isoflurane. Br. J. Anaesth., 2009, 102(3), 355-360.
[http://dx.doi.org/10.1093/bja/aen387] [PMID: 19189985]
[72]
Quastel, D.M.; Saint, D.A. Modification of motor nerve terminal excitability by alkanols and volatile anaesthetics. Br. J. Pharmacol., 1986, 88(4), 747-756.
[http://dx.doi.org/10.1111/j.1476-5381.1986.tb16247.x] [PMID: 2427145]
[73]
Zhou, C.; Wu, W.; Liu, J.; Liao, D.Q.; Kang, Y.; Chen, X.D. Inhibition of voltage-gated sodium channels by emulsified isoflurane may contribute to its subarachnoid anesthetic effect in beagle dogs. Reg. Anesth. Pain Med., 2011, 36(6), 553-559.
[http://dx.doi.org/10.1097/AAP.0b013e3182324d18] [PMID: 21989153]
[74]
Berg-Johnsen, J.; Langmoen, I.A. Mechanisms concerned in the direct effect of isoflurane on rat hippocampal and human neocortical neurons. Brain Res., 1990, 507(1), 28-34.
[http://dx.doi.org/10.1016/0006-8993(90)90517-F] [PMID: 2302577]
[75]
Zhao, W.; Zhang, M.; Liu, J.; Liang, P.; Wang, R.; Hemmings, H.C.; Zhou, C. Isoflurane modulates hippocampal cornu ammonis pyramidal neuron excitability by inhibition of both transient and persistent sodium currents in mice. Anesthesiology, 2019, 131(1), 94-104.
[http://dx.doi.org/10.1097/ALN.0000000000002753] [PMID: 31166240]
[76]
Herold, K.F.; Nau, C.; Ouyang, W.; Hemmings, H.C., Jr Isoflurane inhibits the tetrodotoxin-resistant voltage-gated sodium channel Nav1.8. Anesthesiology, 2009, 111(3), 591-599.
[http://dx.doi.org/10.1097/ALN.0b013e3181af64d4] [PMID: 19672182]
[77]
OuYang, W.; Hemmings, H.C., Jr Isoform-selective effects of isoflurane on voltage-gated Na+ channels. Anesthesiology, 2007, 107(1), 91-98.
[http://dx.doi.org/10.1097/01.anes.0000268390.28362.4a] [PMID: 17585220]
[78]
Ouyang, W.; Herold, K.F.; Hemmings, H.C., Jr Comparative effects of halogenated inhaled anesthetics on voltage-gated Na+ channel function. Anesthesiology, 2009, 110(3), 582-590.
[http://dx.doi.org/10.1097/ALN.0b013e318197941e] [PMID: 19225394]
[79]
Purtell, K.; Gingrich, K.J.; Ouyang, W.; Herold, K.F.; Hemmings, H.C., Jr Activity-dependent depression of neuronal sodium channels by the general anaesthetic isoflurane. Br. J. Anaesth., 2015, 115(1), 112-121.
[http://dx.doi.org/10.1093/bja/aev203] [PMID: 26089447]
[80]
Zhou, C.; Johnson, K.W.; Herold, K.F.; Hemmings, H.C., Jr Differential inhibition of neuronal sodium channel subtypes by the general anesthetic isoflurane. J. Pharmacol. Exp. Ther., 2019, 369(2), 200-211.
[http://dx.doi.org/10.1124/jpet.118.254938] [PMID: 30792243]
[81]
Barber, A.F.; Carnevale, V.; Klein, M.L.; Eckenhoff, R.G.; Covarrubias, M. Modulation of a voltage-gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms. Proc. Natl. Acad. Sci. USA, 2014, 111(18), 6726-6731.
[http://dx.doi.org/10.1073/pnas.1405768111] [PMID: 24753583]
[82]
Ragsdale, D.S.; McPhee, J.C.; Scheuer, T.; Catterall, W.A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science, 1994, 265(5179), 1724-1728.
[http://dx.doi.org/10.1126/science.8085162] [PMID: 8085162]
[83]
Ragsdale, D.S.; McPhee, J.C.; Scheuer, T.; Catterall, W.A. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc. Natl. Acad. Sci. USA, 1996, 93(17), 9270-9275.
[http://dx.doi.org/10.1073/pnas.93.17.9270] [PMID: 8799190]
[84]
Catterall, W.A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 2000, 26(1), 13-25.
[http://dx.doi.org/10.1016/S0896-6273(00)81133-2] [PMID: 10798388]
[85]
Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev., 2005, 57(4), 411-425.
[http://dx.doi.org/10.1124/pr.57.4.5] [PMID: 16382099]
[86]
Tian, C.; Wang, K.; Ke, W.; Guo, H.; Shu, Y. Molecular identity of axonal sodium channels in human cortical pyramidal cells. Front. Cell. Neurosci., 2014, 8, 297.
[http://dx.doi.org/10.3389/fncel.2014.00297] [PMID: 25294986]
[87]
Whitaker, W.R.; Clare, J.J.; Powell, A.J.; Chen, Y.H.; Faull, R.L.; Emson, P.C. Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J. Comp. Neurol., 2000, 422(1), 123-139.
[http://dx.doi.org/10.1002/(SICI)1096-9861(20000619)422:1<123:AID-CNE8>3.0.CO;2-X] [PMID: 10842222]
[88]
Lorincz, A.; Nusser, Z. Cell-type-dependent molecular composition of the axon initial segment. J. Neurosci., 2008, 28(53), 14329-14340.
[http://dx.doi.org/10.1523/JNEUROSCI.4833-08.2008] [PMID: 19118165]
[89]
Ogiwara, I.; Miyamoto, H.; Morita, N.; Atapour, N.; Mazaki, E.; Inoue, I.; Takeuchi, T.; Itohara, S.; Yanagawa, Y.; Obata, K.; Furuichi, T.; Hensch, T.K.; Yamakawa, K. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci., 2007, 27(22), 5903-5914.
[http://dx.doi.org/10.1523/JNEUROSCI.5270-06.2007] [PMID: 17537961]
[90]
Larrabee, M.G.; Posternak, J.M. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J. Neurophysiol., 1952, 15(2), 91-114.
[http://dx.doi.org/10.1152/jn.1952.15.2.91] [PMID: 14908628]
[91]
Haydon, D.A.; Urban, B.W. The effects of some inhalation anaesthetics on the sodium current of the squid giant axon. J. Physiol., 1983, 341, 429-439.
[http://dx.doi.org/10.1113/jphysiol.1983.sp014814] [PMID: 6312031]
[92]
Bean, B.P.; Shrager, P.; Goldstein, D.A. Modification of sodium and potassium channel gating kinetics by ether and halothane. J. Gen. Physiol., 1981, 77(3), 233-253.
[http://dx.doi.org/10.1085/jgp.77.3.233] [PMID: 6265590]
[93]
Franks, N.P.; Lieb, W.R. Molecular and cellular mechanisms of general anaesthesia. Nature, 1994, 367(6464), 607-614.
[http://dx.doi.org/10.1038/367607a0] [PMID: 7509043]
[94]
Ratnakumari, L.; Hemmings, H.C., Jr Inhibition of presynaptic sodium channels by halothane. Anesthesiology, 1998, 88(4), 1043-1054.
[http://dx.doi.org/10.1097/00000542-199804000-00025] [PMID: 9579514]
[95]
Rehberg, B.; Xiao, Y.H.; Duch, D.S. Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics. Anesthesiology, 1996, 84(5), 1223-1233.
[http://dx.doi.org/10.1097/00000542-199605000-00025] [PMID: 8624017]
[96]
Shiraishi, M.; Harris, R.A. Effects of alcohols and anesthetics on recombinant voltage-gated Na+ channels. J. Pharmacol. Exp. Ther., 2004, 309(3), 987-994.
[http://dx.doi.org/10.1124/jpet.103.064063] [PMID: 14978193]
[97]
Stadnicka, A.; Kwok, W.M.; Hartmann, H.A.; Bosnjak, Z.J. Effects of halothane and isoflurane on fast and slow inactivation of human heart hH1a sodium channels. Anesthesiology, 1999, 90(6), 1671-1683.
[http://dx.doi.org/10.1097/00000542-199906000-00024] [PMID: 10360866]
[98]
Ouyang, W.; Jih, T.Y.; Zhang, T.T.; Correa, A.M.; Hemmings, H.C. Jr Isoflurane inhibits NaChBac, a prokaryotic voltage-gated sodium channel. J. Pharmacol. Exp. Ther., 2007, 322(3), 1076-1083.
[http://dx.doi.org/10.1124/jpet.107.122929] [PMID: 17569823]
[99]
Raju, S.G.; Barber, A.F.; LeBard, D.N.; Klein, M.L.; Carnevale, V. Exploring volatile general anesthetic binding to a closed membrane-bound bacterial voltage-gated sodium channel via computation. PLOS Comput. Biol., 2013, 9(6)e1003090
[http://dx.doi.org/10.1371/journal.pcbi.1003090] [PMID: 23785267]
[100]
Tang, P.; Eckenhoff, R. Recent progress on the molecular pharmacology of propofol. F1000 Res., 2018, 7, 123.
[http://dx.doi.org/10.12688/f1000research.12502.1] [PMID: 29445451]
[101]
Zhou, C.; Liu, J.; Chen, X.D. General anesthesia mediated by effects on ion channels. World J. Crit. Care Med., 2012, 1(3), 80-93.
[http://dx.doi.org/10.5492/wjccm.v1.i3.80] [PMID: 24701405]
[102]
Olsen, R.W.; Li, G.D. GABA(A) receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation. Can. J. Anaesth., 2011, 58(2), 206-215.
[http://dx.doi.org/10.1007/s12630-010-9429-7] [PMID: 21194017]
[103]
Stoetzer, C.; Reuter, S.; Doll, T.; Foadi, N.; Wegner, F.; Leffler, A. Inhibition of the cardiac Na+ channel α-subunit Nav1.5 by propofol and dexmedetomidine. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(3), 315-325.
[http://dx.doi.org/10.1007/s00210-015-1195-1] [PMID: 26667357]
[104]
Rehberg, B.; Duch, D.S. Suppression of central nervous system sodium channels by propofol. Anesthesiology, 1999, 91(2), 512-520.
[http://dx.doi.org/10.1097/00000542-199908000-00026] [PMID: 10443615]
[105]
Martella, G.; De Persis, C.; Bonsi, P.; Natoli, S.; Cuomo, D.; Bernardi, G.; Calabresi, P.; Pisani, A. Inhibition of persistent sodium current fraction and voltage-gated L-type calcium current by propofol in cortical neurons: implications for its antiepileptic activity. Epilepsia, 2005, 46(5), 624-635.
[http://dx.doi.org/10.1111/j.1528-1167.2005.34904.x] [PMID: 15857426]
[106]
Wang, Y.; Yang, E.; Wells, M.M.; Bondarenko, V.; Woll, K.; Carnevale, V.; Granata, D.; Klein, M.L.; Eckenhoff, R.G.; Dailey, W.P.; Covarrubias, M.; Tang, P.; Xu, Y. Propofol inhibits the voltage-gated sodium channel NaChBac at multiple sites. J. Gen. Physiol., 2018, 150(9), 1317-1331.
[http://dx.doi.org/10.1085/jgp.201811993] [PMID: 30018039]
[107]
Andrada, J.; Livingston, P.; Lee, B.J.; Antognini, J. Propofol and etomidate depress cortical, thalamic, and reticular formation neurons during anesthetic-induced unconsciousness. Anesth. Analg., 2012, 114(3), 661-669.
[http://dx.doi.org/10.1213/ANE.0b013e3182405228] [PMID: 22190559]
[108]
Zhang, Y.; He, J.C.; Liu, X.K.; Zhang, Y.; Wang, Y.; Yu, T. Assessment of the effect of etomidate on voltage-gated sodium channels and action potentials in rat primary sensory cortex pyramidal neurons. Eur. J. Pharmacol., 2014, 736, 55-62.
[http://dx.doi.org/10.1016/j.ejphar.2014.04.036] [PMID: 24791681]
[109]
Frenkel, C.; Weckbecker, K.; Wartenberg, H.C.; Duch, D.S.; Urban, B.W. Blocking effects of the anaesthetic etomidate on human brain sodium channels. Neurosci. Lett., 1998, 249(2-3), 131-134.
[http://dx.doi.org/10.1016/S0304-3940(98)00412-1] [PMID: 9682834]
[110]
Schwenk, E.S.; Viscusi, E.R.; Buvanendran, A.; Hurley, R.W.; Wasan, A.D.; Narouze, S.; Bhatia, A.; Davis, F.N.; Hooten, W.M.; Cohen, S.P. Consensus guidelines on the use of intravenous ketamine infusions for acute pain management from the american society of regional anesthesia and pain medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med., 2018, 43(5), 456-466.
[http://dx.doi.org/10.1097/AAP.0000000000000806] [PMID: 29870457]
[111]
Abdel-Ghaffar, H.S.; Kalefa, M.A.; Imbaby, A.S. Efficacy of ketamine as an adjunct to lidocaine in intravenous regional anesthesia. Reg. Anesth. Pain Med., 2014, 39(5), 418-422.
[http://dx.doi.org/10.1097/AAP.0000000000000128] [PMID: 25068411]
[112]
Hara, Y.; Chugun, A.; Nakaya, H.; Kondo, H. Tonic block of the sodium and calcium currents by ketamine in isolated guinea pig ventricular myocytes. J. Vet. Med. Sci., 1998, 60(4), 479-483.
[http://dx.doi.org/10.1292/jvms.60.479] [PMID: 9592721]
[113]
Frenkel, C.; Urban, B.W. Molecular actions of racemic ketamine on human CNS sodium channels. Br. J. Anaesth., 1992, 69(3), 292-297.
[http://dx.doi.org/10.1093/bja/69.3.292] [PMID: 1327042]
[114]
Reckziegel, G.; Friederich, P.; Urban, B.W. Ketamine effects on human neuronal Na+ channels. Eur. J. Anaesthesiol., 2002, 19(9), 634-640.
[http://dx.doi.org/10.1097/00003643-200209000-00003] [PMID: 12243285]
[115]
Zhou, Z.S.; Zhao, Z.Q. Ketamine blockage of both tetrodotoxin (TTX)-sensitive and TTX-resistant sodium channels of rat dorsal root ganglion neurons. Brain Res. Bull., 2000, 52(5), 427-433.
[http://dx.doi.org/10.1016/S0361-9230(00)00283-5] [PMID: 10922523]
[116]
West, J.W.; Patton, D.E.; Scheuer, T.; Wang, Y.; Goldin, A.L.; Catterall, W.A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc. Natl. Acad. Sci. USA, 1992, 89(22), 10910-10914.
[http://dx.doi.org/10.1073/pnas.89.22.10910] [PMID: 1332060]
[117]
Wheeler, D.G.; Barrett, C.F.; Groth, R.D.; Safa, P.; Tsien, R.W. CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J. Cell Biol., 2008, 183(5), 849-863.
[http://dx.doi.org/10.1083/jcb.200805048] [PMID: 19047462]
[118]
Wheeler, D.G.; Groth, R.D.; Ma, H.; Barrett, C.F.; Owen, S.F.; Safa, P.; Tsien, R.W. Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell, 2012, 149(5), 1112-1124.
[http://dx.doi.org/10.1016/j.cell.2012.03.041] [PMID: 22632974]
[119]
Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol., 2000, 16, 521-555.
[http://dx.doi.org/10.1146/annurev.cellbio.16.1.521] [PMID: 11031246]
[120]
Kress, H.G.; Tas, P.W. Effects of volatile anaesthetics on second messenger Ca2+ in neurones and non-muscular cells. Br. J. Anaesth., 1993, 71(1), 47-58.
[http://dx.doi.org/10.1093/bja/71.1.47] [PMID: 8393692]
[121]
Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol., 2011, 3(8)a003947
[http://dx.doi.org/10.1101/cshperspect.a003947] [PMID: 21746798]
[122]
Simms, B.A.; Zamponi, G.W. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron, 2014, 82(1), 24-45.
[http://dx.doi.org/10.1016/j.neuron.2014.03.016] [PMID: 24698266]
[123]
Armstrong, C.M.; Matteson, D.R. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science, 1985, 227(4682), 65-67.
[http://dx.doi.org/10.1126/science.2578071] [PMID: 2578071]
[124]
Tsien, R.W.; Lipscombe, D.; Madison, D.V.; Bley, K.R.; Fox, A.P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci., 1988, 11(10), 431-438.
[http://dx.doi.org/10.1016/0166-2236(88)90194-4] [PMID: 2469160]
[125]
Tsien, R.W.; Ellinor, P.T.; Horne, W.A. Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol. Sci., 1991, 12(9), 349-354.
[http://dx.doi.org/10.1016/0165-6147(91)90595-J] [PMID: 1659003]
[126]
Hoppa, M.B.; Lana, B.; Margas, W.; Dolphin, A.C.; Ryan, T.A. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature, 2012, 486(7401), 122-125.
[http://dx.doi.org/10.1038/nature11033] [PMID: 22678293]
[127]
Eroglu, C.; Allen, N.J.; Susman, M.W.; O’Rourke, N.A.; Park, C.Y.; Ozkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; Green, E.M.; Lawler, J.; Dolmetsch, R.; Garcia, K.C.; Smith, S.J.; Luo, Z.D.; Rosenthal, A.; Mosher, D.F.; Barres, B.A. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 2009, 139(2), 380-392.
[http://dx.doi.org/10.1016/j.cell.2009.09.025] [PMID: 19818485]
[128]
Vitko, I.; Chen, Y.; Arias, J.M.; Shen, Y.; Wu, X.R.; Perez-Reyes, E. Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J. Neurosci., 2005, 25(19), 4844-4855.
[http://dx.doi.org/10.1523/JNEUROSCI.0847-05.2005] [PMID: 15888660]
[129]
Iaizzo, P.A.; Seewald, M.J.; Powis, G.; Van Dyke, R.A. The effects of volatile anesthetics on Ca++ mobilization in rat hepatocytes. Anesthesiology, 1990, 72(3), 504-509.
[http://dx.doi.org/10.1097/00000542-199003000-00019] [PMID: 2310032]
[130]
Daniell, L.C.; Harris, R.A. Neuronal intracellular calcium concentrations are altered by anesthetics: relationship to membrane fluidization. J. Pharmacol. Exp. Ther., 1988, 245(1), 1-7.
[PMID: 3361437]
[131]
Mody, I.; Tanelian, D.L.; MacIver, M.B. Halothane enhances tonic neuronal inhibition by elevating intracellular calcium. Brain Res., 1991, 538(2), 319-323.
[http://dx.doi.org/10.1016/0006-8993(91)90447-4] [PMID: 1901506]
[132]
Orestes, P.; Todorovic, S.M. Are neuronal voltage-gated calcium channels valid cellular targets for general anesthetics? Channels (Austin), 2010, 4(6), 518-522.
[http://dx.doi.org/10.4161/chan.4.6.12873] [PMID: 21164281]
[133]
Koester, H.J.; Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol., 2000, 529(Pt 3), 625-646.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00625.x] [PMID: 11118494]
[134]
Takahashi, T.; Momiyama, A. Different types of calcium channels mediate central synaptic transmission. Nature, 1993, 366(6451), 156-158.
[http://dx.doi.org/10.1038/366156a0] [PMID: 7901765]
[135]
Kullmann, D.M.; Martin, R.L.; Redman, S.J. Reduction by general anaesthetics of group Ia excitatory postsynaptic potentials and currents in the cat spinal cord. J. Physiol., 1989, 412, 277-296.
[http://dx.doi.org/10.1113/jphysiol.1989.sp017615] [PMID: 2557427]
[136]
Weakly, J.N. Effect of barbiturates on ‘quantal’ synaptic transmission in spinal motoneurones. J. Physiol., 1969, 204(1), 63-77.
[http://dx.doi.org/10.1113/jphysiol.1969.sp008898] [PMID: 4310944]
[137]
Zorychta, E.; Capek, R. Depression of spinal monosynaptic transmission by diethyl ether: quantal analysis of unitary synaptic potentials. J. Pharmacol. Exp. Ther., 1978, 207(3), 825-836.
[PMID: 215743]
[138]
Baudoux, S.; Empson, R.M.; Richards, C.D. Pentobarbitone modulates calcium transients in axons and synaptic boutons of hippocampal CA1 neurons. Br. J. Pharmacol., 2003, 140(5), 971-979.
[http://dx.doi.org/10.1038/sj.bjp.0705519] [PMID: 14517184]
[139]
Emptage, N.J.; Reid, C.A.; Fine, A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron, 2001, 29(1), 197-208.
[http://dx.doi.org/10.1016/S0896-6273(01)00190-8] [PMID: 11182091]
[140]
Lynch, C., III; Vogel, S.; Sperelakis, N. Halothane depression of myocardial slow action potentials. Anesthesiology, 1981, 55(4), 360-368.
[http://dx.doi.org/10.1097/00000542-198110000-00005] [PMID: 7294370]
[141]
Bosnjak, Z.J.; Kampine, J.P. Effects of halothane, enflurane, and isoflurane on the SA node. Anesthesiology, 1983, 58(4), 314-321.
[http://dx.doi.org/10.1097/00000542-198304000-00003] [PMID: 6837971]
[142]
Charlesworth, P.; Pocock, G.; Richards, C.D. Calcium channel currents in bovine adrenal chromaffin cells and their modulation by anaesthetic agents. J. Physiol., 1994, 481(Pt 3), 543-553.
[http://dx.doi.org/10.1113/jphysiol.1994.sp020462] [PMID: 7707224]
[143]
McDowell, T.S.; Pancrazio, J.J.; Lynch, C. III Volatile anesthetics reduce low-voltage-activated calcium currents in a thyroid C-cell line. Anesthesiology, 1996, 85(5), 1167-1175.
[http://dx.doi.org/10.1097/00000542-199611000-00026] [PMID: 8916835]
[144]
Eckle, V.S.; Digruccio, M.R.; Uebele, V.N.; Renger, J.J.; Todorovic, S.M. Inhibition of T-type calcium current in rat thalamocortical neurons by isoflurane. Neuropharmacology, 2012, 63(2), 266-273.
[http://dx.doi.org/10.1016/j.neuropharm.2012.03.018] [PMID: 22491022]
[145]
Joksovic, P.M.; Bayliss, D.A.; Todorovic, S.M. Different kinetic properties of two T-type Ca2+ currents of rat reticular thalamic neurones and their modulation by enflurane. J. Physiol., 2005, 566(Pt 1), 125-142.
[http://dx.doi.org/10.1113/jphysiol.2005.086579] [PMID: 15845580]
[146]
Joksovic, P.M.; Brimelow, B.C.; Murbartián, J.; Perez-Reyes, E.; Todorovic, S.M. Contrasting anesthetic sensitivities of T-type Ca2+ channels of reticular thalamic neurons and recombinant Ca(v)3.3 channels. Br. J. Pharmacol., 2005, 144(1), 59-70.
[http://dx.doi.org/10.1038/sj.bjp.0706020] [PMID: 15644869]
[147]
Petrenko, A.B.; Tsujita, M.; Kohno, T.; Sakimura, K.; Baba, H. Mutation of alpha1G T-type calcium channels in mice does not change anesthetic requirements for loss of the righting reflex and minimum alveolar concentration but delays the onset of anesthetic induction. Anesthesiology, 2007, 106(6), 1177-1185.
[http://dx.doi.org/10.1097/01.anes.0000267601.09764.e6] [PMID: 17525593]
[148]
Nikonorov, I.M.; Blanck, T.J.; Recio-Pinto, E. The effects of halothane on single human neuronal L-type calcium channels. Anesth. Analg., 1998, 86(4), 885-895.
[http://dx.doi.org/10.1213/00000539-199804000-00038] [PMID: 9539620]
[149]
Recio-Pinto, E.; Montoya-Gacharna, J.V.; Xu, F.; Blanck, T.J. Isoflurane, but not the nonimmobilizers f6 and f8, inhibits rat spinal cord motor neuron CaV1 calcium currents. Anesth. Analg., 2016, 122(3), 730-737.
[http://dx.doi.org/10.1213/ANE.0000000000001111] [PMID: 26702867]
[150]
Eskinder, H.; Rusch, N.J.; Supan, F.D.; Kampine, J.P.; Bosnjak, Z.J. The effects of volatile anesthetics on L- and T-type calcium channel currents in canine cardiac Purkinje cells. Anesthesiology, 1991, 74(5), 919-926.
[http://dx.doi.org/10.1097/00000542-199105000-00018] [PMID: 1850580]
[151]
Kameyama, K.; Aono, K.; Kitamura, K. Isoflurane inhibits neuronal Ca2+ channels through enhancement of current inactivation. Br. J. Anaesth., 1999, 82(3), 402-411.
[http://dx.doi.org/10.1093/bja/82.3.402] [PMID: 10434825]
[152]
Koyanagi, Y.; Torturo, C.L.; Cook, D.C.; Zhou, Z.; Hemmings, H.C., Jr Role of specific presynaptic calcium channel subtypes in isoflurane inhibition of synaptic vesicle exocytosis in rat hippocampal neurones. Br. J. Anaesth., 2019, 123(2), 219-227.
[http://dx.doi.org/10.1016/j.bja.2019.03.029] [PMID: 31056238]
[153]
Hüneke, R.; Fassl, J.; Rossaint, R.; Lückhoff, A. Effects of volatile anesthetics on cardiac ion channels. Acta Anaesthesiol. Scand., 2004, 48(5), 547-561.
[http://dx.doi.org/10.1111/j.0001-5172.2004.00391.x] [PMID: 15101848]
[154]
Torturo, C.L.; Zhou, Z.Y.; Ryan, T.A.; Hemmings, H.C. Isoflurane inhibits dopaminergic synaptic vesicle exocytosis coupled to CaV2.1 and CaV2.2 in Rat Midbrain Neurons. eNeuro, 2019, 6(1), ENEURO.0278-18.2018.
[155]
White, I.L.; Franks, N.P.; Dickinson, R. Effects of isoflurane and xenon on Ba2+-currents mediated by N-type calcium channels. Br. J. Anaesth., 2005, 94(6), 784-790.
[http://dx.doi.org/10.1093/bja/aei126] [PMID: 15778267]
[156]
Xu, F.; Sarti, P.; Zhang, J.; Blanck, T.J. Halothane and isoflurane alter calcium dynamics in rat cerebrocortical synaptosomes. Anesth. Analg., 1998, 87(3), 701-710.
[PMID: 9728857]
[157]
Takei, T.; Saegusa, H.; Zong, S.; Murakoshi, T.; Makita, K.; Tanabe, T. Anesthetic sensitivities to propofol and halothane in mice lacking the R-type (Cav2.3) Ca2+ channel. Anesth. Analg., 2003, 97(1), 96-103. [table of contents.
[http://dx.doi.org/10.1213/01.ANE.0000065548.83253.5C] [PMID: 12818950]
[158]
Todorovic, S.M.; Perez-Reyes, E.; Lingle, C.J. Anticonvulsants but not general anesthetics have differential blocking effects on different T-type current variants. Mol. Pharmacol., 2000, 58(1), 98-108.
[http://dx.doi.org/10.1124/mol.58.1.98] [PMID: 10860931]
[159]
Hirota, K.; Lambert, D.G.I.v. anaesthetic agents inhibit dihydropyridine binding to L-type voltage-sensitive Ca2+ channels in rat cerebrocortical membranes. Br. J. Anaesth., 1996, 77(2), 248-253.
[http://dx.doi.org/10.1093/bja/77.2.248] [PMID: 8881635]
[160]
Guertin, P.A.; Hounsgaard, J. Non-volatile general anaesthetics reduce spinal activity by suppressing plateau potentials. Neuroscience, 1999, 88(2), 353-358.
[http://dx.doi.org/10.1016/S0306-4522(98)00371-6] [PMID: 10197758]
[161]
Kitayama, M.; Hirota, K.; Kudo, M.; Kudo, T.; Ishihara, H.; Matsuki, A. Inhibitory effects of intravenous anaesthetic agents on K(+)-evoked glutamate release from rat cerebrocortical slices. Involvement of voltage-sensitive Ca(2+) channels and GABA(A) receptors. Naunyn Schmiedebergs Arch. Pharmacol., 2002, 366(3), 246-253.
[http://dx.doi.org/10.1007/s00210-002-0590-6] [PMID: 12172707]
[162]
Kaye, A.D.; Banister, R.E.; Fox, C.J.; Ibrahim, I.N.; Nossaman, B.D. Analysis of ketamine responses in the pulmonary vascular bed of the cat. Crit. Care Med., 2000, 28(4), 1077-1082.
[http://dx.doi.org/10.1097/00003246-200004000-00028] [PMID: 10809286]
[163]
Kaye, A.D.; Banister, R.E.; Anwar, M.; Feng, C.J.; Kadowitz, P.J.; Nossaman, B.D. Pulmonary vasodilation by ketamine is mediated in part by L-type calcium channels. Anesth. Analg., 1998, 87(4), 956-962.
[PMID: 9768801]
[164]
Wendling, W.W.; Daniels, F.B.; Chen, D.; Harakal, C.; Carlsson, C. Ketamine directly dilates bovine cerebral arteries by acting as a calcium entry blocker. J. Neurosurg. Anesthesiol., 1994, 6(3), 186-192.
[http://dx.doi.org/10.1097/00008506-199407000-00007] [PMID: 8081099]
[165]
Hirota, K.; Lambert, D.G.I.v. anaesthetic agents do not interact with the verapamil binding site on L-type voltage-sensitive Ca2+ channels. Br. J. Anaesth., 1996, 77(3), 385-386.
[http://dx.doi.org/10.1093/bja/77.3.385] [PMID: 8949816]
[166]
McDowell, T.S.; Pancrazio, J.J.; Barrett, P.Q.; Lynch, C., III Volatile anesthetic sensitivity of T-type calcium currents in various cell types. Anesth. Analg., 1999, 88(1), 168-173.
[PMID: 9895087]
[167]
Camara, A.K.; Begic, Z.; Kwok, W.M.; Bosnjak, Z.J. Differential modulation of the cardiac L- and T-type calcium channel currents by isoflurane. Anesthesiology, 2001, 95(2), 515-524.
[http://dx.doi.org/10.1097/00000542-200108000-00038] [PMID: 11506128]
[168]
Yamakage, M.; Chen, X.; Tsujiguchi, N.; Kamada, Y.; Namiki, A. Different inhibitory effects of volatile anesthetics on T- and L-type voltage-dependent Ca2+ channels in porcine tracheal and bronchial smooth muscles. Anesthesiology, 2001, 94(4), 683-693.
[http://dx.doi.org/10.1097/00000542-200104000-00024] [PMID: 11379691]
[169]
Todorovic, S.M.; Lingle, C.J. Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents. J. Neurophysiol., 1998, 79(1), 240-252.
[http://dx.doi.org/10.1152/jn.1998.79.1.240] [PMID: 9425195]
[170]
Kamatchi, G.L.; Durieux, M.E.; Lynch, C., III Differential sensitivity of expressed L-type calcium channels and muscarinic M(1) receptors to volatile anesthetics in Xenopus oocytes. J. Pharmacol. Exp. Ther., 2001, 297(3), 981-990.
[PMID: 11356920]
[171]
Fassl, J.; Halaszovich, C.R.; Hüneke, R.; Jüngling, E.; Rossaint, R.; Lückhoff, A. Effects of inhalational anesthetics on L-type Ca2+ currents in human atrial cardiomyocytes during beta-adrenergic stimulation. Anesthesiology, 2003, 99(1), 90-96.
[http://dx.doi.org/10.1097/00000542-200307000-00017] [PMID: 12826847]
[172]
Hüneke, R.; Zitzelsberger, D.; Fassl, J.; Jüngling, E.; Brose, S.; Buhre, W.; Rossaint, R.; Lückhoff, A. Temperature-independent Inhibition of L-type calcium currents by halothane and sevoflurane in human atrial cardiomyocytes. Anesthesiology, 2004, 101(2), 409-416.
[http://dx.doi.org/10.1097/00000542-200408000-00022] [PMID: 15277924]
[173]
Su, X.; Leon, L.A.; Laping, N.J. Role of spinal Cav2.2 and Cav2.1 ion channels in bladder nociception. J. Urol., 2008, 179(6), 2464-2469.
[http://dx.doi.org/10.1016/j.juro.2008.01.088] [PMID: 18433788]
[174]
Corrales, A.; Xu, F.; Garavito-Aguilar, Z.V.; Blanck, T.J.; Recio-Pinto, E. Isoflurane reduces the carbachol-evoked Ca2+ influx in neuronal cells. Anesthesiology, 2004, 101(4), 895-901.
[http://dx.doi.org/10.1097/00000542-200410000-00014] [PMID: 15448522]
[175]
El Beheiry, H.; Ouanounou, A.; Carlen, P.L. L-type calcium channel blockade modifies anesthetic actions on aged hippocampal neurons. Neuroscience, 2007, 147(1), 117-126.
[http://dx.doi.org/10.1016/j.neuroscience.2007.03.031] [PMID: 17507168]
[176]
Kowark, P.; Hüneke, R.; Jüngling, E.; Rossaint, R.; Lückhoff, A. Oxygen tension modulates inhibition of L-type calcium currents by isoflurane in human atrial cardiomyocytes. Anesthesiology, 2007, 106(4), 715-722.
[http://dx.doi.org/10.1097/01.anes.0000264775.17533.dd] [PMID: 17413909]
[177]
Zhang, J.; Sutachan, J.J.; Montoya-Gacharna, J.; Xu, C.F.; Xu, F.; Neubert, T.A.; Recio-Pinto, E.; Blanck, T.J. Isoflurane inhibits cyclic adenosine monophosphate response element-binding protein phosphorylation and calmodulin translocation to the nucleus of SH-SY5Y cells. Anesth. Analg., 2009, 109(4), 1127-1134.
[http://dx.doi.org/10.1213/ANE.0b013e3181b5a1b8] [PMID: 19762740]
[178]
Liu, Y.; Yang, H.; Tang, X.; Bai, W.; Wang, G.; Tian, X. Repetitive transcranial magnetic stimulation regulates L-type Ca(2+) channel activity inhibited by early sevoflurane exposure. Brain Res., 2016, 1646, 207-218.
[http://dx.doi.org/10.1016/j.brainres.2016.05.045] [PMID: 27256401]
[179]
Yamakage, M.; Hirshman, C.A.; Croxton, T.L. Inhibitory effects of thiopental, ketamine, and propofol on voltage-dependent Ca2+ channels in porcine tracheal smooth muscle cells. Anesthesiology, 1995, 83(6), 1274-1282.
[http://dx.doi.org/10.1097/00000542-199512000-00018] [PMID: 8533920]
[180]
Valadão, P.A.; Naves, L.A.; Gomez, R.S.; Guatimosim, C. Etomidate evokes synaptic vesicle exocytosis without increasing miniature endplate potentials frequency at the mice neuromuscular junction. Neurochem. Int., 2013, 63(6), 576-582.
[http://dx.doi.org/10.1016/j.neuint.2013.09.008] [PMID: 24044896]
[181]
Recio-Pinto, E.; Nikonorov, I.M.; Blanck, T.J. G-protein activation decreases the isoflurane inhibition of N-type Ca2+ currents. An increase in the isoflurane blocking potency of N-type Ca2+ currents may contribute to the known neuroprotection action of isoflurane during ischemia. J. Neurosurg. Anesthesiol., 2004, 16(1), 105-107.
[http://dx.doi.org/10.1097/00008506-200401000-00024] [PMID: 14676582]
[182]
Hirota, K.; Lambert, D.G. Effects of intravenous and local anesthetic agents on omega-conotoxin MVII(A) binding to rat cerebrocortex. Can. J. Anaesth., 2000, 47(5), 467-470.
[http://dx.doi.org/10.1007/BF03018979] [PMID: 10831206]
[183]
Steinberg, E.A.; Wafford, K.A.; Brickley, S.G.; Franks, N.P.; Wisden, W. The role of K2p channels in anaesthesia and sleep. Pflugers Arch., 2015, 467(5), 907-916.
[http://dx.doi.org/10.1007/s00424-014-1654-4] [PMID: 25482669]
[184]
Yost, C.S. Potassium channels: basic aspects, functional roles, and medical significance. Anesthesiology, 1999, 90(4), 1186-1203.
[http://dx.doi.org/10.1097/00000542-199904000-00035] [PMID: 10201693]
[185]
Zhou, C.; Liang, P.; Liu, J.; Ke, B.; Wang, X.; Li, F.; Li, T.; Bayliss, D.A.; Chen, X. HCN1 Channels contribute to the effects of amnesia and hypnosis but not immobility of volatile anesthetics. Anesth. Analg., 2015, 121(3), 661-666.
[http://dx.doi.org/10.1213/ANE.0000000000000830] [PMID: 26287296]
[186]
Lazarenko, R.M.; Willcox, S.C.; Shu, S.; Berg, A.P.; Jevtovic-Todorovic, V.; Talley, E.M.; Chen, X.; Bayliss, D.A. Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J. Neurosci., 2010, 30(22), 7691-7704.
[http://dx.doi.org/10.1523/JNEUROSCI.1655-10.2010] [PMID: 20519544]
[187]
Patel, A.J.; Honoré, E.; Lesage, F.; Fink, M.; Romey, G.; Lazdunski, M. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci., 1999, 2(5), 422-426.
[http://dx.doi.org/10.1038/8084] [PMID: 10321245]
[188]
Gabriel, L.; Lvov, A.; Orthodoxou, D.; Rittenhouse, A.R.; Kobertz, W.R.; Melikian, H.E. The acid-sensitive, anesthetic-activated potassium leak channel, KCNK3, is regulated by 14-3-3β-dependent, protein kinase C (PKC)-mediated endocytic trafficking. J. Biol. Chem., 2012, 287(39), 32354-32366.
[http://dx.doi.org/10.1074/jbc.M112.391458] [PMID: 22846993]
[189]
Talley, E.M.; Bayliss, D.A. Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem., 2002, 277(20), 17733-17742.
[http://dx.doi.org/10.1074/jbc.M200502200] [PMID: 11886861]
[190]
Conway, K.E.; Cotten, J.F. Covalent modification of a volatile anesthetic regulatory site activates TASK-3 (KCNK9) tandem-pore potassium channels. Mol. Pharmacol., 2012, 81(3), 393-400.
[http://dx.doi.org/10.1124/mol.111.076281] [PMID: 22147752]
[191]
Cotten, J.F. TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore potassium channel antagonists stimulate breathing in isoflurane-anesthetized rats. Anesth. Analg., 2013, 116(4), 810-816.
[http://dx.doi.org/10.1213/ANE.0b013e318284469d] [PMID: 23460565]
[192]
Li, J.; Correa, A.M. Single-channel basis for conductance increase induced by isoflurane in Shaker H4 IR K(+) channels. Am. J. Physiol. Cell Physiol., 2001, 280(5), C1130-C1139.
[http://dx.doi.org/10.1152/ajpcell.2001.280.5.C1130] [PMID: 11287326]
[193]
Correa, A.M. Gating kinetics of Shaker K+ channels are differentially modified by general anesthetics. Am. J. Physiol., 1998, 275(4), C1009-C1021.
[http://dx.doi.org/10.1152/ajpcell.1998.275.4.C1009] [PMID: 9755054]
[194]
Harris, T.; Shahidullah, M.; Ellingson, J.S.; Covarrubias, M. General anesthetic action at an internal protein site involving the S4-S5 cytoplasmic loop of a neuronal K(+) channel. J. Biol. Chem., 2000, 275(7), 4928-4936.
[http://dx.doi.org/10.1074/jbc.275.7.4928] [PMID: 10671530]
[195]
Barber, A.F.; Liang, Q.; Covarrubias, M. Novel activation of voltage-gated K(+) channels by sevoflurane. J. Biol. Chem., 2012, 287(48), 40425-40432.
[http://dx.doi.org/10.1074/jbc.M112.405787] [PMID: 23038249]
[196]
Covarrubias, M.; Barber, A.F.; Carnevale, V.; Treptow, W.; Eckenhoff, R.G. Mechanistic insights into the modulation of voltage-gated ion channels by inhalational anesthetics. Biophys. J., 2015, 109(10), 2003-2011.
[http://dx.doi.org/10.1016/j.bpj.2015.09.032] [PMID: 26588560]
[197]
Liang, Q.; Anderson, W.D.; Jones, S.T.; Souza, C.S.; Hosoume, J.M.; Treptow, W.; Covarrubias, M. Positive allosteric modulation of kv channels by sevoflurane: insights into the structural basis of inhaled anesthetic action. PLoS One, 2015, 10(11)e0143363
[http://dx.doi.org/10.1371/journal.pone.0143363] [PMID: 26599217]
[198]
Riegelhaupt, P.M.; Tibbs, G.R.; Goldstein, P.A. HCN and K2P Channels in anesthetic mechanisms research. Methods Enzymol., 2018, 602, 391-416.
[http://dx.doi.org/10.1016/bs.mie.2018.01.015] [PMID: 29588040]
[199]
Gao, J.; Hu, Z.; Shi, L.; Li, N.; Ouyang, Y.; Shu, S.; Yao, S.; Chen, X. HCN channels contribute to the sensitivity of intravenous anesthetics in developmental mice. Oncotarget, 2018, 9(16), 12907-12917.
[http://dx.doi.org/10.18632/oncotarget.24408] [PMID: 29560119]
[200]
Tibbs, G.R.; Rowley, T.J.; Sanford, R.L.; Herold, K.F.; Proekt, A.; Hemmings, H.C., Jr; Andersen, O.S.; Goldstein, P.A.; Flood, P.D. HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain. J. Pharmacol. Exp. Ther., 2013, 345(3), 363-373.
[http://dx.doi.org/10.1124/jpet.113.203620] [PMID: 23549867]
[201]
Chen, X.; Shu, S.; Kennedy, D.P.; Willcox, S.C.; Bayliss, D.A. Subunit-specific effects of isoflurane on neuronal Ih in HCN1 knockout mice. J. Neurophysiol., 2009, 101(1), 129-140.
[http://dx.doi.org/10.1152/jn.01352.2007] [PMID: 18971302]
[202]
Steriade, M.; McCormick, D.A.; Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science, 1993, 262(5134), 679-685.
[http://dx.doi.org/10.1126/science.8235588] [PMID: 8235588]
[203]
Antkowiak, B. In vitro networks: cortical mechanisms of anaesthetic action. Br. J. Anaesth., 2002, 89(1), 102-111.
[http://dx.doi.org/10.1093/bja/aef154] [PMID: 12173223]
[204]
Chen, X.; Shu, S.; Bayliss, D.A. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J. Neurosci., 2009, 29(3), 600-609.
[http://dx.doi.org/10.1523/JNEUROSCI.3481-08.2009] [PMID: 19158287]
[205]
Zhou, C.; Douglas, J.E.; Kumar, N.N.; Shu, S.; Bayliss, D.A.; Chen, X. Forebrain HCN1 channels contribute to hypnotic actions of ketamine. Anesthesiology, 2013, 118(4), 785-795.
[http://dx.doi.org/10.1097/ALN.0b013e318287b7c8] [PMID: 23377220]
[206]
Söllner, T.; Whiteheart, S.W.; Brunner, M.; Erdjument-Bromage, H.; Geromanos, S.; Tempst, P.; Rothman, J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature, 1993, 362(6418), 318-324.
[http://dx.doi.org/10.1038/362318a0] [PMID: 8455717]
[207]
Chen, X.; Tomchick, D.R.; Kovrigin, E.; Araç, D.; Machius, M.; Südhof, T.C.; Rizo, J. Three-dimensional structure of the complexin/SNARE complex. Neuron, 2002, 33(3), 397-409.
[http://dx.doi.org/10.1016/S0896-6273(02)00583-4] [PMID: 11832227]
[208]
Bracher, A.; Kadlec, J.; Betz, H.; Weissenhorn, W. X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem., 2002, 277(29), 26517-26523.
[http://dx.doi.org/10.1074/jbc.M203460200] [PMID: 12004067]
[209]
Sutton, R.B.; Fasshauer, D.; Jahn, R.; Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature, 1998, 395(6700), 347-353.
[http://dx.doi.org/10.1038/26412] [PMID: 9759724]
[210]
Poirier, M.A.; Xiao, W.; Macosko, J.C.; Chan, C.; Shin, Y.K.; Bennett, M.K. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol., 1998, 5(9), 765-769.
[http://dx.doi.org/10.1038/1799] [PMID: 9731768]
[211]
Lerman, J.C.; Robblee, J.; Fairman, R.; Hughson, F.M. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry, 2000, 39(29), 8470-8479.
[http://dx.doi.org/10.1021/bi0003994] [PMID: 10913252]
[212]
Zalucki, O.H.; Menon, H.; Kottler, B.; Faville, R.; Day, R.; Bademosi, A.T.; Lavidis, N.; Karunanithi, S.; van Swinderen, B. Syntaxin1A-mediated resistance and hypersensitivity to isoflurane in Drosophila melanogaster. Anesthesiology, 2015, 122(5), 1060-1074.
[http://dx.doi.org/10.1097/ALN.0000000000000629] [PMID: 25738637]
[213]
Bademosi, A.T.; Lauwers, E.; Padmanabhan, P.; Odierna, L.; Chai, Y.J.; Papadopulos, A.; Goodhill, G.J.; Verstreken, P.; van Swinderen, B.; Meunier, F.A. In vivo single-molecule imaging of syntaxin1A reveals polyphosphoinositide- and activity-dependent trapping in presynaptic nanoclusters. Nat. Commun., 2017, 8, 13660.
[http://dx.doi.org/10.1038/ncomms14492] [PMID: 28045048]
[214]
Gandasi, N.R.; Barg, S. Contact-induced clustering of syntaxin and munc18 docks secretory granules at the exocytosis site. Nat. Commun., 2014, 5, 3914.
[http://dx.doi.org/10.1038/ncomms4914] [PMID: 24835618]
[215]
van Swinderen, B.; Kottler, B. Explaining general anesthesia: a two-step hypothesis linking sleep circuits and the synaptic release machinery. BioEssays, 2014, 36(4), 372-381.
[http://dx.doi.org/10.1002/bies.201300154] [PMID: 24449137]
[216]
Nagele, P.; Mendel, J.B.; Placzek, W.J.; Scott, B.A.; D’Avignon, D.A.; Crowder, C.M. Volatile anesthetics bind rat synaptic snare proteins. Anesthesiology, 2005, 103(4), 768-778.
[http://dx.doi.org/10.1097/00000542-200510000-00015] [PMID: 16192769]
[217]
Herring, B.E.; Xie, Z.; Marks, J.; Fox, A.P. Isoflurane inhibits the neurotransmitter release machinery. J. Neurophysiol., 2009, 102(2), 1265-1273.
[http://dx.doi.org/10.1152/jn.00252.2009] [PMID: 19515956]
[218]
Xie, Z.; McMillan, K.; Pike, C.M.; Cahill, A.L.; Herring, B.E.; Wang, Q.; Fox, A.P. Interaction of anesthetics with neurotransmitter release machinery proteins. J. Neurophysiol., 2013, 109(3), 758-767.
[http://dx.doi.org/10.1152/jn.00666.2012] [PMID: 23136341]
[219]
Herring, B.E.; McMillan, K.; Pike, C.M.; Marks, J.; Fox, A.P.; Xie, Z. Etomidate and propofol inhibit the neurotransmitter release machinery at different sites. J. Physiol., 2011, 589(Pt 5), 1103-1115.
[http://dx.doi.org/10.1113/jphysiol.2010.200964] [PMID: 21173083]
[220]
Müller, H.K.; Wegener, G.; Liebenberg, N.; Zarate, C.A., Jr; Popoli, M.; Elfving, B. Ketamine regulates the presynaptic release machinery in the hippocampus. J. Psychiatr. Res., 2013, 47(7), 892-899.
[http://dx.doi.org/10.1016/j.jpsychires.2013.03.008] [PMID: 23548331]
[221]
Kelz, M.B.; Mashour, G.A. The biology of general anesthesia from paramecium to primate. Curr. Biol., 2019, 29(22), R1199-R1210.
[http://dx.doi.org/10.1016/j.cub.2019.09.071] [PMID: 31743680]
[222]
Brown, A.R.; Herd, M.B.; Belelli, D.; Lambert, J.J. Developmentally regulated neurosteroid synthesis enhances GABAergic neurotransmission in mouse thalamocortical neurones. J. Physiol., 2015, 593(1), 267-284.
[http://dx.doi.org/10.1113/jphysiol.2014.280263] [PMID: 25556800]
[223]
Martínez-Delgado, G.; Estrada-Mondragón, A.; Miledi, R.; Martínez-Torres, A. An update on GABAρ receptors. Curr. Neuropharmacol., 2010, 8(4), 422-433.
[http://dx.doi.org/10.2174/157015910793358141] [PMID: 21629448]
[224]
Has, A.T.C.; Chebib, M. GABAA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors. Curr. Pharm. Des., 2018, 24(17), 1839-1844.
[http://dx.doi.org/10.2174/1381612824666180515123921] [PMID: 29766792]
[225]
Garcia, P.S.; Kolesky, S.E.; Jenkins, A. General anesthetic actions on GABA(A) receptors. Curr. Neuropharmacol., 2010, 8(1), 2-9.
[http://dx.doi.org/10.2174/157015910790909502] [PMID: 20808541]
[226]
Trapani, G.; Altomare, C.; Liso, G.; Sanna, E.; Biggio, G. Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery. Curr. Med. Chem., 2000, 7(2), 249-271.
[http://dx.doi.org/10.2174/0929867003375335] [PMID: 10637364]
[227]
Kobayashi, M.; Oi, Y. Actions of propofol on neurons in the cerebral cortex. J. Nippon Med. Sch., 2017, 84(4), 165-169.
[http://dx.doi.org/10.1272/jnms.84.165] [PMID: 28978896]
[228]
Kitamura, A.; Marszalec, W.; Yeh, J.Z.; Narahashi, T. Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J. Pharmacol. Exp. Ther., 2003, 304(1), 162-171.
[http://dx.doi.org/10.1124/jpet.102.043273] [PMID: 12490587]
[229]
Uchida, I.; Li, L.; Yang, J. The role of the GABA(A) receptor alpha1 subunit N-terminal extracellular domain in propofol potentiation of chloride current. Neuropharmacology, 1997, 36(11-12), 1611-1621.
[http://dx.doi.org/10.1016/S0028-3908(97)00180-9] [PMID: 9517432]
[230]
Hales, T.G.; Lambert, J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br. J. Pharmacol., 1991, 104(3), 619-628.
[http://dx.doi.org/10.1111/j.1476-5381.1991.tb12479.x] [PMID: 1665745]
[231]
Jones, M.V.; Harrison, N.L.; Pritchett, D.B.; Hales, T.G. Modulation of the GABAA receptor by propofol is independent of the gamma subunit. J. Pharmacol. Exp. Ther., 1995, 274(2), 962-968.
[PMID: 7636760]
[232]
Lam, D.W.; Reynolds, J.N. Modulatory and direct effects of propofol on recombinant GABAA receptors expressed in xenopus oocytes: influence of alpha- and gamma2-subunits. Brain Res., 1998, 784(1-2), 179-187.
[http://dx.doi.org/10.1016/S0006-8993(97)01334-6] [PMID: 9518600]
[233]
Krasowski, M.D.; Koltchine, V.V.; Rick, C.E.; Ye, Q.; Finn, S.E.; Harrison, N.L. Propofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from that for isoflurane. Mol. Pharmacol., 1998, 53(3), 530-538.
[http://dx.doi.org/10.1124/mol.53.3.530] [PMID: 9495821]
[234]
Eaton, M.M.; Germann, A.L.; Arora, R.; Cao, L.Q.; Gao, X.; Shin, D.J.; Wu, A.; Chiara, D.C.; Cohen, J.B.; Steinbach, J.H.; Evers, A.S.; Akk, G. Multiple non-equivalent interfaces mediate direct activation of GABAA receptors by propofol. Curr. Neuropharmacol., 2016, 14(7), 772-780.
[http://dx.doi.org/10.2174/1570159X14666160202121319] [PMID: 26830963]
[235]
Evans, R.H.; Hill, R.G. GABA-mimetic action of etomidate. Experientia, 1978, 34(10), 1325-1327.
[http://dx.doi.org/10.1007/BF01981448] [PMID: 738408]
[236]
Forman, S.A. Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011, 114(3), 695-707.
[http://dx.doi.org/10.1097/ALN.0b013e3181ff72b5] [PMID: 21263301]
[237]
Delgado-Lezama, R.; Loeza-Alcocer, E.; Andrés, C.; Aguilar, J.; Guertin, P.A.; Felix, R. Extrasynaptic GABA(A) receptors in the brainstem and spinal cord: structure and function. Curr. Pharm. Des., 2013, 19(24), 4485-4497.
[http://dx.doi.org/10.2174/1381612811319240013] [PMID: 23360278]
[238]
Herd, M.B.; Haythornthwaite, A.R.; Rosahl, T.W.; Wafford, K.A.; Homanics, G.E.; Lambert, J.J.; Belelli, D. The expression of GABAA beta subunit isoforms in synaptic and extrasynaptic receptor populations of mouse dentate gyrus granule cells. J. Physiol., 2008, 586(4), 989-1004.
[http://dx.doi.org/10.1113/jphysiol.2007.146746] [PMID: 18079158]
[239]
Tomlin, S.L.; Jenkins, A.; Lieb, W.R.; Franks, N.P. Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type A receptors and animals. Anesthesiology, 1998, 88(3), 708-717.
[http://dx.doi.org/10.1097/00000542-199803000-00022] [PMID: 9523815]
[240]
Belelli, D.; Lambert, J.J.; Peters, J.A.; Wafford, K.; Whiting, P.J. The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc. Natl. Acad. Sci. USA, 1997, 94(20), 11031-11036.
[http://dx.doi.org/10.1073/pnas.94.20.11031] [PMID: 9380754]
[241]
Siegwart, R.; Jurd, R.; Rudolph, U. Molecular determinants for the action of general anesthetics at recombinant alpha(2)beta(3)gamma(2)gamma-aminobutyric acid(A) receptors. J. Neurochem., 2002, 80(1), 140-148.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00682.x] [PMID: 11796752]
[242]
Siegwart, R.; Krähenbühl, K.; Lambert, S.; Rudolph, U. Mutational analysis of molecular requirements for the actions of general anaesthetics at the gamma-aminobutyric acidA receptor subtype, alpha1beta2gamma2. BMC Pharmacol., 2003, 3, 13.
[http://dx.doi.org/10.1186/1471-2210-3-13] [PMID: 14613517]
[243]
Mihic, S.J.; Ye, Q.; Wick, M.J.; Koltchine, V.V.; Krasowski, M.D.; Finn, S.E.; Mascia, M.P.; Valenzuela, C.F.; Hanson, K.K.; Greenblatt, E.P.; Harris, R.A.; Harrison, N.L. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature, 1997, 389(6649), 385-389.
[http://dx.doi.org/10.1038/38738] [PMID: 9311780]
[244]
Hall, A.C.; Rowan, K.C.; Stevens, R.J.; Kelley, J.C.; Harrison, N.L. The effects of isoflurane on desensitized wild-type and alpha 1(S270H) gamma-aminobutyric acid type A receptors. Anesth. Analg., 2004, 98(5), 1297-1304.
[http://dx.doi.org/10.1213/01.ANE.0000111108.78745.AD] [PMID: 15105205]
[245]
Ogawa, S.K.; Tanaka, E.; Shin, M.C.; Kotani, N.; Akaike, N. Volatile anesthetic effects on isolated GABA synapses and extrasynaptic receptors. Neuropharmacology, 2011, 60(4), 701-710.
[http://dx.doi.org/10.1016/j.neuropharm.2010.11.016] [PMID: 21111749]
[246]
Belelli, D.; Harrison, N.L.; Maguire, J.; Macdonald, R.L.; Walker, M.C.; Cope, D.W. Extrasynaptic GABAA receptors: form, pharmacology, and function. J. Neurosci., 2009, 29(41), 12757-12763.
[http://dx.doi.org/10.1523/JNEUROSCI.3340-09.2009] [PMID: 19828786]
[247]
Bai, D.; Zhu, G.; Pennefather, P.; Jackson, M.F.; MacDonald, J.F.; Orser, B.A. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol. Pharmacol., 2001, 59(4), 814-824.
[http://dx.doi.org/10.1124/mol.59.4.814] [PMID: 11259626]
[248]
Caraiscos, V.B.; Newell, J.G.; You-Ten, K.E.; Elliott, E.M.; Rosahl, T.W.; Wafford, K.A.; MacDonald, J.F.; Orser, B.A. Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J. Neurosci., 2004, 24(39), 8454-8458.
[http://dx.doi.org/10.1523/JNEUROSCI.2063-04.2004] [PMID: 15456818]
[249]
Belelli, D.; Peden, D.R.; Rosahl, T.W.; Wafford, K.A.; Lambert, J.J. Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J. Neurosci., 2005, 25(50), 11513-11520.
[http://dx.doi.org/10.1523/JNEUROSCI.2679-05.2005] [PMID: 16354909]
[250]
Takahashi, A.; Tokunaga, A.; Yamanaka, H.; Mashimo, T.; Noguchi, K.; Uchida, I. Two types of GABAergic miniature inhibitory postsynaptic currents in mouse substantia gelatinosa neurons. Eur. J. Pharmacol., 2006, 553(1-3), 120-128.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.047] [PMID: 17064685]
[251]
Jia, F.; Yue, M.; Chandra, D.; Homanics, G.E.; Goldstein, P.A.; Harrison, N.L. Isoflurane is a potent modulator of extrasynaptic GABA(A) receptors in the thalamus. J. Pharmacol. Exp. Ther., 2008, 324(3), 1127-1135.
[http://dx.doi.org/10.1124/jpet.107.134569] [PMID: 18094320]
[252]
Goodwani, S.; Saternos, H.; Alasmari, F.; Sari, Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci. Biobehav. Rev., 2017, 77, 14-31.
[http://dx.doi.org/10.1016/j.neubiorev.2017.02.024] [PMID: 28242339]
[253]
Levine, M.S.; Cepeda, C.; André, V.M. Location, location, location: contrasting roles of synaptic and extrasynaptic NMDA receptors in Huntington’s disease. Neuron, 2010, 65(2), 145-147.
[http://dx.doi.org/10.1016/j.neuron.2010.01.010] [PMID: 20152121]
[254]
Hackos, D.H.; Hanson, J.E. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology, 2017, 112(Pt A), 34-45..
[255]
Yang, J.; Zorumski, C.F. Effects of isoflurane on N-methyl-D-aspartate gated ion channels in cultured rat hippocampal neurons. Ann. N. Y. Acad. Sci., 1991, 625, 287-289.
[http://dx.doi.org/10.1111/j.1749-6632.1991.tb33851.x] [PMID: 1711810]
[256]
Ogata, J.; Shiraishi, M.; Namba, T.; Smothers, C.T.; Woodward, J.J.; Harris, R.A. Effects of anesthetics on mutant N-methyl-D-aspartate receptors expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther., 2006, 318(1), 434-443.
[http://dx.doi.org/10.1124/jpet.106.101691] [PMID: 16622040]
[257]
Alkire, M.T.; Hudetz, A.G.; Tononi, G. Consciousness and anesthesia. Science, 2008, 322(5903), 876-880.
[http://dx.doi.org/10.1126/science.1149213] [PMID: 18988836]
[258]
Sonner, J.M.; Antognini, J.F.; Dutton, R.C.; Flood, P.; Gray, A.T.; Harris, R.A.; Homanics, G.E.; Kendig, J.; Orser, B.; Raines, D.E.; Rampil, I.J.; Trudell, J.; Vissel, B.; Eger, E.I., II Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth. Analg., 2003, 97(3), 718-740.
[http://dx.doi.org/10.1213/01.ANE.0000081063.76651.33] [PMID: 12933393]
[259]
Ishizaki, K.; Yoon, D.M.; Yoshida, N.; Yamazaki, M.; Arai, K.; Fujita, T. Intrathecal administration of N-methyl-D-aspartate receptor antagonist reduces the minimum alveolar anaesthetic concentration of isoflurane in rats. Br. J. Anaesth., 1995, 75(5), 636-638.
[http://dx.doi.org/10.1093/bja/75.5.636] [PMID: 7577295]
[260]
Ishizaki, K.; Yoshida, N.; Yoon, D.M.; Yoon, M.H.; Sudoh, M.; Fujita, T. Intrathecally administered NMDA receptor antagonists reduce the MAC of isoflurane in rats. Can. J. Anaesth., 1996, 43(7), 724-730.
[http://dx.doi.org/10.1007/BF03017958] [PMID: 8807180]
[261]
Petrenko, A.B.; Yamakura, T.; Kohno, T.; Sakimura, K.; Baba, H. Increased brain monoaminergic tone after the NMDA receptor GluN2A subunit gene knockout is responsible for resistance to the hypnotic effect of nitrous oxide. Eur. J. Pharmacol., 2013, 698(1-3), 200-205.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.034] [PMID: 23123346]
[262]
Dutton, R.C.; Zhang, Y.; Stabernack, C.R.; Laster, M.J.; Sonner, J.M.; Eger, E.I., II Temporal summation governs part of the minimum alveolar concentration of isoflurane anesthesia. Anesthesiology, 2003, 98(6), 1372-1377.
[http://dx.doi.org/10.1097/00000542-200306000-00011] [PMID: 12766645]
[263]
Dong, Y.; Wu, X.; Zhang, G.; Xu, Z.; Zhang, Y.; Gautam, V.; Kovacs, D.M.; Wu, A.; Yue, Y.; Xie, Z. Isoflurane facilitates synaptic NMDA receptor endocytosis in mice primary neurons. Curr. Mol. Med., 2013, 13(4), 488-498.
[http://dx.doi.org/10.2174/1566524011313040003] [PMID: 22950384]
[264]
Carino, C.; Fibuch, E.E.; Mao, L.M.; Wang, J.Q. Dynamic loss of surface-expressed AMPA receptors in mouse cortical and striatal neurons during anesthesia. J. Neurosci. Res., 2012, 90(1), 315-323.
[http://dx.doi.org/10.1002/jnr.22749] [PMID: 21932367]
[265]
Liang, P.; Li, F.; Liu, J.; Liao, D.; Huang, H.; Zhou, C. Sevoflurane activates hippocampal CA3 kainate receptors (Gluk2) to induce hyperactivity during induction and recovery in a mouse model. Br. J. Anaesth., 2017, 119(5), 1047-1054.
[http://dx.doi.org/10.1093/bja/aex043] [PMID: 28981700]
[266]
Dong, X.P.; Xu, T.L. The actions of propofol on gamma-aminobutyric acid-A and glycine receptors in acutely dissociated spinal dorsal horn neurons of the rat. Anesth. Analg., 2002, 95(4), 907-914.
[http://dx.doi.org/10.1213/00000539-200210000-00021] [PMID: 12351266]
[267]
Mascia, M.P.; Machu, T.K.; Harris, R.A. Enhancement of homomeric glycine receptor function by long-chain alcohols and anaesthetics. Br. J. Pharmacol., 1996, 119(7), 1331-1336.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb16042.x] [PMID: 8968539]
[268]
Fender, H.; Wolf, G. Cytogenetic investigations in employees from waste disposal sites. Toxicol. Lett., 1998, 96-97, 149-154.
[http://dx.doi.org/10.1016/S0378-4274(98)00062-9] [PMID: 9820660]
[269]
Moraga-Cid, G.; Yevenes, G.E.; Schmalzing, G.; Peoples, R.W.; Aguayo, L.G. A Single phenylalanine residue in the main intracellular loop of α1 γ-aminobutyric acid type A and glycine receptors influences their sensitivity to propofol. Anesthesiology, 2011, 115(3), 464-473.
[http://dx.doi.org/10.1097/ALN.0b013e31822550f7] [PMID: 21673564]
[270]
Lynagh, T.; Kunz, A.; Laube, B. Propofol modulation of α1 glycine receptors does not require a structural transition at adjacent subunits that is crucial to agonist-induced activation. ACS Chem. Neurosci., 2013, 4(11), 1469-1478.
[http://dx.doi.org/10.1021/cn400134p] [PMID: 23992940]
[271]
Wakita, M.; Kotani, N.; Akaike, N. Effects of propofol on glycinergic neurotransmission in a single spinal nerve synapse preparation. Brain Res., 2016, 1631, 147-156.
[http://dx.doi.org/10.1016/j.brainres.2015.11.030] [PMID: 26616339]
[272]
Beckstead, M.J.; Phelan, R.; Trudell, J.R.; Bianchini, M.J.; Mihic, S.J. Anesthetic and ethanol effects on spontaneously opening glycine receptor channels. J. Neurochem., 2002, 82(6), 1343-1351.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01086.x] [PMID: 12354281]
[273]
Daniels, S.; Roberts, R.J. Post-synaptic inhibitory mechanisms of anaesthesia; glycine receptors. Toxicol. Lett., 1998, 100-101, 71-76.
[http://dx.doi.org/10.1016/S0378-4274(98)00167-2] [PMID: 10049183]
[274]
Mascia, M.P.; Trudell, J.R.; Harris, R.A. Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 9305-9310.
[http://dx.doi.org/10.1073/pnas.160128797] [PMID: 10908659]
[275]
Borghese, C.M.; Xiong, W.; Oh, S.I.; Ho, A.; Mihic, S.J.; Zhang, L.; Lovinger, D.M.; Homanics, G.E.; Eger, E.I., II; Harris, R.A. Mutations M287L and Q266I in the glycine receptor α1 subunit change sensitivity to volatile anesthetics in oocytes and neurons, but not the minimal alveolar concentration in knockin mice. Anesthesiology, 2012, 117(4), 765-771.
[http://dx.doi.org/10.1097/ALN.0b013e31826a0d93] [PMID: 22885675]
[276]
Tassonyi, E.; Charpantier, E.; Muller, D.; Dumont, L.; Bertrand, D. The role of nicotinic acetylcholine receptors in the mechanisms of anesthesia. Brain Res. Bull., 2002, 57(2), 133-150.
[http://dx.doi.org/10.1016/S0361-9230(01)00740-7] [PMID: 11849819]
[277]
Unwin, N. Nicotinic acetylcholine receptor at 9 A resolution. J. Mol. Biol., 1993, 229(4), 1101-1124.
[http://dx.doi.org/10.1006/jmbi.1993.1107] [PMID: 8445638]
[278]
Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature, 1995, 373(6509), 37-43.
[http://dx.doi.org/10.1038/373037a0] [PMID: 7800037]
[279]
McGehee, D.S.; Role, L.W. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol., 1995, 57, 521-546.
[http://dx.doi.org/10.1146/annurev.ph.57.030195.002513] [PMID: 7778876]
[280]
Coates, K.M.; Flood, P. Ketamine and its preservative, benzethonium chloride, both inhibit human recombinant alpha7 and alpha4beta2 neuronal nicotinic acetylcholine receptors in Xenopus oocytes. Br. J. Pharmacol., 2001, 134(4), 871-879.
[http://dx.doi.org/10.1038/sj.bjp.0704315] [PMID: 11606328]
[281]
Brannigan, G.; LeBard, D.N.; Hénin, J.; Eckenhoff, R.G.; Klein, M.L. Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain. Proc. Natl. Acad. Sci. USA, 2010, 107(32), 14122-14127.
[http://dx.doi.org/10.1073/pnas.1008534107] [PMID: 20660787]
[282]
Chiara, D.C.; Dangott, L.J.; Eckenhoff, R.G.; Cohen, J.B. Identification of nicotinic acetylcholine receptor amino acids photolabeled by the volatile anesthetic halothane. Biochemistry, 2003, 42(46), 13457-13467.
[http://dx.doi.org/10.1021/bi0351561] [PMID: 14621991]
[283]
Nirthanan, S.; Garcia, G., III; Chiara, D.C.; Husain, S.S.; Cohen, J.B. Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector. J. Biol. Chem., 2008, 283(32), 22051-22062.
[http://dx.doi.org/10.1074/jbc.M801332200] [PMID: 18524766]
[284]
Rossman, A.C. The physiology of the nicotinic acetylcholine receptor and its importance in the administration of anesthesia. AANA J., 2011, 79(5), 433-440.
[PMID: 23256274]
[285]
Alkire, M.T.; McReynolds, J.R.; Hahn, E.L.; Trivedi, A.N. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology, 2007, 107(2), 264-272.
[http://dx.doi.org/10.1097/01.anes.0000270741.33766.24] [PMID: 17667571]
[286]
Plourde, G.; Chartrand, D.; Fiset, P.; Font, S.; Backman, S.B. Antagonism of sevoflurane anaesthesia by physostigmine: effects on the auditory steady-state response and bispectral index. Br. J. Anaesth., 2003, 91(4), 583-586.
[http://dx.doi.org/10.1093/bja/aeg209] [PMID: 14504163]
[287]
Chiara, D.C.; Jayakar, S.S.; Zhou, X.; Zhang, X.; Savechenkov, P.Y.; Bruzik, K.S.; Miller, K.W.; Cohen, J.B. Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor. J. Biol. Chem., 2013, 288(27), 19343-19357.
[http://dx.doi.org/10.1074/jbc.M113.479725] [PMID: 23677991]
[288]
Belelli, D.; Muntoni, A.L.; Merrywest, S.D.; Gentet, L.J.; Casula, A.; Callachan, H.; Madau, P.; Gemmell, D.K.; Hamilton, N.M.; Lambert, J.J.; Sillar, K.T.; Peters, J.A. The in vitro and in vivo enantioselectivity of etomidate implicates the GABAA receptor in general anaesthesia. Neuropharmacology, 2003, 45(1), 57-71.
[http://dx.doi.org/10.1016/S0028-3908(03)00144-8] [PMID: 12814659]
[289]
Steinbach, J.H.; Akk, G. Modulation of GABA(A) receptor channel gating by pentobarbital. J. Physiol., 2001, 537(Pt 3), 715-733.
[http://dx.doi.org/10.1113/jphysiol.2001.012818] [PMID: 11744750]
[290]
Lecker, I.; Yin, Y.; Wang, D.S.; Orser, B.A. Potentiation of GABAA receptor activity by volatile anaesthetics is reduced by α5GABAA receptor-preferring inverse agonists. Br. J. Anaesth., 2013, 110(Suppl. 1), i73-i81.
[http://dx.doi.org/10.1093/bja/aet038] [PMID: 23535829]
[291]
Seo, K.; Seino, H.; Yoshikawa, H.; Petrenko, A.B.; Baba, H.; Fujiwara, N.; Someya, G.; Kawano, Y.; Maeda, T.; Matsuda, M.; Kanematsu, T.; Hirata, M. Genetic reduction of GABA(A) receptor gamma2 subunit expression potentiates the immobilizing action of isoflurane. Neurosci. Lett., 2010, 472(1), 1-4.
[http://dx.doi.org/10.1016/j.neulet.2010.01.031] [PMID: 20097266]
[292]
Murrough, J.W. Ketamine as a novel antidepressant: from synapse to behavior. Clin. Pharmacol. Ther., 2012, 91(2), 303-309.
[http://dx.doi.org/10.1038/clpt.2011.244] [PMID: 22205190]
[293]
Grasshoff, C.; Antkowiak, B. Effects of isoflurane and enflurane on GABAA and glycine receptors contribute equally to depressant actions on spinal ventral horn neurones in rats. Br. J. Anaesth., 2006, 97(5), 687-694.
[http://dx.doi.org/10.1093/bja/ael239] [PMID: 16973644]
[294]
Hudetz, A.G. General anesthesia and human brain connectivity. Brain Connect., 2012, 2(6), 291-302.
[http://dx.doi.org/10.1089/brain.2012.0107] [PMID: 23153273]
[295]
Jevtovic-Todorovic, V.; Absalom, A.R.; Blomgren, K.; Brambrink, A.; Crosby, G.; Culley, D.J.; Fiskum, G.; Giffard, R.G.; Herold, K.F.; Loepke, A.W.; Ma, D.; Orser, B.A.; Planel, E.; Slikker, W., Jr; Soriano, S.G.; Stratmann, G.; Vutskits, L.; Xie, Z.; Hemmings, H.C., Jr Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar. Br. J. Anaesth., 2013, 111(2), 143-151.
[http://dx.doi.org/10.1093/bja/aet177] [PMID: 23722106]
[296]
Lau, C.G.; Zukin, R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci., 2007, 8(6), 413-426.
[http://dx.doi.org/10.1038/nrn2153] [PMID: 17514195]
[297]
Malinow, R.; Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci., 2002, 25, 103-126.
[http://dx.doi.org/10.1146/annurev.neuro.25.112701.142758] [PMID: 12052905]
[298]
Pérez-Otaño, I.; Ehlers, M.D. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci., 2005, 28(5), 229-238.
[http://dx.doi.org/10.1016/j.tins.2005.03.004] [PMID: 15866197]
[299]
Lee, H.K.; Kameyama, K.; Huganir, R.L.; Bear, M.F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron, 1998, 21(5), 1151-1162.
[http://dx.doi.org/10.1016/S0896-6273(00)80632-7] [PMID: 9856470]
[300]
Leonard, A.S.; Lim, I.A.; Hemsworth, D.E.; Horne, M.C.; Hell, J.W. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA, 1999, 96(6), 3239-3244.
[http://dx.doi.org/10.1073/pnas.96.6.3239] [PMID: 10077668]
[301]
Shehata, M.; Matsumura, H.; Okubo-Suzuki, R.; Ohkawa, N.; Inokuchi, K. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J. Neurosci., 2012, 32(30), 10413-10422.
[http://dx.doi.org/10.1523/JNEUROSCI.4533-11.2012] [PMID: 22836274]
[302]
Lisman, J.E.; Zhabotinsky, A.M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron, 2001, 31(2), 191-201.
[http://dx.doi.org/10.1016/S0896-6273(01)00364-6] [PMID: 11502252]
[303]
Simon, W.; Hapfelmeier, G.; Kochs, E.; Zieglgänsberger, W.; Rammes, G. Isoflurane blocks synaptic plasticity in the mouse hippocampus. Anesthesiology, 2001, 94(6), 1058-1065.
[http://dx.doi.org/10.1097/00000542-200106000-00021] [PMID: 11465598]
[304]
Haseneder, R.; Kratzer, S.; von Meyer, L.; Eder, M.; Kochs, E.; Rammes, G. Isoflurane and sevoflurane dose-dependently impair hippocampal long-term potentiation. Eur. J. Pharmacol., 2009, 623(1-3), 47-51.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.022] [PMID: 19765574]
[305]
Piao, M.H.; Liu, Y.; Wang, Y.S.; Qiu, J.P.; Feng, C.S. Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through α4β2 nAChR subtype-mediated mechanisms. Ann. Fr. Anesth. Reanim., 2013, 32(10), e135-e141.
[http://dx.doi.org/10.1016/j.annfar.2013.05.012] [PMID: 24011619]
[306]
Kalenka, A.; Gross, B.; Maurer, M.H.; Thierse, H.J.; Feldmann, R.E., Jr Isoflurane anesthesia elicits protein pattern changes in rat hippocampus. J. Neurosurg. Anesthesiol., 2010, 22(2), 144-154.
[http://dx.doi.org/10.1097/ANA.0b013e3181cb7cb8] [PMID: 20118798]
[307]
Luo, F.; Hu, Y.; Zhao, W.; Zuo, Z.; Yu, Q.; Liu, Z.; Lin, J.; Feng, Y.; Li, B.; Wu, L.; Xu, L. Maternal exposure of rats to isoflurane during late pregnancy impairs spatial learning and memory in the offspring by up-regulating the expression of histone deacetylase 2. PLoS One, 2016, 11(8)e0160826
[http://dx.doi.org/10.1371/journal.pone.0160826] [PMID: 27536989]
[308]
Uchimoto, K.; Miyazaki, T.; Kamiya, Y.; Mihara, T.; Koyama, Y.; Taguri, M.; Inagawa, G.; Takahashi, T.; Goto, T. Isoflurane impairs learning and hippocampal long-term potentiation via the saturation of synaptic plasticity. Anesthesiology, 2014, 121(2), 302-310.
[http://dx.doi.org/10.1097/ALN.0000000000000269] [PMID: 24758773]
[309]
Luo, T.; Wang, Y.; Qin, J.; Liu, Z.G.; Liu, M. Histamine H3 receptor antagonist prevents memory deficits and synaptic plasticity disruption following isoflurane exposure. CNS Neurosci. Ther., 2017, 23(4), 301-309.
[http://dx.doi.org/10.1111/cns.12675] [PMID: 28168839]
[310]
Joksovic, P.M.; Lunardi, N.; Jevtovic-Todorovic, V.; Todorovic, S.M. Early exposure to general anesthesia with isoflurane downregulates inhibitory synaptic neurotransmission in the rat thalamus. Mol. Neurobiol., 2015, 52(2), 952-958.
[http://dx.doi.org/10.1007/s12035-015-9247-6] [PMID: 26048671]
[311]
Platholi, J.; Herold, K.F.; Hemmings, H.C., Jr; Halpain, S. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism. PLoS One, 2014, 9(7)e102978
[http://dx.doi.org/10.1371/journal.pone.0102978] [PMID: 25068870]
[312]
Storer, K.P.; Reeke, G.N. γ-Aminobutyric Acid Type A Receptor Potentiation Inhibits Learning in a Computational Network Model. Anesthesiology, 2018, 129(1), 106-117.
[http://dx.doi.org/10.1097/ALN.0000000000002230] [PMID: 29664887]
[313]
Wei, H.; Xiong, W.; Yang, S.; Zhou, Q.; Liang, C.; Zeng, B.X.; Xu, L. Propofol facilitates the development of long-term depression (LTD) and impairs the maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. Neurosci. Lett., 2002, 324(3), 181-184.
[http://dx.doi.org/10.1016/S0304-3940(02)00183-0] [PMID: 12009518]
[314]
Nagashima, K.; Zorumski, C.F.; Izumi, Y. Propofol inhibits long-term potentiation but not long-term depression in rat hippocampal slices. Anesthesiology, 2005, 103(2), 318-326.
[http://dx.doi.org/10.1097/00000542-200508000-00015] [PMID: 16052114]
[315]
Lee, K.Y.; Kim, Y.I.; Kim, S.H.; Park, H.S.; Park, Y.J.; Ha, M.S.; Jin, Y.; Kim, D.K. Propofol effects on cerebellar long-term depression. Neurosci. Lett., 2015, 609, 18-22.
[http://dx.doi.org/10.1016/j.neulet.2015.09.037] [PMID: 26455962]
[316]
Liu, J.; Rossaint, R.; Sanders, R.D.; Coburn, M. Toxic and protective effects of inhaled anaesthetics on the developing animal brain: systematic review and update of recent experimental work. Eur. J. Anaesthesiol., 2014, 31(12), 669-677.
[http://dx.doi.org/10.1097/EJA.0000000000000073] [PMID: 24922049]
[317]
Sun, X.; Zhang, J.; Li, H.; Zhang, Z.; Yang, J.; Cui, M.; Zeng, B.; Xu, T.; Cao, J.; Xu, L. Propofol effects on excitatory synaptic efficacy in the CA1 region of the developing hippocampus. Brain Res. Dev. Brain Res., 2005, 157(1), 1-7.
[http://dx.doi.org/10.1016/j.devbrainres.2005.02.011] [PMID: 15939079]
[318]
Sackeim, H.A.; Prudic, J.; Fuller, R.; Keilp, J.; Lavori, P.W.; Olfson, M. The cognitive effects of electroconvulsive therapy in community settings. Neuropsychopharmacology, 2007, 32(1), 244-254.
[http://dx.doi.org/10.1038/sj.npp.1301180] [PMID: 16936712]
[319]
Stewart, C.; Jeffery, K.; Reid, I. LTP-like synaptic efficacy changes following electroconvulsive stimulation. Neuroreport, 1994, 5(9), 1041-1044.
[http://dx.doi.org/10.1097/00001756-199405000-00006] [PMID: 8080955]
[320]
Luo, J.; Min, S.; Wei, K.; Cao, J.; Wang, B.; Li, P.; Dong, J.; Liu, Y. Propofol prevents electroconvulsive-shock-induced memory impairment through regulation of hippocampal synaptic plasticity in a rat model of depression. Neuropsychiatr. Dis. Treat., 2014, 10, 1847-1859.
[PMID: 25285008]
[321]
Chen, J.; Peng, L.H.; Luo, J.; Liu, L.; Lv, F.; Li, P.; Ao, L.; Hao, X.C.; Min, S. Effects of low-dose ketamine combined with propofol on phosphorylation of AMPA receptor GluR1 subunit and GABAA receptor in hippocampus of stressed rats receiving electroconvulsive shock. J. ECT, 2015, 31(1), 50-56.
[http://dx.doi.org/10.1097/YCT.0000000000000148] [PMID: 24831997]
[322]
Hao, X.; Zhu, X.; Li, P.; Lv, F.; Min, S. NMDA receptor antagonist enhances antidepressant efficacy and alleviates learning-memory function impairment induced by electroconvulsive shock with regulating glutamate receptors expression in hippocampus. J. Affect. Disord., 2016, 190, 819-827.
[http://dx.doi.org/10.1016/j.jad.2015.11.021] [PMID: 26625094]
[323]
Kakehata, J.; Togashi, H.; Yamaguchi, T.; Morimoto, Y.; Yoshioka, M. Effects of propofol and halothane on long-term potentiation in the rat hippocampus after transient cerebral ischaemia. Eur. J. Anaesthesiol., 2007, 24(12), 1021-1027.
[http://dx.doi.org/10.1017/S0265021507000749] [PMID: 17579948]
[324]
van den Burg, E.H.; Engelmann, J.; Bacelo, J.; Gómez, L.; Grant, K. Etomidate reduces initiation of backpropagating dendritic action potentials: implications for sensory processing and synaptic plasticity during anesthesia. J. Neurophysiol., 2007, 97(3), 2373-2384.
[http://dx.doi.org/10.1152/jn.00395.2006] [PMID: 17202233]
[325]
Dai, S.; Perouansky, M.; Pearce, R.A. Amnestic concentrations of etomidate modulate GABAA, slow synaptic inhibition in hippocampus. Anesthesiology, 2009, 111(4), 766-773.
[http://dx.doi.org/10.1097/ALN.0b013e3181b4392d] [PMID: 19741493]
[326]
Gao, H.; Zhang, L.; Chen, Z.; Liu, S.; Zhang, Q.; Zhang, B. Effects of intravenous anesthetics on the phosphorylation of cAMP response elementbinding protein in hippocampal slices of adult mice. Mol. Med. Rep., 2018, 18(1), 627-633.
[http://dx.doi.org/10.3892/mmr.2018.8939] [PMID: 29749444]
[327]
Zurek, A.A.; Yu, J.; Wang, D.S.; Haffey, S.C.; Bridgwater, E.M.; Penna, A.; Lecker, I.; Lei, G.; Chang, T.; Salter, E.W.; Orser, B.A. Sustained increase in α5GABAA receptor function impairs memory after anesthesia. J. Clin. Invest., 2014, 124(12), 5437-5441.
[http://dx.doi.org/10.1172/JCI76669] [PMID: 25365226]
[328]
Li, Y.; Wu, Y.; Li, R.; Wang, C.; Jia, N.; Zhao, C.; Wen, A.; Xiong, L. Propofol regulates the surface expression of gabaa receptors: implications in synaptic inhibition. Anesth. Analg., 2015, 121(5), 1176-1183.
[http://dx.doi.org/10.1213/ANE.0000000000000884] [PMID: 26241086]
[329]
Corbett, D. Ketamine blocks the plasticity associated with prefrontal cortex self-stimulation. Pharmacol. Biochem. Behav., 1990, 37(4), 685-688.
[http://dx.doi.org/10.1016/0091-3057(90)90547-U] [PMID: 2151198]
[330]
Rauschecker, J.P.; Hahn, S. Ketamine-xylazine anaesthesia blocks consolidation of ocular dominance changes in kitten visual cortex. Nature, 1987, 326(6109), 183-185.
[http://dx.doi.org/10.1038/326183a0] [PMID: 3821892]
[331]
Stringer, J.L.; Guyenet, P.G. Elimination of long-term potentiation in the hippocampus by phencyclidine and ketamine. Brain Res., 1983, 258(1), 159-164.
[http://dx.doi.org/10.1016/0006-8993(83)91244-1] [PMID: 24010182]
[332]
Salami, M.; Fathollahi, Y.; Esteky, H.; Motamedi, F.; Atapour, N. Effects of ketamine on synaptic transmission and long-term potentiation in layer II/III of rat visual cortex in vitro. Eur. J. Pharmacol., 2000, 390(3), 287-293.
[http://dx.doi.org/10.1016/S0014-2999(00)00034-0] [PMID: 10708735]
[333]
Haugan, F.; Rygh, L.J.; Tjølsen, A. Ketamine blocks enhancement of spinal long-term potentiation in chronic opioid treated rats. Acta Anaesthesiol. Scand., 2008, 52(5), 681-687.
[http://dx.doi.org/10.1111/j.1399-6576.2008.01637.x] [PMID: 18419722]
[334]
Rowland, L.M.; Astur, R.S.; Jung, R.E.; Bustillo, J.R.; Lauriello, J.; Yeo, R.A. Selective cognitive impairments associated with NMDA receptor blockade in humans. Neuropsychopharmacology, 2005, 30(3), 633-639.
[http://dx.doi.org/10.1038/sj.npp.1300642] [PMID: 15647751]
[335]
Ranganathan, M.; DeMartinis, N.; Huguenel, B.; Gaudreault, F.; Bednar, M.M.; Shaffer, C.L.; Gupta, S.; Cahill, J.; Sherif, M.A.; Mancuso, J.; Zumpano, L.; D’Souza, D.C. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242. Mol. Psychiatry, 2017, 22(11), 1633-1640.
[http://dx.doi.org/10.1038/mp.2017.6] [PMID: 28242871]
[336]
Clifton, N.E.; Thomas, K.L.; Hall, J. The effect of ketamine on the consolidation and extinction of contextual fear memory. J. Psychopharmacol. (Oxford), 2018, 32(2), 156-162.
[http://dx.doi.org/10.1177/0269881117748903] [PMID: 29338491]
[337]
Huang, L.; Yang, X.J.; Huang, Y.; Sun, E.Y.; Sun, M. Ketamine protects gamma oscillations by inhibiting hippocampal LTD. PLoS One, 2016, 11(7)e0159192
[http://dx.doi.org/10.1371/journal.pone.0159192] [PMID: 27467732]
[338]
Wang, R.R.; Jin, J.H.; Womack, A.W.; Lyu, D.; Kokane, S.S.; Tang, N.; Zou, X.; Lin, Q.; Chen, J. Neonatal ketamine exposure causes impairment of long-term synaptic plasticity in the anterior cingulate cortex of rats. Neuroscience, 2014, 268, 309-317.
[http://dx.doi.org/10.1016/j.neuroscience.2014.03.029] [PMID: 24674848]
[339]
Duman, R.S. Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide. F1000 Res., 2018, 7, 7.
[http://dx.doi.org/10.12688/f1000research.14344.1] [PMID: 29899972]
[340]
Zarate, C.A., Jr; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry, 2006, 63(8), 856-864.
[http://dx.doi.org/10.1001/archpsyc.63.8.856] [PMID: 16894061]
[341]
Ribeiro, P.O.; Silva, H.B.; Tomé, A.R.; Cunha, R.A.; Antunes, L.M. Hippocampal long-term potentiation in adult mice after recovery from ketamine anesthesia. Lab Anim. (NY), 2014, 43(10), 353-357.
[http://dx.doi.org/10.1038/laban.571] [PMID: 25238524]
[342]
Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med., 2016, 22(3), 238-249.
[http://dx.doi.org/10.1038/nm.4050] [PMID: 26937618]
[343]
Li, N.; Lee, B.; Liu, R.J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X.Y.; Aghajanian, G.; Duman, R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 2010, 329(5994), 959-964.
[http://dx.doi.org/10.1126/science.1190287] [PMID: 20724638]
[344]
Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; Dossou, K.S.; Fang, Y.; Huang, X.P.; Mayo, C.L.; Wainer, I.W.; Albuquerque, E.X.; Thompson, S.M.; Thomas, C.J.; Zarate, C.A., Jr; Gould, T.D. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 2016, 533(7604), 481-486.
[http://dx.doi.org/10.1038/nature17998] [PMID: 27144355]
[345]
Yamaguchi, J.I.; Toki, H.; Qu, Y.; Yang, C.; Koike, H.; Hashimoto, K.; Mizuno-Yasuhira, A.; Chaki, S. (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice. Neuropsychopharmacology, 2018, 43(9), 1900-1907.
[http://dx.doi.org/10.1038/s41386-018-0084-y] [PMID: 29802366]
[346]
Reddy, S.V. Effect of general anesthetics on the developing brain. J. Anaesthesiol. Clin. Pharmacol., 2012, 28(1), 6-10.
[http://dx.doi.org/10.4103/0970-9185.92426] [PMID: 22345937]
[347]
Xiao, R.; Yu, D.; Li, X.; Huang, J.; Jing, S.; Bao, X.; Yang, T.; Fan, X. Propofol exposure in early life induced developmental impairments in the mouse cerebellum. Front. Cell. Neurosci., 2017, 11, 373.
[http://dx.doi.org/10.3389/fncel.2017.00373] [PMID: 29249940]
[348]
Gao, J.; Luo, A.; Yan, J.; Fang, X.; Tang, X.; Zhao, Y.; Li, S. Mdivi-1 pretreatment mitigates isoflurane-induced cognitive deficits in developmental rats. Am. J. Transl. Res., 2018, 10(2), 432-443.
[PMID: 29511437]
[349]
Xiao, H.; Liu, B.; Chen, Y.; Zhang, J. Learning, memory and synaptic plasticity in hippocampus in rats exposed to sevoflurane. Int. J. Dev. Neurosci., 2016, 48, 38-49.
[http://dx.doi.org/10.1016/j.ijdevneu.2015.11.001] [PMID: 26612208]
[350]
Jevtovic-Todorovic, V.; Hartman, R.E.; Izumi, Y.; Benshoff, N.D.; Dikranian, K.; Zorumski, C.F.; Olney, J.W.; Wozniak, D.F. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci., 2003, 23(3), 876-882.
[http://dx.doi.org/10.1523/JNEUROSCI.23-03-00876.2003] [PMID: 12574416]
[351]
Loepke, A.W.; Istaphanous, G.K.; McAuliffe, J.J., III; Miles, L.; Hughes, E.A.; McCann, J.C.; Harlow, K.E.; Kurth, C.D.; Williams, M.T.; Vorhees, C.V.; Danzer, S.C. The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory. Anesth. Analg., 2009, 108(1), 90-104.
[http://dx.doi.org/10.1213/ane.0b013e31818cdb29] [PMID: 19095836]
[352]
Young, C.; Jevtovic-Todorovic, V.; Qin, Y.Q.; Tenkova, T.; Wang, H.; Labruyere, J.; Olney, J.W. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br. J. Pharmacol., 2005, 146(2), 189-197.
[http://dx.doi.org/10.1038/sj.bjp.0706301] [PMID: 15997239]
[353]
Rizzi, S.; Carter, L.B.; Ori, C.; Jevtovic-Todorovic, V. Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol., 2008, 18(2), 198-210.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00116.x] [PMID: 18241241]
[354]
Mintz, C.D.; Barrett, K.M.; Smith, S.C.; Benson, D.L.; Harrison, N.L. Anesthetics interfere with axon guidance in developing mouse neocortical neurons in vitro via a γ-aminobutyric acid type A receptor mechanism. Anesthesiology, 2013, 118(4), 825-833.
[http://dx.doi.org/10.1097/ALN.0b013e318287b850] [PMID: 23364597]
[355]
Ando, N.; Sugasawa, Y.; Inoue, R.; Aosaki, T.; Miura, M.; Nishimura, K. Effects of the volatile anesthetic sevoflurane on tonic GABA currents in the mouse striatum during postnatal development. Eur. J. Neurosci., 2014, 40(8), 3147-3157.
[http://dx.doi.org/10.1111/ejn.12691] [PMID: 25139222]
[356]
Edwards, D.A.; Shah, H.P.; Cao, W.; Gravenstein, N.; Seubert, C.N.; Martynyuk, A.E. Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane in neonatal rat brain. Anesthesiology, 2010, 112(3), 567-575.
[http://dx.doi.org/10.1097/ALN.0b013e3181cf9138] [PMID: 20124973]
[357]
Ruscic, K.J.; Grabitz, S.D.; Rudolph, M.I.; Eikermann, M. Prevention of respiratory complications of the surgical patient: actionable plan for continued process improvement. Curr. Opin. Anaesthesiol., 2017, 30(3), 399-408.
[http://dx.doi.org/10.1097/ACO.0000000000000465] [PMID: 28323670]
[358]
Stuth, E.A.; Stucke, A.G.; Zuperku, E.J. Effects of anesthetics, sedatives, and opioids on ventilatory control. Compr. Physiol., 2012, 2(4), 2281-2367.
[http://dx.doi.org/10.1002/cphy.c100061] [PMID: 23720250]
[359]
Paul, M.; Fokt, R.M.; Kindler, C.H.; Dipp, N.C.; Yost, C.S. Characterization of the interactions between volatile anesthetics and neuromuscular blockers at the muscle nicotinic acetylcholine receptor. Anesth. Analg., 2002, 95(2), 362-367.
[PMID: 12145052]
[360]
Castro Fonseca, M.D.; Da Silva, J.H.; Ferraz, V.P.; Gomez, R.S.; Guatimosim, C. Comparative presynaptic effects of the volatile anesthetics sevoflurane and isoflurane at the mouse neuromuscular junction. Muscle Nerve, 2015, 52(5), 876-884.
[http://dx.doi.org/10.1002/mus.24589] [PMID: 25656419]
[361]
De Roo, M.; Klauser, P.; Briner, A.; Nikonenko, I.; Mendez, P.; Dayer, A.; Kiss, J.Z.; Muller, D.; Vutskits, L. Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS One, 2009, 4(9)e7043
[http://dx.doi.org/10.1371/journal.pone.0007043] [PMID: 19756154]
[362]
Briner, A.; De Roo, M.; Dayer, A.; Muller, D.; Habre, W.; Vutskits, L. Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology, 2010, 112(3), 546-556.
[http://dx.doi.org/10.1097/ALN.0b013e3181cd7942] [PMID: 20124985]
[363]
Kotlar, I.; Colonnello, A.; Aguilera-González, M.F.; Avila, D.S.; de Lima, M.E.; García-Contreras, R.; Ortíz-Plata, A.; Soares, F.A.A.; Aschner, M.; Santamaría, A. Comparison of the toxic effects of quinolinic acid and 3-nitropropionic acid in C. elegans: Involvement of the SKN-1 Pathway. Neurotox. Res., 2018, 33(2), 259-267.
[http://dx.doi.org/10.1007/s12640-017-9794-x] [PMID: 28822104]
[364]
Vutskits, L. General anesthesia: a gateway to modulate synapse formation and neural plasticity? Anesth. Analg., 2012, 115(5), 1174-1182.
[http://dx.doi.org/10.1213/ANE.0b013e31826a1178] [PMID: 22859689]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 10
Year: 2020
Published on: 04 November, 2020
Page: [936 - 965]
Pages: 30
DOI: 10.2174/1570159X18666200227125854
Price: $65

Article Metrics

PDF: 21
HTML: 2
EPUB: 1
PRC: 1