Tubulin Proteins in Cancer Resistance: A Review

Author(s): Mohammad Amjad Kamal, Maryam Hassan Al-Zahrani, Salman Hasan Khan, Mateen Hasan Khan, Hani Awad Al-Subhi, Abudukadeer Kuerban, Muhammad Aslam, Fahad Ahmed Al-Abbasi, Firoz Anwar*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially, these drugs were very effective in the treatment of cancer but failed to show their desired action after initial chemotherapy. The present review highlights some of the important targets and their mechanism of resistance offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new approach to chemotherapy.

Keywords: Cancer, tubulin, vinca, resistance, α-β-tubulin heterodimers, chemotherapy.

Maertens, O.; McCurrach, M.E.; Braun, B.S.; De Raedt, T.; Epstein, I.; Huang, T.Q.; Lauchle, J.O.; Lee, H.; Wu, J.; Cripe, T.P.; Clapp, D.W.; Ratner, N.; Shannon, K.; Cichowski, K. A collaborative model for accelerating the discovery and translation of cancer therapies. Cancer Res., 2017, 77(21), 5706-5711.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1789] [PMID: 28993414]
Desiderio, J.; Chao, J.; Melstrom, L.; Warner, S.; Tozzi, F.; Fong, Y.; Parisi, A.; Woo, Y. The 30-year experience-A meta-analysis of randomised and high-quality non-randomised studies of hyperthermic intraperitoneal chemotherapy in the treatment of gastric cancer. Eur. J. Cancer, 2017, 79, 1-14.
[http://dx.doi.org/10.1016/j.ejca.2017.03.030] [PMID: 28456089]
Huang, Y.; Zhu, J.; Lin, X.; Hong, Y.; Feng, Y.; Shen, L. Potential of fatty oils from traditional chinese medicine in cancer therapy: a review for phytochemical, pharmacological and clinical studies. Am. J. Chin. Med., 2019, 47(4), 727-750.
[http://dx.doi.org/10.1142/S0192415X19500381] [PMID: 31094213]
Ye, H.; Zhou, Q.; Zheng, S.; Li, G.; Lin, Q.; Wei, L.; Fu, Z.; Zhang, B.; Liu, Y.; Li, Z.; Chen, R. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis., 2018, 9(5), 453.
[http://dx.doi.org/10.1038/s41419-018-0486-0] [PMID: 29670110]
Quayle, L.A.; Ottewell, P.D.; Holen, I. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by fluorescent dye retention. Clin. Exp. Metastasis, 2018, 35(8), 831-846.
[http://dx.doi.org/10.1007/s10585-018-9946-2] [PMID: 30377878]
Niu, L; Yang, J; Yan, W; Yu, Y; Zheng, Y; Ye, H; Chen, Q; Chen, L. Reversible binding of the anticancer drug KXO1 (tirbanibulin) to the colchicine-binding site of β-tubulin explains KXO1’s low clinical toxicity. J. Biol. Chem., 2019. jbc. RA119. 010732
Pang, Y.; Lin, H.; Ou, C.; Cao, Y.; An, B.; Yan, J.; Li, X. Design, synthesis, and biological evaluation of novel benzodiazepine derivatives as anticancer agents through inhibition of tubulin polymerization in vitro and in vivo. Eur. J. Med. Chem., 2019, 182111670
[http://dx.doi.org/10.1016/j.ejmech.2019.111670] [PMID: 31499359]
Krajnak, S.; Battista, M.; Brenner, W.; Almstedt, K.; Elger, T.; Heimes, A-S.; Hasenburg, A.; Schmidt, M. Explorative analysis of low-dose metronomic chemotherapy with cyclophosphamide and methotrexate in a cohort of metastatic breast cancer patients. Breast Care (Basel), 2018, 13(4), 272-276.
[http://dx.doi.org/10.1159/000487629] [PMID: 30319329]
Kumar, B.; Kumar, R.; Skvortsova, I.; Kumar, V. Mechanisms of tubulin binding ligands to target cancer cells: updates on their therapeutic potential and clinical trials. Curr. Cancer Drug Targets, 2017, 17(4), 357-375.
[http://dx.doi.org/10.2174/1568009616666160928110818] [PMID: 27697026]
Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010, 10(3), 194-204.
[http://dx.doi.org/10.1038/nrc2803] [PMID: 20147901]
Chaaban, S.; Jariwala, S.; Hsu, C-T.; Redemann, S.; Kollman, J.M.; Müller-Reichert, T.; Sept, D.; Bui, K.H.; Brouhard, G.J. The structure and dynamics of C. elegans tubulin reveals the mechanistic basis of microtubule growth. Develop Cell, 2018, 47, 191-204..
Alberts, B. Molecular Biology of the Cell (MBoC); Garland Science: New York, 2017.
Verhey, K.J.; Gaertig, J. The tubulin code. Cell Cycle, 2007, 6(17), 2152-2160.
[http://dx.doi.org/10.4161/cc.6.17.4633] [PMID: 17786050]
Pepperkok, R.; Bré, M.H.; Davoust, J.; Kreis, T.E. Microtubules are stabilized in confluent epithelial cells but not in fibroblasts. J. Cell Biol., 1990, 111(6 Pt 2), 3003-3012.
[http://dx.doi.org/10.1083/jcb.111.6.3003] [PMID: 2269663]
Saxton, W.M.; Stemple, D.L.; Leslie, R.J.; Salmon, E.D.; Zavortink, M.; McIntosh, J.R. Tubulin dynamics in cultured mammalian cells. J. Cell Biol., 1984, 99(6), 2175-2186.
[http://dx.doi.org/10.1083/jcb.99.6.2175] [PMID: 6501419]
Rusan, N.M.; Fagerstrom, C.J.; Yvon, A-M.C.; Wadsworth, P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-α tubulin. Mol. Biol. Cell, 2001, 12(4), 971-980.
[http://dx.doi.org/10.1091/mbc.12.4.971] [PMID: 11294900]
Zhai, Y.; Kronebusch, P.J.; Simon, P.M.; Borisy, G.G. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol., 1996, 135(1), 201-214.
[http://dx.doi.org/10.1083/jcb.135.1.201] [PMID: 8858174]
Perez, E.A. Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther., 2009, 8(8), 2086-2095.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0366] [PMID: 19671735]
Devambatla, R.K.V.; Namjoshi, O.A.; Choudhary, S.; Hamel, E.; Shaffer, C.V.; Rohena, C.C.; Mooberry, S.L.; Gangjee, A. Design, synthesis, and preclinical evaluation of 4-substituted-5-methyl-furo [2, 3-d] pyrimidines as microtubule targeting agents that are effective against multidrug resistant cancer cells. J. Med. Chem., 2016, 59(12), 5752-5765.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00237] [PMID: 27213719]
Prezel, E.; Elie, A.; Delaroche, J.; Stoppin-Mellet, V.; Bosc, C.; Serre, L.; Fourest-Lieuvin, A.; Andrieux, A.; Vantard, M.; Arnal, I. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles. Mol. Biol. Cell, 2018, 29(2), 154-165.
[http://dx.doi.org/10.1091/mbc.E17-06-0429] [PMID: 29167379]
Przystupski, D.; Niemczura, M.J.; Górska, A.; Supplitt, S.; Kotowski, K.; Wawryka, P.; Rozborska, P.; Woźniak, K.; Michel, O.; Kiełbik, A.; Bartosik, W.; Saczko, J.; Kulbacka, J. In search of panacea-review of recent studies concerning nature-derived anticancer agents. Nutrients, 2019, 11(6), 1426.
[http://dx.doi.org/10.3390/nu11061426] [PMID: 31242602]
Paier, C.R.K.; Maranhão, S.S.A.; Carneiro, T.R.; Lima, L.M.; Rocha, D.D. Santos RdS, Farias KMd, Moraes-Filho MOd, Pessoa C. Natural products as new antimitotic compounds for anticancer drug development. Clinics (São Paulo), 2018, •••, 73.
Inaba, H.; Yamamoto, T.; Iwasaki, T.; Kabir, A.M.R.; Kakugo, A.; Sada, K.; Matsuura, K. Fluorescent Tau-derived peptide for monitoring microtubules in living cells. ACS Omega, 2019, 4(6), 11245-11250.
[http://dx.doi.org/10.1021/acsomega.9b01089] [PMID: 31460226]
Wang, X.; Decker, C.C.; Zechner, L.; Krstin, S.; Wink, M. In vitro wound healing of tumor cells: inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol. Toxicol., 2019, 20(1), 4.
[http://dx.doi.org/10.1186/s40360-018-0284-4] [PMID: 30626448]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
van Eijk, M.; Boosman, R.J.; Schinkel, A.H.; Huitema, A.D.R.; Beijnen, J.H. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes. Cancer Chemother. Pharmacol., 2019, 84(3), 487-499.
[http://dx.doi.org/10.1007/s00280-019-03905-3] [PMID: 31309254]
Hunt, J.T. Discovery of ixabepilone. Mol. Cancer Ther., 2009, 8(2), 275-281.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0999] [PMID: 19174552]
Fürst, R.; Zupkó, I.; Berényi, A.; Ecker, G.F.; Rinner, U. Synthesis and antitumor-evaluation of cyclopropyl-containing combretastatin analogs. Bioorg. Med. Chem. Lett., 2009, 19(24), 6948-6951.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.064] [PMID: 19879758]
Glotter, E. Withanolides and related ergostane-type steroids. Nat. Prod. Rep., 1991, 8(4), 415-440.
[http://dx.doi.org/10.1039/np9910800415] [PMID: 1787922]
Meng, Q.; Fan, J.; Liu, Z.; Li, X.; Zhang, F.; Zhang, Y.; Sun, Y.; Li, L.; Liu, X.; Hua, E. Cytotoxic withanolides from the whole herb of Physalis angulata L. Molecules, 2019, 24(8), 1608.
[http://dx.doi.org/10.3390/molecules24081608] [PMID: 31018606]
Fan, Y.; Mao, Y.; Cao, S.; Xia, G.; Zhang, Q.; Zhang, H.; Qiu, F.; Kang, N. S5, a withanolide isolated from Physalis pubescens L., induces G2/M Cell Cycle Arrest via the EGFR/P38 pathway in human melanoma A375 cells. Molecules, 2018, 23(12), 3175.
[http://dx.doi.org/10.3390/molecules23123175] [PMID: 30513793]
Soares, M.B.P.; Brustolim, D.; Santos, L.A.; Bellintani, M.C.; Paiva, F.P.; Ribeiro, Y.M.; Tomassini, T.C.B.; Ribeiro Dos Santos, R. Physalins B, F and G, seco-steroids purified from Physalis angulata L., inhibit lymphocyte function and allogeneic transplant rejection. Int. Immunopharmacol., 2006, 6(3), 408-414.
[http://dx.doi.org/10.1016/j.intimp.2005.09.007] [PMID: 16428076]
Antony, M.L.; Lee, J.; Hahm, E-R.; Kim, S-H.; Marcus, A.I.; Kumari, V.; Ji, X.; Yang, Z.; Vowell, C.L.; Wipf, P.; Uechi, G.T.; Yates, N.A.; Romero, G.; Sarkar, S.N.; Singh, S.V. Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of β-tubulin. J. Biol. Chem., 2014, 289(3), 1852-1865.
[http://dx.doi.org/10.1074/jbc.M113.496844] [PMID: 24297176]
Das, T.; Roy, K.S.; Chakrabarti, T.; Mukhopadhyay, S.; Roychoudhury, S. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines. Biochem. Pharmacol., 2014, 91(1), 31-39.
[http://dx.doi.org/10.1016/j.bcp.2014.06.022] [PMID: 24995417]
Aoki, T.; Akashi, T.; Ayabe, S-i. Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J. Plant Res., 2000, 113, 475-488.
Militão, G.C.; Prado, M.P.; Pessoa, C.; de Moraes, M.O.; Silveira, E.R.; Lima, M.A.S.; Veloso, P.A.; Costa-Lotufo, L.V.; Machado-Santelli, G.M. Pterocarpans induce tumor cell death through persistent mitotic arrest during prometaphase. Biochimie, 2014, 104, 147-155.
[http://dx.doi.org/10.1016/j.biochi.2014.06.005] [PMID: 24952350]
Muroyama, A.; Lechler, T. Microtubule organization, dynamics and functions in differentiated cells. Development, 2017, 144(17), 3012-3021.
[http://dx.doi.org/10.1242/dev.153171] [PMID: 28851722]
Mohan, N.; Sorokina, E.M.; Verdeny, I.V.; Alvarez, A.S.; Lakadamyali, M. Detyrosinated microtubules spatially constrain lysosomes facilitating lysosome-autophagosome fusion. J. Cell Biol., 2019, 218(2), 632-643.
[http://dx.doi.org/10.1083/jcb.201807124] [PMID: 30567713]
Kashyap, V.K.; Wang, Q.; Setua, S.; Nagesh, P.K.B.; Chauhan, N.; Kumari, S.; Chowdhury, P.; Miller, D.D.; Yallapu, M.M.; Li, W.; Jaggi, M.; Hafeez, B.B.; Chauhan, S.C. Therapeutic efficacy of a novel βIII/βIV-tubulin inhibitor (VERU-111) in pancreatic cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 29.
[http://dx.doi.org/10.1186/s13046-018-1009-7] [PMID: 30674344]
Chagas, C.M.; Alisaraie, L. Metabolites of vinca alkaloid vinblastine: tubulin binding and activation of nausea-associated receptors. ACS Omega, 2019, 4(6), 9784-9799.
[http://dx.doi.org/10.1021/acsomega.9b00652] [PMID: 31460070]
Penna, L.S.; Henriques, J.A.P.; Bonatto, D. Anti-mitotic agents: Are they emerging molecules for cancer treatment? Pharmacol. Ther., 2017, 173, 67-82.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.007] [PMID: 28174095]
Jackson, J.R.; Patrick, D.R.; Dar, M.M.; Huang, P.S. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer, 2007, 7(2), 107-117.
[http://dx.doi.org/10.1038/nrc2049] [PMID: 17251917]
Varshney, N.; Som, S.; Chatterjee, S.; Sridhar, S.; Bhattacharyya, D.; Paul, R.; Sanyal, K. Spatio-temporal regulation of nuclear division by Aurora B kinase Ipl1 in Cryptococcus neoformans. PLoS Genet., 2019, 15(2)e1007959
[http://dx.doi.org/10.1371/journal.pgen.1007959] [PMID: 30763303]
López González, M.; Oosterhoff, D.; Lindenberg, J.J.; Milenova, I.; Lougheed, S.M.; Martiáñez, T.; Dekker, H.; Quixabeira, D.C.A.; Hangalapura, B.; Joore, J.; Piersma, S.R.; Cervera-Carrascon, V.; Santos, J.M.; Scheper, R.J.; Verheul, H.M.W.; Jiménez, C.R.; Van De Ven, R.; Hemminki, A.; Van Beusechem, V.W.; De Gruijl, T.D. Constitutively active GSK3β as a means to bolster dendritic cell functionality in the face of tumour-mediated immune suppression. OncoImmunology, 2019, 8(10)e1631119
[http://dx.doi.org/10.1080/2162402X.2019.1631119] [PMID: 31646076]
Chung, V.; Heath, E.I.; Schelman, W.R.; Johnson, B.M.; Kirby, L.C.; Lynch, K.M.; Botbyl, J.D.; Lampkin, T.A.; Holen, K.D. First-time-in-human study of GSK923295, a novel antimitotic inhibitor of centromere-associated protein E (CENP-E), in patients with refractory cancer. Cancer Chemother. Pharmacol., 2012, 69(3), 733-741.
[http://dx.doi.org/10.1007/s00280-011-1756-z] [PMID: 22020315]
Kung, P-P.; Martinez, R.; Zhu, Z.; Zager, M.; Blasina, A.; Rymer, I.; Hallin, J.; Xu, M.; Carroll, C.; Chionis, J.; Wells, P.; Kozminski, K.; Fan, J.; Guicherit, O.; Huang, B.; Cui, M.; Liu, C.; Huang, Z.; Sistla, A.; Yang, J.; Murray, B.W. Chemogenetic evaluation of the mitotic kinesin CENP-E reveals a critical role in triple-negative breast cancer. Mol. Cancer Ther., 2014, 13(8), 2104-2115.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0083-T] [PMID: 24928852]
Ohashi, A.; Ohori, M.; Iwai, K.; Nambu, T.; Miyamoto, M.; Kawamoto, T.; Okaniwa, M. A novel time-dependent CENP-E inhibitor with potent antitumor activity. PLoS One, 2015, 10(12)e0144675
[http://dx.doi.org/10.1371/journal.pone.0144675] [PMID: 26649895]
Maliga, Z.; Junqueira, M.; Toyoda, Y.; Ettinger, A.; Mora-Bermúdez, F.; Klemm, R.W.; Vasilj, A.; Guhr, E.; Ibarlucea-Benitez, I.; Poser, I.; Bonifacio, E.; Huttner, W.B.; Shevchenko, A.; Hyman, A.A. A genomic toolkit to investigate kinesin and myosin motor function in cells. Nat. Cell Biol., 2013, 15(3), 325-334.
[http://dx.doi.org/10.1038/ncb2689] [PMID: 23417121]
Kumbhar, B.V.; Panda, D.; Kunwar, A. Interaction of microtubule depolymerizing agent indanocine with different human αβ tubulin isotypes. PLoS One, 2018, 13(3)e0194934
[http://dx.doi.org/10.1371/journal.pone.0194934] [PMID: 29584771]
Verdier-Pinard, P.; Pasquier, E.; Xiao, H.; Burd, B.; Villard, C.; Lafitte, D.; Miller, L.M.; Angeletti, R.H.; Horwitz, S.B.; Braguer, D. Tubulin proteomics: towards breaking the code. Anal. Biochem., 2009, 384(2), 197-206.
[http://dx.doi.org/10.1016/j.ab.2008.09.020] [PMID: 18840397]
Fernández-Barrera, J.; Bernabé-Rubio, M.; Casares-Arias, J.; Rangel, L.; Fernández-Martín, L.; Correas, I.; Alonso, M.A. The actin-MRTF-SRF transcriptional circuit controls tubulin acetylation via α-TAT1 gene expression. J. Cell Biol., 2018, 217(3), 929-944.
[http://dx.doi.org/10.1083/jcb.201702157] [PMID: 29321169]
Hammond, J.W.; Cai, D.; Verhey, K.J. Tubulin modifications and their cellular functions. Curr. Opin. Cell Biol., 2008, 20(1), 71-76.
[http://dx.doi.org/10.1016/j.ceb.2007.11.010] [PMID: 18226514]
St George, M.; Ayoub, A.T.; Banerjee, A.; Churchill, C.D.; Winter, P.; Klobukowski, M.; Cass, C.E.; Ludueña, R.F.; Tuszynski, J.A.; Damaraju, S. Designing and testing of novel taxanes to probe the highly complex mechanisms by which taxanes bind to microtubules and cause cytotoxicity to cancer cells. PLoS One, 2015, 10(6)e0129168
[http://dx.doi.org/10.1371/journal.pone.0129168] [PMID: 26052950]
Wloga, D.; Joachimiak, E.; Fabczak, H. Tubulin post-translational modifications and microtubule dynamics. Int. J. Mol. Sci., 2017, 18(10), 2207.
[http://dx.doi.org/10.3390/ijms18102207] [PMID: 29065455]
Liu, T.; Wang, F.; LePochat, P.; Woo, J-A.; Bukhari, M.Z.; Hong, K.W.; Trotter, C.; Kang, D.E. Cofilin-mediated neuronal apoptosis via p53 translocation and PLD1 regulation. Sci. Rep., 2017, 7(1), 11532.
[http://dx.doi.org/10.1038/s41598-017-09996-3] [PMID: 28912445]
Saha, T.; Guha, D.; Manna, A.; Panda, A.K.; Bhat, J.; Chatterjee, S.; Sa, G. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53. Sci. Rep., 2016, 6, 32626.
[http://dx.doi.org/10.1038/srep32626] [PMID: 27601274]
Bates, D.; Eastman, A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br. J. Clin. Pharmacol., 2017, 83(2), 255-268.
[http://dx.doi.org/10.1111/bcp.13126] [PMID: 27620987]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
Kim, S-K.; Cho, S-M.; Kim, H.; Seok, H.; Kim, S-O.; Kwon, T.K.; Chang, J-S. The colchicine derivative CT20126 shows a novel microtubule-modulating activity with apoptosis. Exp. Mol. Med., 2013, 45e19, -.
[http://dx.doi.org/10.1038/emm.2013.38] [PMID: 23598593]
Frank, D.O.; Dengjel, J.; Wilfling, F.; Kozjak-Pavlovic, V.; Häcker, G.; Weber, A. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM). PLoS One, 2015, 10(4)e0123341
[http://dx.doi.org/10.1371/journal.pone.0123341] [PMID: 25875815]
Sève, P.; Dumontet, C. Is class III β-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol., 2008, 9(2), 168-175.
[http://dx.doi.org/10.1016/S1470-2045(08)70029-9] [PMID: 18237851]
Asaduzzaman, M.; Constantinou, S.; Min, H.; Gallon, J.; Lin, M-L.; Singh, P.; Raguz, S.; Ali, S.; Shousha, S.; Coombes, R.C.; Lam, E.W.; Hu, Y.; Yagüe, E. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Res. Treat., 2017, 163(3), 461-474.
[http://dx.doi.org/10.1007/s10549-017-4202-z] [PMID: 28341962]
Katsetos, C.D.; Dráberová, E.; Legido, A.; Dumontet, C.; Dráber, P. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. Class III β-tubulin. J. Cell. Physiol., 2009, 221(3), 505-513.
[http://dx.doi.org/10.1002/jcp.21870] [PMID: 19650075]
Zhao, X.; Yue, C.; Chen, J.; Tian, C.; Yang, D.; Xing, L.; Liu, H.; Jin, Y. Class III β-tubulin in colorectal cancer: tissue distribution and clinical analysis of chinese patients. Med. Sci. Monit., 2016, 22, 3915-3924.
[http://dx.doi.org/10.12659/MSM.901252] [PMID: 27771732]
He, F.; Du, T.; Jiang, Q.; Zhang, Y. Synergistic effect of Notch-3-specific inhibition and paclitaxel in non-small cell lung cancer (NSCLC) cells via activation of the intrinsic apoptosis pathway. Med. Sci. Monit., 2017, 23, 3760-3769.
[http://dx.doi.org/10.12659/MSM.902641] [PMID: 28769027]
Westhoff, G.L.; Chen, Y.; Teng, N.N.H. Targeting FOXM1 improves cytotoxicity of paclitaxel and cisplatinum in platinum-resistant ovarian cancer. Int. J. Gynecol. Cancer, 2017, 27(8), 1602-1609.
[http://dx.doi.org/10.1097/IGC.0000000000001063] [PMID: 28692634]
Luo, Y.; Li, D.; Ran, J.; Yan, B.; Chen, J.; Dong, X.; Liu, Z.; Liu, R.; Zhou, J.; Liu, M. End-binding protein 1 stimulates paclitaxel sensitivity in breast cancer by promoting its actions toward microtubule assembly and stability. Protein Cell, 2014, 5(6), 469-479.
[http://dx.doi.org/10.1007/s13238-014-0053-0] [PMID: 24748116]
Parker, A.L.; Teo, W.S.; McCarroll, J.A.; Kavallaris, M. An emerging role for tubulin isotypes in modulating cancer biology and chemotherapy resistance. Int. J. Mol. Sci., 2017, 18(7), 1434.
[http://dx.doi.org/10.3390/ijms18071434] [PMID: 28677634]
Yang, Y-L.; Luo, X-P.; Xian, L. The prognostic role of the class III β-tubulin in non-small cell lung cancer (NSCLC) patients receiving the taxane/vinorebine-based chemotherapy: a meta-analysis. PLoS One, 2014, 9(4)e93997
[http://dx.doi.org/10.1371/journal.pone.0093997] [PMID: 24705847]
Parker, A.L.; Turner, N.; McCarroll, J.A.; Kavallaris, M. βIII-Tubulin alters glucose metabolism and stress response signaling to promote cell survival and proliferation in glucose-starved non-small cell lung cancer cells. Carcinogenesis, 2016, 37(8), 787-798.
[http://dx.doi.org/10.1093/carcin/bgw058] [PMID: 27207668]
McCarroll, J.A.; Sharbeen, G.; Liu, J.; Youkhana, J.; Goldstein, D.; McCarthy, N.; Limbri, L.F.; Dischl, D.; Ceyhan, G.O.; Erkan, M.; Johns, A.L.; Biankin, A.V.; Kavallaris, M.; Phillips, P.A. βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget, 2015, 6(4), 2235-2249.
[http://dx.doi.org/10.18632/oncotarget.2946] [PMID: 25544769]
Bumbaca, B.; Li, W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm. Sin. B, 2018, 8(4), 518-529.
[http://dx.doi.org/10.1016/j.apsb.2018.04.007] [PMID: 30109177]
Wang, Y.; Zhou, Y.; Zheng, Z.; Li, J.; Yan, Y.; Wu, W. Sulforaphane metabolites reduce resistance to paclitaxel via microtubule disruption. Cell Death Dis., 2018, 9(11), 1134.
[http://dx.doi.org/10.1038/s41419-018-1174-9] [PMID: 30429459]
Effendi, W.I.; Nagano, T.; Tachihara, M.; Umezawa, K.; Kiriu, T.; Dokuni, R.; Katsurada, M.; Yamamoto, M.; Kobayashi, K.; Nishimura, Y. Synergistic interaction of gemcitabine and paclitaxel by modulating acetylation and polymerization of tubulin in non-small cell lung cancer cell lines. Cancer Manag. Res., 2019, 11, 3669-3679.
[http://dx.doi.org/10.2147/CMAR.S193789] [PMID: 31118789]
Liao, Y.; Yin, G.; Wang, X.; Zhong, P.; Fan, X.; Huang, C. Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Oncol. Lett., 2019, 18(4), 3723-3733.
[http://dx.doi.org/10.3892/ol.2019.10685] [PMID: 31516585]
Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics, 2019, 11(1), 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
Wang, F.; Zhang, L.; Xu, H.; Li, R.; Xu, L.; Qin, Z.; Zhong, B. The significance role of microRNA-200c as a Prognostic Factor in various human solid malignant neoplasms: a meta-analysis. J. Cancer, 2019, 10(1), 277-286.
[http://dx.doi.org/10.7150/jca.27536] [PMID: 30662548]
Katsumata, N.; Yasuda, M.; Isonishi, S.; Michimae, H.; Kimura, E.; Aoki, D.; Jobo, T.; Kodama, S.; Terauchi, F.; Tsuda, H. Long-term follow-up of a randomized trial comparing conventional paclitaxel and carboplatin with dose-dense weekly paclitaxel and carboplatin in women with advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer: JGOG 3016 trial. Lancet Oncol., 2013, 14(10), 1020-1026.
Aoki, D.; Watanabe, Y.; Jobo, T.; Ushijima, K.; Hasegawa, K.; Susumu, N.; Suzuki, N.; Aoki, R.; Isonishi, S.; Sagae, S.; Ishizuka, B.; Kamura, T.; Udagawa, Y.; Hoshiai, H.; Ohashi, Y.; Ochiai, K.; Noda, K. Favourable prognosis with modified dosing of docetaxel and cisplatin in Japanese patients with ovarian cancer. Anticancer Res., 2009, 29(2), 561-566.
[PMID: 19331203]
Barbuti, A.M.; Chen, Z-S. Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers (Basel), 2015, 7(4), 2360-2371.
[http://dx.doi.org/10.3390/cancers7040897] [PMID: 26633515]
Yan, Y.; Liu, F.; Han, L.; Zhao, L.; Chen, J.; Olopade, O.I.; He, M.; Wei, M. HIF-2α promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. J. Exp. Clin. Cancer Res., 2018, 37(1), 256.
[http://dx.doi.org/10.1186/s13046-018-0925-x] [PMID: 30340507]
Raspaglio, G.; Filippetti, F.; Prislei, S.; Penci, R.; De Maria, I.; Cicchillitti, L.; Mozzetti, S.; Scambia, G.; Ferlini, C. Hypoxia induces class III beta-tubulin gene expression by HIF-1α binding to its 3′ flanking region. Gene, 2008, 409(1-2), 100-108.
[http://dx.doi.org/10.1016/j.gene.2007.11.015] [PMID: 18178340]
Hinsch, A.; Chaker, A.; Burdelski, C.; Koop, C.; Tsourlakis, M.C.; Steurer, S.; Rink, M.; Eichenauer, T.S.; Wilczak, W.; Wittmer, C.; Fisch, M.; Simon, R.; Sauter, G.; Büschek, F.; Clauditz, T.; Minner, S.; Jacobsen, F. βIII-tubulin overexpression is linked to aggressive tumor features and genetic instability in urinary bladder cancer. Hum. Pathol., 2017, 61, 210-220.
[http://dx.doi.org/10.1016/j.humpath.2016.11.005] [PMID: 28025079]
Vemu, A.; Atherton, J.; Spector, J.O.; Moores, C.A.; Roll-Mecak, A. Tubulin isoform composition tunes microtubule dynamics. Mol. Biol. Cell, 2017, 28(25), 3564-3572.
[http://dx.doi.org/10.1091/mbc.e17-02-0124] [PMID: 29021343]
Pellegrini, L.; Wetzel, A.; Grannó, S.; Heaton, G.; Harvey, K. Back to the tubule: microtubule dynamics in Parkinson’s disease. Cell. Mol. Life Sci., 2017, 74(3), 409-434.
[http://dx.doi.org/10.1007/s00018-016-2351-6] [PMID: 27600680]
Ruksha, K.; Mezheyeuski, A.; Nerovnya, A.; Bich, T.; Tur, G.; Gorgun, J.; Luduena, R.; Portyanko, A. Over-expression of βII-tubulin and especially its localization in cell nuclei correlates with poorer outcomes in colorectal cancer. Cells, 2019, 8(1), 25.
[http://dx.doi.org/10.3390/cells8010025] [PMID: 30621030]
Bernard-Marty, C.; Treilleux, I.; Dumontet, C.; Cardoso, F.; Fellous, A.; Gancberg, D.; Bissery, M-C.; Paesmans, M.; Larsimont, D.; Piccart, M.J.; Di Leo, A. Microtubule-associated parameters as predictive markers of docetaxel activity in advanced breast cancer patients: results of a pilot study. Clin. Breast Cancer, 2002, 3(5), 341-345.
[http://dx.doi.org/10.3816/CBC.2002.n.037] [PMID: 12533264]
Binti Yusof, N.S.; Ameli, F.; Sabrina Florence, Ch.; Mustangin, M.; Abd Rahman, F.; Masir, N. Expression of the class II and III beta-tubulin in neoplastic and non-neoplastic lymphoid tissues. Asian Pac. J. Cancer Prev., 2017, 18(4), 1045-1050.
[PMID: 28547939]
Gan, P.P.; McCarroll, J.A.; Byrne, F.L.; Garner, J.; Kavallaris, M. Specific β-tubulin isotypes can functionally enhance or diminish epothilone B sensitivity in non-small cell lung cancer cells. PLoS One, 2011, 6(6)e21717
[http://dx.doi.org/10.1371/journal.pone.0021717] [PMID: 21738778]
Tang, Y.; Rodríguez-Salarichs, J.; Zhao, Y.; Cai, P.; Estévez-Gallego, J.; Balaguer-Pérez, F.; Redondo Horcajo, M.; Lucena-Agell, D.; Barasoain, I.; Díaz, J.F.; Fang, W.S. Modification of C-seco taxoids through ring tethering and substituent replacement leading to effective agents against tumor drug resistance mediated by βIII-Tubulin and P-glycoprotein (P-gp) overexpressions. Eur. J. Med. Chem., 2017, 137, 488-503.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.001] [PMID: 28624703]
Sharbeen, G.; McCarroll, J.; Liu, J.; Youkhana, J.; Limbri, L.F.; Biankin, A.V.; Johns, A.; Kavallaris, M.; Goldstein, D.; Phillips, P.A. Delineating the role of βIV-tubulins in pancreatic cancer: βIVb-tubulin inhibition sensitizes pancreatic cancer cells to vinca alkaloids. Neoplasia, 2016, 18(12), 753-764.
[http://dx.doi.org/10.1016/j.neo.2016.10.011] [PMID: 27889644]
Romaniello, R.; Arrigoni, F.; Fry, A.E.; Bassi, M.T.; Rees, M.I.; Borgatti, R.; Pilz, D.T.; Cushion, T.D. Tubulin genes and malformations of cortical development. Eur. J. Med. Genet., 2018, 61(12), 744-754.
[http://dx.doi.org/10.1016/j.ejmg.2018.07.012] [PMID: 30016746]
Nami, B.; Wang, Z. Genetics and expression profile of the tubulin gene superfamily in breast cancer subtypes and its relation to taxane resistance. Cancers (Basel), 2018, 10(8), 274.
[http://dx.doi.org/10.3390/cancers10080274] [PMID: 30126203]
Rashwan, N.; Scott, M.; Prichard, R. Rapid Genotyping of β-tubulin Polymorphisms in Trichuris trichiura and Ascaris lumbricoides. PLoS Negl. Trop. Dis., 2017, 11(1)e0005205
[http://dx.doi.org/10.1371/journal.pntd.0005205] [PMID: 28081124]
Jaramillo, A.C.; Al Saig, F.; Cloos, J.; Jansen, G.; Peters, G.J. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance. Cancer Drug Resist, 2018, 1, 6-29.
Kato, A.; Naiki-Ito, A.; Naitoh, I.; Hayashi, K.; Nakazawa, T.; Shimizu, S.; Nishi, Y.; Okumura, F.; Inoue, T.; Takada, H.; Kondo, H.; Yoshida, M.; Takahashi, S.; Joh, T. The absence of class III β-tubulin is predictive of a favorable response to nab-paclitaxel and gemcitabine in patients with unresectable pancreatic ductal adenocarcinoma. Hum. Pathol., 2018, 74, 92-98.
[http://dx.doi.org/10.1016/j.humpath.2018.01.009] [PMID: 29339176]
Risinger, A.L.; Jackson, E.M.; Polin, L.A.; Helms, G.L.; LeBoeuf, D.A.; Joe, P.A.; Hopper-Borge, E.; Ludueña, R.F.; Kruh, G.D.; Mooberry, S.L. The taccalonolides: microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res., 2008, 68(21), 8881-8888.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2037] [PMID: 18974132]
Field, J.J.; Pera, B.; Calvo, E.; Canales, A.; Zurwerra, D.; Trigili, C.; Rodríguez-Salarichs, J.; Matesanz, R.; Kanakkanthara, A.; Wakefield, S.J.; Singh, A.J.; Jiménez-Barbero, J.; Northcote, P.; Miller, J.H.; López, J.A.; Hamel, E.; Barasoain, I.; Altmann, K.H.; Díaz, J.F. Zampanolide, a potent new microtubule-stabilizing agent, covalently reacts with the taxane luminal site in tubulin α,β-heterodimers and microtubules. Chem. Biol., 2012, 19(6), 686-698.
[http://dx.doi.org/10.1016/j.chembiol.2012.05.008] [PMID: 22726683]
Balaguer , FdA; Mühlethaler, T; Estévez-Gallego, J; Calvo, E; Giménez-Abián, JF; Risinger, AL; Sorensen, EJ Vanderwal CD, Altmann K-H, Mooberry SL.. Crystal structure of the cyclostreptin-tubulin adduct: Implications for tubulin activation by taxane-site ligands. Int. J. Mol. Sci., 2019, 20, 1392.
Yeh, L-C.C.; Banerjee, A.; Prasad, V.; Tuszynski, J.A.; Weis, A.L.; Bakos, T.; Yeh, I-T.; Ludueña, R.F.; Lee, J.C. Effect of CH-35, a novel anti-tumor colchicine analogue, on breast cancer cells overexpressing the βIII isotype of tubulin. Invest. New Drugs, 2016, 34(1), 129-137.
[http://dx.doi.org/10.1007/s10637-015-0315-6] [PMID: 26686345]
Cicchillitti, L.; Penci, R.; Di Michele, M.; Filippetti, F.; Rotilio, D.; Donati, M.B.; Scambia, G.; Ferlini, C. Proteomic characterization of cytoskeletal and mitochondrial class III β-tubulin. Mol. Cancer Ther., 2008, 7(7), 2070-2079.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2370] [PMID: 18645017]
Kamath, K.; Wilson, L.; Cabral, F.; Jordan, M.A. BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J. Biol. Chem., 2005, 280(13), 12902-12907.
[http://dx.doi.org/10.1074/jbc.M414477200] [PMID: 15695826]
Field, J.J.; Northcote, P.T.; Paterson, I.; Altmann, K-H.; Díaz, J.F.; Miller, J.H. Zampanolide, a microtubule-stabilizing agent, is active in resistant cancer cells and inhibits cell migration. Int. J. Mol. Sci., 2017, 18(5), 971.
[http://dx.doi.org/10.3390/ijms18050971] [PMID: 28467385]
Ploussard, G.; Terry, S.; Maillé, P.; Allory, Y.; Sirab, N.; Kheuang, L.; Soyeux, P.; Nicolaiew, N.; Coppolani, E.; Paule, B.; Salomon, L.; Culine, S.; Buttyan, R.; Vacherot, F.; de la Taille, A. Class III β-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res., 2010, 70(22), 9253-9264.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1447] [PMID: 21045157]
Hasegawa, S.; Miyoshi, Y.; Egawa, C.; Ishitobi, M.; Taguchi, T.; Tamaki, Y.; Monden, M.; Noguchi, S. Prediction of response to docetaxel by quantitative analysis of class I and III β-tubulin isotype mRNA expression in human breast cancers. Clin. Cancer Res., 2003, 9(8), 2992-2997.
[PMID: 12912947]
Tommasi, S.; Mangia, A.; Lacalamita, R.; Bellizzi, A.; Fedele, V.; Chiriatti, A.; Thomssen, C.; Kendzierski, N.; Latorre, A.; Lorusso, V.; Schittulli, F.; Zito, F.; Kavallaris, M.; Paradiso, A. Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of β-tubulins. Int. J. Cancer, 2007, 120(10), 2078-2085.
[http://dx.doi.org/10.1002/ijc.22557] [PMID: 17285590]
Nicoletti, M.I.; Valoti, G.; Giannakakou, P.; Zhan, Z.; Kim, J-H.; Lucchini, V.; Landoni, F.; Mayo, J.G.; Giavazzi, R.; Fojo, T. Expression of β-tubulin isotypes in human ovarian carcinoma xenografts and in a sub-panel of human cancer cell lines from the NCI-Anticancer Drug Screen: correlation with sensitivity to microtubule active agents. Clin. Cancer Res., 2001, 7(9), 2912-2922.
[PMID: 11555610]
Christoph, D.C.; Kasper, S.; Gauler, T.C.; Loesch, C.; Engelhard, M.; Theegarten, D.; Poettgen, C.; Hepp, R.; Peglow, A.; Loewendick, H.; Welter, S.; Stamatis, G.; Hirsch, F.R.; Schuler, M.; Eberhardt, W.E.; Wohlschlaeger, J. βV-tubulin expression is associated with outcome following taxane-based chemotherapy in non-small cell lung cancer. Br. J. Cancer, 2012, 107(5), 823-830.
[http://dx.doi.org/10.1038/bjc.2012.324] [PMID: 22836512]
Jiang, H.; Yu, X-M.; Zhou, X-M.; Wang, X-H.; Su, D. Correlation between microtubule-associated gene expression and chemosensitivity of patients with stage II non-small cell lung cancer. Exp. Ther. Med., 2013, 5(5), 1506-1510.
[http://dx.doi.org/10.3892/etm.2013.1007] [PMID: 23737908]
Kumar, S.; Mahdi, H.; Bryant, C.; Shah, J.P.; Garg, G.; Munkarah, A. Clinical trials and progress with paclitaxel in ovarian cancer. Int. J. Womens Health, 2010, 2, 411-427.
[http://dx.doi.org/10.2147/IJWH.S7012] [PMID: 21270965]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 24 June, 2020
Page: [178 - 185]
Pages: 8
DOI: 10.2174/1389200221666200226123638
Price: $65

Article Metrics

PDF: 15