Folate-modified Graphene Oxide as the Drug Delivery System to Load Temozolomide

Author(s): Li-Hua Wang, Jia-Yuan Liu, Lin Sui, Peng-Hui Zhao, Hai-Di Ma, Zhen Wei*, Yong-Li Wang*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 11 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Objective: The folate-modified graphene oxide (GO-FA), which had good stability and biocompatibility on rat glioma cells was successfully prepared.

Methods: The formation and composition of GO-FA were confirmed by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectrum (FT-IR), Raman spectra and X-ray Photoelectron Spectroscopy (XPS spectra). The cell experiment suggested good biocompatibility of GO-FA on rat glioma cells.

Results: The experiment of GO-FA loading with Temozolomide (TMZ) showed that the maximum drug loading of GO-FA was 8.05 ± 0.20 mg/mg, with the drug loading rate of 89.52 ± 0.19 %. When TMZ was released from the folate-modified graphene oxide loading with temozolomide (GO-FATMZ), its release behavior in vitro showed strong pH dependence and sustained release property. The growth of rat glioma cells can be effectively inhibited by GO-FA-TMZ, with the cell inhibition rate as high as 91.72 ± 0.13 % at the concentration of 600 μg/mL and time of 72 h.

Conclusion: According to the above experimental results, this composite carrier has potential applications in drug delivery and cancer therapy.

Keywords: Graphene oxide, folic acid, temozolomide, drug loading, drug release, cytotoxicity.

[1]
(a) Capdevila, L.; Cros, S.; Ramirez, J-L.; Sanz, C.; Carrato, C.; Romeo, M.; Etxaniz, O.; Hostalot, C.; Massuet, A.; Cuadra, J.L.; Villà, S.; Balañà, C. Neoadjuvant cisplatin plus temozolomide versus standard treatment in patients with unresectable glioblastoma or anaplastic astrocytoma: A differential effect of MGMT methylation. J. Neurooncol., 2014, 117(1), 77-84.
[http://dx.doi.org/10.1007/s11060-013-1352-7] [PMID: 24395350]
(b) Ilkhanizadeh, S.; Lau, J.; Huang, M.; Foster, D.J.; Wong, R.; Frantz, A.; Wang, S.; Weiss, W.A.; Persson, A.I. Glial progenitors as targets for transformation in glioma. Adv. Cancer Res., 2014, 121, 1-65.
[http://dx.doi.org/10.1016/B978-0-12-800249-0.00001-9] [PMID: 24889528]
(c) Liu, H.; Zhang, J.; Chen, X.; Du, X-S.; Zhang, J-L.; Liu, G.; Zhang, W-G. Application of iron oxide nanoparticles in glioma imaging and therapy: From bench to bedside. Nanoscale, 2016, 8(15), 7808-7826.
[http://dx.doi.org/10.1039/C6NR00147E] [PMID: 27029509]
(d) Zhang, C-X.; Zhao, W-Y.; Liu, L.; Ju, R-J.; Mu, L-M.; Zhao, Y.; Zeng, F.; Xie, H-J.; Yan, Y.; Lu, W-L. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment. Oncotarget, 2015, 6(32), 32681-32700.
[http://dx.doi.org/10.18632/oncotarget.5354] [PMID: 26418720]
[2]
Sharma, A.K.; Gupta, L.; Sahu, H.; Qayum, A.; Singh, S.K.; Nakhate, K.T. Ajazuddin, Gupta, U. Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide. Pharm. Res., 2018, 35, 9-23.
[http://dx.doi.org/10.1007/s11095-017-2324-y] [PMID: 29294212]
[3]
Prabhu, S.; Goda, J.S.; Mutalik, S.; Mohanty, B.S.; Chaudhari, P.; Rai, S.; Udupa, N.; Rao, B.S.S. A polymeric temozolomide nanocomposite against orthotopic glioblastoma xenograft: Tumor-specific homing directed by nestin. Nanoscale, 2017, 9(30), 10919-10932.
[http://dx.doi.org/10.1039/C7NR00305F] [PMID: 28731079]
[4]
(a) Hvizdos, K.M.; Goa, K.L. Temozolomide. CNS Drugs, 1999, 12, 237-243.
[http://dx.doi.org/10.2165/00023210-199912030-00006]
(b) Hanif, F.; Perveen, K.; Malhi, S.M.; Jawed, H.; Simjee, S.U. Verapamil potentiates anti-glioblastoma efficacy of temozolomide by modulating apoptotic signaling. Toxicol. In Vitro, 2018, 52, 306-313.
[http://dx.doi.org/10.1016/j.tiv.2018.07.001] [PMID: 30003979]
[5]
(a) Creemers, S.G.; van Koetsveld, P.M.; van den Dungen, E.S.; Korpershoek, E.; van Kemenade, F.J.; Franssen, G.J.; de Herder, W.W.; Feelders, R.A.; Hofland, L.J. inhibition of human adrenocortical cancer cell growth by temozolomide in vitro and the role of the MGMT Gene. J. Clin. Endocrinol. Metab., 2016, 101(12), 4574-4584.
[http://dx.doi.org/10.1210/jc.2016-2768] [PMID: 27603910]
(b) Masi, B.C.; Tyler, B.M.; Bow, H.; Wicks, R.T.; Xue, Y.; Brem, H.; Langer, R.; Cima, M.J. Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials, 2012, 33(23), 5768-5775.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.048] [PMID: 22591609]
[6]
Efferth, T.; Schöttler, U.; Krishna, S.; Schmiedek, P.; Wenz, F.; Giordano, F.A. Hepatotoxicity by combination treatment of temozolomide, artesunate and Chinese herbs in a glioblastoma multiforme patient: Case report review of the literature. Arch. Toxicol., 2017, 91(4), 1833-1846.
[http://dx.doi.org/10.1007/s00204-016-1810-z] [PMID: 27519711]
[7]
(a) Gao, J.; Wang, Z.; Liu, H.; Wang, L.; Huang, G. Liposome encapsulated of temozolomide for the treatment of glioma tumor: preparation, characterization and evaluation. Drug Discov. Ther., 2015, 9(3), 205-212.
[http://dx.doi.org/10.5582/ddt.2015.01016] [PMID: 26193943]
(b) Sawyer, A.J.; Saucier-Sawyer, J.K.; Booth, C.J.; Liu, J.; Patel, T.; Piepmeier, J.M.; Saltzman, W.M. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv. Transl. Res., 2011, 1(1), 34-42.
[http://dx.doi.org/10.1007/s13346-010-0001-3] [PMID: 21691426]
[8]
(a) Chua, C.K.; Pumera, M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev., 2014, 43(1), 291-312.
[http://dx.doi.org/10.1039/C3CS60303B] [PMID: 24121318]
(b) Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[9]
Tasviri, M.; Ghasemi, S.; Ghourchian, H.; Gholami, M.R. Ionic liquid/graphene oxide as a nanocomposite for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase. J. Solid State Electrochem., 2013, 17, 183-189.
[http://dx.doi.org/10.1007/s10008-012-1858-5]
[10]
Sansone, L.; Malachovska, V.; La Manna, P.; Musto, P.; Borriello, A.; De Luca, G.; Giordano, M. Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics. Sensor. Actuat. Biol. Chem., 2014, 202, 523-526.
[11]
Goto, Y.; Yoshida, N.; Umeyama, Y.; Yamada, T.; Tero, R.; Hiraishi, A. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells. Front. Bioeng. Biotechnol., 2015, 3, 1-8.
[http://dx.doi.org/10.3389/fbioe.2015.00042] [PMID: 25654078]
[12]
Jasim, D.A.; Lozano, N.; Kostarelos, K. A blueprint for the synthesis and characterization of thin graphene oxide with controlled lateraldimensions for biomedicine. 2D Mater. 2016, 3, 1-17.
[13]
Feng, L.; Zhang, S.; Liu, Z. Graphene based gene transfection. Nanoscale, 2011, 3(3), 1252-1257.
[http://dx.doi.org/10.1039/c0nr00680g] [PMID: 21270989]
[14]
Yang, H.; Bremner, D.H.; Tao, L.; Li, H.; Hu, J.; Zhu, L. Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydr. Polym., 2016, 135, 72-78.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.058] [PMID: 26453853]
[15]
Xiao, Z.; Rong, Y.; Chen, W.; Cheng-Lin, H. Cell biocompatibility of functionalized graphene oxide. Acta Phys. Chim. Sin., 2012, 28, 1520-1524.
[16]
(a) Cui, J.; Yang, Y.; Zheng, M.; Liu, Y.; Xiao, Y.; Lei, B.; Chen, W. Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Mater. Res. Express, 2014, 1, 1-16.
(b) Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[17]
Depan, D.; Shah, J.; Misra, R.D.K. Controlled release of drug from folate-decorated and grapheme mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mat. Sci. Eng. C-Mater., 2011, 31, 1305-1312.
[18]
Leamon, C.P.; Low, P.S. Folate-mediated targeting: From diagnostics to drug and gene delivery. Drug Discov. Today, 2001, 6(1), 44-51.
[http://dx.doi.org/10.1016/S1359-6446(00)01594-4] [PMID: 11165172]
[19]
Mischoulon, D.; Raab, M.F. The role of folate in depression and dementia. J. Clin. Psychiatry, 2007, 68(Suppl. 10), 28-33.
[PMID: 17900207]
[20]
(a) He, L.; Wang, Q.; Mandler, D.; Li, M.; Boukherroub, R.; Szunerits, S. Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid. Biosens. Bioelectron., 2016, 75, 389-395.
[http://dx.doi.org/10.1016/j.bios.2015.08.060] [PMID: 26342582]
(b) Thapa, R.K.; Choi, Y.; Jeong, J.H.; Youn, Y.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. Folate-mediated targeted delivery of combination chemotherapeutics loaded reduced graphene oxide for synergistic chemo-photothermal therapy of cancers. Pharm. Res., 2016, 33(11), 2815-2827.
[http://dx.doi.org/10.1007/s11095-016-2007-0] [PMID: 27573575]
(c) Wang, Z.; Zhou, C.; Xia, J.; Via, B.; Xia, Y.; Zhang, F.; Li, Y.; Xia, L. Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier. Colloid. Surface. B, 2013, 106, 60-65.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.032]
[21]
(a) Cao, X.; Feng, F.; Wang, Y.; Yang, X.; Duan, H.; Chen, Y. Folic acid-conjugated graphene oxide as a transporter of chemotherapeutic drug and siRNA for reversal of cancer drug resistance. J. Nanopart. Res., 2013, 15, 1965-1977.
[http://dx.doi.org/10.1007/s11051-013-1965-y]
(b) Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1, 240-250.
[http://dx.doi.org/10.7150/thno/v01p0240] [PMID: 21562631]
(c) Qin, X.C.; Guo, Z.Y.; Liu, Z.M.; Zhang, W.; Wan, M.M.; Yang, B.W.; Photoch, J. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. Photobio. B, 2013, 120, 156-162.
[http://dx.doi.org/10.1016/j.jphotobiol.2012.12.005]
[22]
Tian, L.; Pei, X.; Zeng, Y.; He, R.; Li, Z.; Wang, J.; Wan, Q.; Li, X. J. Nanopart. Res., 2014, 16, 2709-2723.
[http://dx.doi.org/10.1007/s11051-014-2709-3]
[23]
Thapa, R.K.; Choi, J.Y.; Poudel, B.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Receptor-targeted, drug-loaded, functionalized graphene oxides for chemotherapy and photothermal therapy. Int. J. Nanomedicine, 2016, 11, 2799-2813.
[PMID: 27358565]
[24]
Bardajee, G.R.; Hooshyar, Z. Thermo/pH/magnetic-triple sensitive poly(N-isopropylacrylamide-co-2-dimethylaminoethyl) methacrylate)/sodium alginate modified magnetic graphene oxide nanogel for anticancer drug delivery. Polym. Bull., 2018, 75, 5403–5419.
[25]
Ma, X.; Tao, H.; Yang, K.; Feng, L.; Cheng, L.; Shi, X.; Li, Y.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res., 2012, 5, 199-212.
[http://dx.doi.org/10.1007/s12274-012-0200-y]
[26]
Kooti, M.; Sedeh, A.N.; Motamedi, H.; Rezatofighi, S.E. Magnetic graphene oxide inlaid with silver nanoparticles as antibacterial and drug delivery composite. Appl. Microbiol. Biotechnol., 2018, 102(8), 3607-3621.
[http://dx.doi.org/10.1007/s00253-018-8880-1] [PMID: 29511845]
[27]
Maity, S.; Sa, B. Compression-coated tablet for colon targeting: Impact of coating and core materials on drug release. AAPS PharmSciTech, 2016, 17(2), 504-515.
[http://dx.doi.org/10.1208/s12249-015-0359-0] [PMID: 26271189]
[28]
Sang, G.; Bardajee, G.R.; Mirshokraie, A.; Didehban, K. Self-assembly and drug release control of dual-responsive copolymers based on oligo(ethylene glycol)methyl ether methacrylate and spiropyran. Iran. Polym. J., 2018, 27, 137-144.
[http://dx.doi.org/10.1007/s13726-017-0592-3]
[29]
Silva, A.R.D.; Zaniquelli, M.E.D.; Baratti, M.O.; Jorge, R.A. Drug release from microspheres and nanospheres of poly(lactide-co-glycolide) without sphere separation from the release medium. J. Braz. Chem. Soc., 2010, 21, 214-225.
[30]
Kassaee, M.Z.; Motamedi, E.; Majdi, M. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chem. Eng. J., 2011, 172, 540-549.
[http://dx.doi.org/10.1016/j.cej.2011.05.093]
[31]
(a) Yan, X.; Chen, J.; Yang, J.; Xue, Q.; Miele, P. Fabrication of free-standng, electrochemically active, and biocompatible graphene oxide- polyaniline and graphene-polyaniline hybrid papers. ACS Appl. Mater. Inter., 2010, 2, 2521-2529.
[http://dx.doi.org/10.1021/am100293r]
(b) Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai, L. Biocompatible graphene oxide-based glucose biosensors. Langmuir, 2010, 26(9), 6158-6160.
[http://dx.doi.org/10.1021/la100886x] [PMID: 20349968]
[32]
Sanphui, P.; Babu, N.J.; Nangia, A. Temozolomide cocrystals with carboxamide coformers. Cryst. Growth Des., 2013, 13, 2208-2219.
[http://dx.doi.org/10.1021/cg400322t]
[33]
Newlands, E.S.; Stevens, M.F.; Wedge, S.R.; Wheelhouse, R.T.; Brock, C. Temozolomide: A review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat. Rev., 1997, 23(1), 35-61.
[http://dx.doi.org/10.1016/S0305-7372(97)90019-0] [PMID: 9189180]
[34]
Du, L.; Suo, S.; Luo, D.; Jia, H.; Sha, Y.; Liu, Y. J. Nanopart. Res., 2013, 15, 1708-1715.
[http://dx.doi.org/10.1007/s11051-013-1708-0]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 11
Year: 2020
Published on: 20 September, 2020
Page: [1088 - 1098]
Pages: 11
DOI: 10.2174/1389201021666200226122742
Price: $65

Article Metrics

PDF: 24
HTML: 1