A Study on the Rearrangement of Dialkyl 1-Aryl-1-hydroxymethylphosphonates to Benzyl Phosphates

Author(s): Zita Rádai, Réka Szabó, Áron Szigetvári, Nóra Zsuzsa Kiss, Zoltán Mucsi, György Keglevich*

Journal Name: Current Organic Chemistry

Volume 24 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.

Keywords: α-hydroxyphosphonate, benzyl phosphate, phospha-brook rearrangement, mechanism, catalytic conditions.

[1]
Patel, D.V.; Rielly-Gauvin, K.; Ryono, D.E.; Free, C.A.; Rogers, W.L.; Smith, S.A.; DeForrest, J.M.; Oehl, R.S.; Petrillo, E.W., Jr α-Hydroxy phosphinyl-based inhibitors of human renin. J. Med. Chem., 1995, 38(22), 4557-4569.
[http://dx.doi.org/10.1021/jm00022a022] [PMID: 7473584]
[2]
Kategaonkar, A.H.; Pokalwar, R.U.; Sonar, S.S.; Gawali, V.U.; Shingate, B.B.; Shingare, M.S. Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α-acetoxyphosphonate derivatives of tetrazolo [1, 5-a] quinoline. Eur. J. Med. Chem., 2010, 45(3), 1128-1132.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.013] [PMID: 20036039]
[3]
Pokalwar, R.U.; Hangarge, R.V.; Maske, P.V.; Shingare, M.S. Synthesis and antibacterial activities of α-hydroxyphosphonates and α-acetyloxyphosphonates derived from 2-chloroquinoline-3-carbaldehyde. ARKIVOC, 2006, 11, 196-204.
[4]
Reddy, G.S.; Sundar, C.S.; Prasad, S.S.; Dadapeer, E.; Raju, C.N.; Reddy, C.S. Synthesis, spectral characterization and antimicrobial activity of α-hydroxyphosphonates. Pharma Chem., 2012, 4(6), 2208-2213.
[5]
Kalla, R.M.N.; Lee, H.R.; Cao, J.; Yoo, J.W.; Kim, I. Phospho sulfonic acid: an efficient and recyclable solid acid catalyst for the solvent-free synthesis of α-hydroxyphosphonates and their anticancer properties. New J. Chem., 2015, 39(5), 3916-3922.
[http://dx.doi.org/10.1039/C5NJ00312A]
[6]
Rádai, Z.; Szeles, P.; Kiss, N.Z.; Hegedűs, L.; Windt, T.; Nagy, V.; Keglevich, G. Green synthesis and cytotoxic activity of dibenzyl α-hydroxyphosphonates and α-hydroxyphosphonic acids. Heteroatom Chem., 2018, 29(4)e21436
[http://dx.doi.org/10.1002/hc.21436]
[7]
Song, H.; Mao, H.; Shi, D. Synthesis and herbicidal activity of α-hydroxy phosphonate derivatives containing pyrimidine moiety. Chin. J. Chem., 2010, 28(10), 2020-2024.
[http://dx.doi.org/10.1002/cjoc.201090337]
[8]
Rao, K.U.M.; Sundar, C.S.; Prasad, S.S.; Rani, C.R.; Reddy, C.S. Neat synthesis and anti-oxidant activity of α-hydroxyphosphonates. Bull. Korean Chem. Soc., 2011, 32(9), 3343-3347.
[http://dx.doi.org/10.5012/bkcs.2011.32.9.3343]
[9]
Naidu, K.R.M.; Kumar, K.S.; Arulselvan, P.; Reddy, C.B.; Lasekan, O. Synthesis of α-hydroxyphosphonates and their antioxidant properties. Arch. Pharm. (Weinheim), 2012, 345(12), 957-963.
[http://dx.doi.org/10.1002/ardp.201200192] [PMID: 23015406]
[10]
Sobhani, S.; Tashrifi, Z. Synthesis of α-functionalized phosphonates from α-hydroxyphosphonates. Tetrahedron, 2010, 66(7), 1429-1439.
[http://dx.doi.org/10.1016/j.tet.2009.11.081]
[11]
Rádai, Z.; Keglevich, G. Synthesis and Reactions of α-Hydroxyphosphonates. Molecules, 2018, 23(6), 1493-1521.
[http://dx.doi.org/10.3390/molecules23061493] [PMID: 29925805]
[12]
Rádai, Z. α-Hydroxyphosphonates as versatile starting materials. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(4-6), 425-437.
[http://dx.doi.org/10.1080/10426507.2018.1544132]
[13]
Rádai, Z.; Hodula, V.; Kiss, N.Z.; Kóti, J.; Keglevich, G. Phosphorylation of (1-aryl-1-hydroxymethyl) phosphonates. Mendeleev Commun., 2018, 29(2), 153-154.
[http://dx.doi.org/10.1016/j.mencom.2019.03.011]
[14]
Lorenz, W.; Henglein, A.; Schrader, G. The new insecticide O,O-dimethyl 2, 2, 2-trichloro-1-hydroxyethylphosphonate. J. Am. Chem. Soc., 1955, 77(9), 2554-2556.
[http://dx.doi.org/10.1021/ja01614a061]
[15]
Yoshino, K.; Kohno, T.; Morita, T.; Tsukamoto, G. Organic phosphorus compounds. 2. Synthesis and coronary vasodilator activity of (benzothiazolylbenzyl) phosphonate derivatives. J. Med. Chem., 1989, 32(7), 1528-1532.
[http://dx.doi.org/10.1021/jm00127a021] [PMID: 2738888]
[16]
McGeary, R.P.; Vella, P.; Mak, J.Y.W.; Guddat, L.W.; Schenk, G. Inhibition of purple acid phosphatase with α-alkoxynaphthylmethylphosphonic acids. Bioorg. Med. Chem. Lett., 2009, 19(1), 163-166.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.125] [PMID: 19010677]
[17]
Pallitsch, K.; Roller, A.; Hammerschmidt, F. The stereochemical course of the α-hydroxyphosphonate-phosphate rearrangement. Chemistry, 2015, 21(28), 10200-10206.
[http://dx.doi.org/10.1002/chem.201406661] [PMID: 26059025]
[18]
Jankowski, S.; Marczak, J.; Olczak, A.; Główka, M.L. Stereochemistry of 1-hydroxyphosphonate-phosphate rearrangement. Retention of configuration at the phosphorus atom. Tetrahedron Lett., 2006, 47(20), 3341-3344.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.103]
[19]
Kumaraswamy, S.; Selvi, R.S.; Swamy, K.C.K. Synthesis of new α-hydroxy-α-halogeno- and vinylphosphonates derived from 5,5-dimethyl-1,3,2-dioxaphosphinan-2-one. Synthesis, 1997, 1997(2), 207-212.
[http://dx.doi.org/10.1055/s-1997-1166]
[20]
Nandre, K.P.; Nandre, J.P.; Patil, V.S.; Bhosale, S.V. Barium hydroxide catalyzed greener protocol for the highly efficient and rapid synthesis of α-hydroxyphosphonates under solvent free conditions. Chem. Biol. Interact., 2012, 2(5), 314-321.
[21]
Kulkarni, M.A.; Lad, U.P.; Desai, U.V.; Mitragotri, S.D.; Wadgaonkar, P.P. Mechanistic approach for expeditious and solvent-free synthesis of α-hydroxy phosphonates using potassium phosphate as catalyst. C. R. Chim., 2013, 16(2), 148-152.
[http://dx.doi.org/10.1016/j.crci.2012.10.009]
[22]
Keglevich, G.; Tóth, V.R.; Drahos, L. Microwave-assisted synthesis of α-hydroxy-benzylphosphonates and -benzylphosphine oxides. Heteroatom Chem., 2011, 22(1), 15-17.
[http://dx.doi.org/10.1002/hc.20649]
[23]
Kong, D.L.; Liu, R.D.; Li, G.Z.; Zhang, P.W.; Wu, M.S.A. Rapid, convenient, solventless green approach for the synthesis of α-hydroxyphosphonates by grinding. Asian J. Chem., 2014, 26(4), 1246-1248.
[http://dx.doi.org/10.14233/ajchem.2014.16606]
[24]
Keglevich, G.; Rádai, Z.; Kiss, N.Z. To date the greenest method for the preparation of α-hydroxyphosphonates from substituted benzaldehydes and dialkyl phosphites. Green Process. Synth., 2016, 6(2), 197-201.
[25]
Wang, C.; Zhou, J.; Lv, X.; Wen, J.; He, H. Solvent-free synthesis of tertiary α-hydroxyphosphates by the triethylamine-catalyzed hydrophosphonylation of ketones. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188(10), 1334-1339.
[http://dx.doi.org/10.1080/10426507.2013.765874]
[26]
Kumar, K.S.; Reddy, C.B.; Reddy, M.V.N.; Rani, C.R.; Reddy, C.S. Green chemical synthesis of α-hydroxyphosphonates. Org. Commun., 2012, 5(8), 50-57.
[27]
Rádai, Z.; Kiss, N.Z.; Keglevich, G. 5. Synthesis of α-Hydroxyphosphonates, an Important Class of Bioactive Compounds. In: Organophosphorus Chemistry - Novel Developments; Keglevich, G., Ed.; De Gruyter: Berlin, Boston, 2018.
[http://dx.doi.org/10.1515/9783110535839-005]
[28]
Pallikonda, G.; Santosh, R.; Ghosal, S.; Chakravarty, M. BuLi-triggered phospha-Brook rearrangement: efficient synthesis of organophosphates from ketones and aldehydes. Tetrahedron Lett., 2015, 56(24), 3796-3798.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.073]
[29]
Kaïm, L.E.; Gaultier, L.; Grimaud, L.; Santos, A.D. Formation of new phosphates from aldehydes by a DBU-catalysed phospha-Brook rearrangement in a polar solvent. Synlett, 2005, 2005(15), 2335-2336.
[http://dx.doi.org/10.1055/s-2005-872670]
[30]
Galeta, J.; Potáček, M. Applications of caged-designed proton sponges in base-catalyzed transformations. J. Mol. Catal. Chem., 2014, 395, 87-92.
[http://dx.doi.org/10.1016/j.molcata.2014.08.004]
[31]
Maity, P.K.; Faisal, S.; Rolfe, A.; Stoianova, D.; Hanson, P.R. Silica-Supported Oligomeric Benzyl Phosphate (Si-OBP) and Triazole Phosphate (Si-OTP) Alkylating Reagents. J. Org. Chem., 2015, 80(20), 9942-9950.
[http://dx.doi.org/10.1021/acs.joc.5b01456] [PMID: 26430955]
[32]
Laskar, R.A.; Yoshikai, N. Cobalt-catalyzed, N-H imine-directed arene C-H benzylation with benzyl phosphates. J. Org. Chem., 2019, 84(20), 13172-13178.
[http://dx.doi.org/10.1021/acs.joc.9b01775] [PMID: 31389240]
[33]
Mentz, M.; Modro, A.M.; Modro, T.A. Solvation and metal ion effects on structure and reactivity of phosphoryl compounds. Part 4. Dealkylation of phosphate esters by thiophenoxide ion in methanol. Can. J. Chem., 1994, 72(9), 1933-1936.
[http://dx.doi.org/10.1139/v94-246]
[34]
Kiss, N.Z.; Rádai, Z.; Szabó, R.; Aichi, Y.; Laasri, L.; Sebti, S. Synthesis of organophosphates starting from α-hydroxyphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(4-6), 370-371.
[http://dx.doi.org/10.1080/10426507.2018.1547722]
[35]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[36]
Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105(8), 2999-3093.
[http://dx.doi.org/10.1021/cr9904009] [PMID: 16092826]
[37]
Badet, B.; Julia, M.; Rolando, C. Preparation of mixed phosphoric acid triesters using sulphonium salts. Synthesis, 1982, 1982(4), 291-294.
[http://dx.doi.org/10.1055/s-1982-29784]
[38]
Gefflaut, T.; Périé, J. Synthesis of β-keto-phosphotriesters using functionalized diazoketones. Synth. Commun., 1994, 24(1), 29-33.
[http://dx.doi.org/10.1080/00397919408012621]
[39]
Asai, S.; Kato, M.; Monguchi, Y.; Sajiki, H.; Sawama, Y. Phosphate-mediated enyne synthesis from allenols. Chem. Sel., 2017, 2, 876-878.
[40]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09; Gaussian Inc.: Wallingford, CT, 2009.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 4
Year: 2020
Published on: 09 May, 2020
Page: [465 - 471]
Pages: 7
DOI: 10.2174/1385272824666200226114306

Article Metrics

PDF: 23
HTML: 4
EPUB: 1
PRC: 1